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Abstract— We have developed a static analysis to help devel-
opers understand the interactions between objects and tasks in
Bristlecone applications. The Bristlecone language was designed
to help developers construct robust applications out of potentially
unreliable components. Bristlecone applications can adapt their
behavior, potentially degrading their functionality, in response to
software errors in order to avoid catastrophic failures.

Bristlecone applications are composed of a set of tasks. The
description of the behavior of these tasks is split into two or-
thogonal specifications: a set of high-level task specifications that
describe both when the task should be invoked and which objects
the task operates on and low-level imperative specifications that
describe the operational behavior of the task.

The Bristlecone compiler and runtime use the high-level
specifications to detect software errors, to recover the application
from an error to a consistent state, and to reason how to safely
continue the application’s execution after the error.

This paper presents a static analysis that automatically extracts
information about the interaction of objects and tasks, a set
of graphical representations that capture the relevant informa-
tion about these interactions, and a web-based, interactive tool
that uses these graphical representations to communicate this
information to the developer. We have used this tool to explore
the behavior of several benchmark applications including an
online game, a web server, and a chat server. Our experience
indicates that these analysis results are useful for understanding
the interaction between tasks and objects in our benchmark
applications and correcting several software bugs.

Index Terms— Program Understanding, Static Analysis

I. INTRODUCTION

Software faults pose a significant challenge to constructing
robust software systems. The current approach to addressing
this problem is to work hard to minimize the number of
software faults in software systems through a combination of
development processes, automated tools, and testing. While
minimizing the number of software faults is a critical compo-
nent of the development process for reliable software, it is not
sufficient: some software faults will inevitably slip through the
development and testing processes.

Some software systems, including the Lucent SESS tele-
phone switch [24] and the IBM MVS operating system [33],
utilize hand-developed recovery routines to improve reliability
in the face of these remaining software faults. These routines
detect and repair software errors enabling the software sys-
tems to successfully recover. Many programming languages,
including Java and C++, contain built-in exception handling
primitives that are designed to facilitate writing recovery code.
Unfortunately, this approach requires the developer to correctly
predict what types of software faults are likely to occur in
practice and to reason about how the software system can

recover from the errors produced by the execution of these
faults.

We have previously developed Bristlecone, a new pro-
gramming language for robust software systems, to enable
developers to construct robust software systems out of unre-
liable components [13]. Our previous research indicated that
Bristlecone significantly improved the robustness of several
benchmark applications to randomly injected failures.

Bristlecone programs consist of a set of decoupled tasks
with each task encapsulating an individual conceptual opera-
tion and a set of task specifications that describe how these
decoupled tasks interact. Bristlecone tracks the abstract state of
objects using object flags and tracks groups of related objects
using fag instances. The key idea is that if the Bristlecone
runtime detects an software error, the runtime can use this
extra information about the structure of the program and
abstract object states to isolate any effects of the error and
then to adapt the execution of the software system to enable the
program to continue to execute past the error. The Bristlecone
runtime detects errors through a combination of data structure
consistency checks [12] and monitoring for illegal operations
such as illegal memory accesses, library usage errors, or
arithmetic errors.

This paper presents a static analysis for Bristlecone that
automatically extracts a model of the interaction between the
tasks and objects in a Bristlecone application and produces a
set of graphical abstractions that communicate the extracted
information. We have implemented an interactive, graphical
tool that presents this information in an intuitive form to the
developer.

A. Contributions
This paper makes the following contributions:

o Static Analysis of Task Interaction Language: It
presents a static analysis of the task specifications that
extracts a set of reachable abstract object states, the initial
abstract states for any objects that a task allocates, and
a set of transitions between abstract objects states that
model the effects of the tasks.

o Graphical Representations: It presents the two graphi-
cal representations that our tool uses to communicate the
results of the analysis to the developer. The first graphical
representation is the flag state transition diagram, a graph
in which the nodes represent the possible abstract states
of an object’s tags and flags and the edges represent the
changes the tasks induce on the abstract object states.
This graph is intended to help developers visualize the



interaction patterns between tasks and objects — includ-
ing both how tasks affect the states of an object’s flags
and tags and how these changes enable other tasks to
operate on these objects.

The second graphical representation is the task diagram,
a graph in which the nodes represent tasks and the edges
represent whether a second task can be invoked on an
object immediately after the first task exits. This graph
is intended to help the developer understand how objects
flow between tasks.

« Graphical Exploration Tool: It presents an interactive,
graphical interface that allows the developer to explore
the results of the flag state analysis.

« Experience: It presents our experiences using the tool
to both understand the behavior of benchmark programs
and to identify and correct software faults in a buggy
program.

II. EXAMPLE

We next present a web server example. This web server
contains specialized e-commerce functionality and maintains
state to track an online store’s inventory.

As the example web server executes, it creates, modifies,
and destroys objects. During an individual object’s lifespan,
the conceptual state or role of that object in the larger compu-
tation may evolve. This evolution may change the way that the
software system uses the object or change the functionality of
the object. For example, the Java connect method changes
the functionality of a Socket object in a computation: after
the connect method is invoked, data can be written to or
read from that Socket object.

The Bristlecone language provides the flag construct, which
the developer can use to track the conceptual state of an object.
The runtime uses the conceptual state of the object as indicated
by the object’s flag to determine which conceptual operations
or tasks to invoke on the given object. When a task exits, it
can change the status of the flags of its parameter objects.

Figure 1 presents part of the WebConnection class defi-
nition. The WebConnection class definition declares three
flags: the initialized flag, which indicates whether the
WebConnection class is in its initial state; the file_req
flag, which indicates that the server has received a file request
from this client connection; and the write_log flag, which
indicates whether the connection information is available for
logging.

In many cases, the developer may need to invoke a task on
multiple objects that are related in some way. The Bristle-
cone language provides a tag construct, which the devel-
oper can use to group objects together. New instances of
tags are created using tag allocation statements of the form
tag tagname=new tag(tagtype). Such a tag alloca-
tion statement allocates a new tag instance of type tagtype
and assigns the variable tagname to this tag instance. The
developer can tag multiple objects with a tag instance to group
them, and then use that tag instance to ensure that the runtime
invokes a task on two or more objects in the group defined
by the tag instance. For example, the web server uses tags

class WebConnection {
/+ This flag indicates that the WebConnection
object is in its initial state. =*/
flag initialized;

/+ This flag indicates that the system has
received a request to send a requested
file. */

flag file_req;

/+ This flag indicates that the connection
should be logged. =/
flag write_log;

Fig. 1. WebConnection Class Declaration

to group a WebConnection object with the corresponding
Socket object that provides the TCP connection for that web
request. Tag instances can be added to objects when the object
is allocated, and they can be added or removed to or from a
task’s parameter objects when the task exits.

A. Tasks

Bristlecone software systems consist of a collection of inter-
acting tasks. The key difference between tasks and methods is
that the runtime directly invokes a task when the heap contains
objects with the specified flags and tags to serve as the task’s
parameters while method invocation is performed by tasks or
other methods. The runtime uses a task’s specification to both
determine which objects serve as the task’s parameters and
when to invoke the task. A second difference is that unlike
methods, tasks are not declared as part of any class.

Each task declaration consists of the keyword task, the
task’s name, the task’s parameters, and the body of the task.
Figure 2 presents the task declarations for the web server
example. The first task declaration in Figure 2 declares a task
named startup that takes a StartupObject object as a
parameter and points the parameter variable start at this
object. The declaration also states that the StartupObject
object must have its initialstate flag set before the run-
time can invoke this task. The runtime uses this flag informa-
tion to determine when it can legally invoke this task. Before
exiting, the taskexit statement in the startup task resets
the initialstate flag in the StartupObject object
to false to prevent the runtime from repeatedly invoking the
startup task.

B. Normal Execution of the Web Server

During normal execution, the web server performs the
following operations (although not necessarily in this order):
o Accepting Connections: At some point, the web server
will receive an incoming connection request from a
web browser. This will cause the runtime to set the
ServerSocket object’s pending_socket flag to
true, which will in turn cause the runtime to invoke the
acceptConnection task with this ServerSocket
object as its parameter.



/+ This task starts the web server =/
task startup(StartupObject start in
initialstate) {

ServerSocket ss=new ServerSocket (80);
Logger l=new Logger ()
taskexit ((start: set initialstate to false));

}

/* This task accepts incoming connection
requests and creates a Socket object. x/
task acceptConnection (ServerSocket ss in
pending_socket) {

tag t=new tag(connection);
WebConnection w=new WebConnection(...)

(set initialized to true) (add t);
ss.accept (t);

}

/+ This task reads a request from a client. =/

task readRequest (WebConnection w in initialized
with connection t, Socket s in IO_Pending
with connection t) {

taskexit ((w: set initialized to false,
set file_reqg to true, set write_log to
true));

}

/+ This task sends the request to the
client. x/
task sendPage (WebConnection w in file_req
with connection t, Socket s with
connection t) {

taskexit ((w: set file_req to false));

}

/* This task logs the request. =*/
task logRequest (WebConnection s in write_log,
Logger 1 in initialized) {

taskexit ((s: set write_log to false));

}

Fig. 2. Task Specifications

The  acceptConnection  task  allocates a
WebConnection object to maintain state associated
with this web request and a Socket object to manage
the underlying network connection. This task also creates
a new connection tag instance and then uses this tag
instance to group the WebConnection object with the
Socket object.

« Receiving Requests: After the connection is established,
the client web browser sends a web page request to the
server. In response to this incoming web page request,
the runtime sets the Socket object’s I0_pending flag
to true, which in turn. causes the runtime to invoke the
readRequest task.

If the readRequest task has received the com-
plete request, it sets both the file_req flag and the

(set initialized to true);

write_log flag to true and resets the initialized
flag to false. These flag changes cause the runtime
to eventually invoke both the sendPage and the
logRequest tasks and prevents repeated invocations
of the readRequest task on the same objects.

o Serving Requests: The sendPage task then reads the
requested file and sends the contents of the file to the
client browser. The sendPage task then resets the
received.request flag to false to prevent repeated
invocations of the sendPage task.

o Logging Requests: Finally, the logRequest task
writes a log entry to record which web page was
requested. The logRequest task then resets the
write_log flag to false to prevent repeated invocations
of the 1logRequest task.

C. Flag State Transition Diagrams

Flag initialized, Tag connection(1) eadRequest

Flag file_reg, Flag write_log, Tag connection(1)

endPage

Flag write_log, Tag connection(1)

Flag file_req, Tag connection(1)

Flag State Transition Diagram for the WebConnection class

Fig. 3.

Figure 3 presents a diagram of the dependences between
tasks in the web server example. The nodes in this dia-
gram represent the abstract flag states of objects and the
edges represent transitions between these flag states that the
tasks perform. Each abstract flag state specifies the truth
value assignments for an object’s flags and an abstraction
of the number of tag instances of a given type bound
to the object. The double periphery of the node labeled
Flag initialized, Tag connection (1) indicates
that newly allocated objects can be created with this flag
state. The node’s label indicates that these objects have their
initialized flag set to true and have been tagged with
exactly one connection tag instance. The edges labeled
readRequest from this node model the actions of the
readRequest task on the flag state of objects. The self-
edge labeled readRequest indicates that it is possible for
the readRequest task to leave a WebConnection object
in its initial state. This case occurs if the web server has
only received a partial web page request. The other edge la-
beled readRequest indicates that the readRequest task
can cause a WebConnection object to transition from the
initial state into the state labeled Flag file_req, Flag
write_log, Tag connection (1). This case occurs
when the web server has received the complete web page
request.



The diamond shape of the node Ilabeled Tag
connection (1) indicates that no task can fire on
this object, and therefore, that this object will be garbage
collected unless a live object references it. The elliptical
shapes of the remaining nodes indicate that objects in these
flag states can transition to a garbage collectible state. (A
rectangular node would indicate that objects cannot transition
to a garbage collectible state, and therefore can never be
garbage collected.)

D. Task Diagrams

Task Start Node

logRequest

Fig. 4. Task Diagram for the WebConnection class

Figure 4 gives the task diagram for the web server example.
The nodes in this diagram represent the tasks that operate
on the WebConnection object. The edges model the flow
of objects between tasks — there is an edge from one task
to a second task if the first task exits placing its parameter
object in a flag state that can trigger the second task. From
this diagram we can observe that the web server must first
execute the readRequest task before it can execute either
the logRequest or sendPage tasks.

E. Understanding Consequences of Failures

Bristlecone is designed to enable software systems to auto-
matically recover from failures to successfully continue execu-
tion. To ensure that a failed task cannot leave a data structure in
a partially updated state or otherwise corrupt the data structure,
the Bristlecone runtime encloses the invocation of a task in
a transaction. The classic problem with using transactions
to recover from failures is that after the transaction restores
the program’s state, the program will repeatedly fail in the
same way and never execute beyond the deterministic failure.
Bristlecone solves this problem by using the task specifications
to avoid repeating the same failure — the runtime uses the
task specifications to determine which tasks other than the
failed task can be safely executed. The task specifications
were designed to enable the runtime to determine whether
data structures are in states that tasks can safely operate on.

In many cases, developers may wish to explore the possible
consequences of a task failure. This can be useful for deciding
which tasks are more critical than others and, therefore,
should receive more of the limited development resources.
Developers can use the flag transition diagrams to understand
the consequences of task failures. For example, we can observe
from Figure 3 that failures of readRequest task can prevent

flagdecl flag flagname; | external flag flagname;
tagdecl := tagtype tagname;
taskdecl := task name(taskparamlist)

taskparamlist := taskparamlist,taskparam | taskparam

taskparam := type name in flagexp | type name in

flagexp with tagexp;

flagexp := flagexp and flagexp | flagexp or flagexp |
'flagexp | (flagexp) | flagname | true
tagexp = tagexp, tagtype tagname | tagtype tagname
statements := ... | taskexit(flagactionlist) |

tag tagname = new tag(tagtype) |

new name(params)(flagactions) |

new name(params)(tagactions) |

new name(params)(flagactions)(tagactions)
flagactionlist :=  flagactionlist,var flagaction |
var flagaction
params := ... | tag tagname

var flagaction (name : flagactions)

flagactions flagactions, flagaction | flagaction

flagaction = set flagname to bool
tagactions := tagactions,tagaction | tagaction
tagaction := add tagname | clear tagname
flagname = name
bool := true | false

assertionlist

assertionlist, assertion | assertion

assertion :=  specificationame(bindinglist)

bindinglist bindinglist, binding | binding

binding := war :expression

Fig. 5. Task Grammar

both the 1ogRequest and sendPage tasks from executing.
We can also see that the 1ogRequest and sendPage tasks
are mutually failure independent — if the execution of one of
these task fails, the runtime system will still execute the other
task by abort the first task thereby returning to the fork in the
graph and then choosing an alternate path at that fork.

III. LANGUAGE DESIGN

The Bristlecone language includes a task specification lan-
guage to describe how to orchestrate task execution. We
intend that the developer will construct software systems as
collections of loosely coupled tasks. Bristlecone introduces
object flags to store the conceptual state of the object and tags
to group related objects. Each task contains a corresponding
task specification that describes which objects the task operates
on, when the task should execute, and how the task affects the
conceptual state of objects.

Bristlecone is an object-oriented, type-safe language similar
to Java. Bristlecone includes standard object-oriented function-
ality such as virtual dispatch. Figure 5 presents the grammar
for Bristlecone’s task extensions. The developer includes a flag
declaration inside a class declaration to declare that objects of
that class contain the declared flag. Flag declarations use the
flag keyword followed by the flag’s name. The developer
may optionally use the external keyword to specify that the
flag is set and reset by the runtime system. External flags are
intended to enable a software system to handle asynchronous



events such as communication over the Internet or mouse
clicks. External flags are intended to be declared in library
code and the corresponding runtime component that provides
support for that external event sets and clears the external flag.

The developer uses tags to enforce relations between the
parameters of a task. The developer can create new tags with
the new tag statement and a tag type. Note that there may be
many instances of a given type of tag. Each different instance
of a tag is distinct — objects labeled by two different instances
of the same tag type are not grouped together.The developer
can add tags to objects when an object is allocated or add or
remove tags to or from parameter objects at the exit of a task.

The developer declares a task using the task keyword fol-
lowed by the task’s name, the task’s parameters, and the task’s
code. Each task parameter declaration contains the parameter’s
name, the parameter’s type, a flag guard expression that
specifies the state of the parameter’s flags, and an (optional)
tag guard expression that specifies the tags the object has.
The task may be executed when all of its parameters are
available. A parameter is available if the heap contains an
object of the appropriate type, that object’s flags satisfy the
parameter’s guard expression, and that object contains any
tag instances that the parameter’s guard expression specifies.
The Bristlecone language adds a modified new statement that
specifies the initial flag and tag settings for a newly allocated
object. These settings take effect when the task exits.

The Bristlecone language contains a taskexit statement
that specifies changes to the states of the flags and tags of the
parameter objects to be performed when the task exits. Note
that a single task can have multiple taskexit statements —
one for each possible exit point for the task.

IV. STATIC ANALYSIS

The static analysis produces a flag state transition diagram
for each class. The nodes in this diagram represent the possible
flag states of an object: the flag state includes the boolean
values of each flag in the class and an abstraction of the
tag instances the object has been tagged with. Recall that an
object can have many different tag instances of the same type.
Therefore, the flag state abstracts the tag state with a 1-limited
abstraction for tags; for each tag type, the flag state indicates
whether that object has 0, 1, or at least 1 instance of that tag.

The edges in this diagram represent the possible invocations
of tasks on parameter objects and the effect that these invoca-
tions have on the flag states of the parameter objects. If task
T can be invoked with its ¢th parameter object in the flag state
fs1 and exits with this object in the flag state fso, then there
is an edge for a task 7 for its ¢th parameter from the flag state
node for fs; to the flag state node for fso, The lack of an
edge implies that a transition is prohibited.

We have implemented the static analysis using two stages.
The first stage computes: (1) the objects that each task
allocates and (2) the initial flag states of these objects. The
second stage uses the results of the first stage to compute: (1)
the set of reachable states for each class and (2) which tasks
can cause transitions between these states.

A. New Object Analysis

The first stage of the analysis determines the initial states
of all objects that a task can potentially allocate. The compli-
cation is that Bristlecone tag parameters were designed to be
polymorphic in that type of the tag to provide developers with
the flexibility to pass any type of tag into a method that takes
tag parameters. This flexibility is desirable as a developer may
often need to group arbitrary combinations of objects including
objects developed by other developers. However, as a result
of this complication, the new object analysis must consider
a method’s calling context before it can determine the types
of the tag instances that the method may use to tag newly
allocated objects.

1) Add all tasks to queue.

2) Remove item q from head of the queue.

3) Clear the map from tag variables to tag types.

4) If q is a task, use the task specifications to add bindings from
tag parameter variables to tag types to the map.

5) If q is a method with a list of tag parameter types, add these
tag bindings to the map.

6) For each tag allocation in g, add a binding from the tag name
to its tag type to the map.

7) For each method call in g, use the map to generate a list of
bindings for any tag parameters in q and add this list and any
method this call could potentially invoke to the queue if it has
not been seen yet. Store that q calls this combination of method
and tag binding.

8) For each allocation site in g, use the map to compute the types
of tags the allocation has. Combine this information with the
flag status changes for this allocation site to generate a newly
allocated object state. Add this to q’s set of allocations.

9) If queue is not empty goto step 2.

10) Visit method and tag binding pairs in a topologically sorted
order. For each method and tag binding pair, compute all of
the object flag states that it transitively allocates.

Fig. 6. New Allocation Analysis

Figure 6 presents pseudo-code for the new allocation static
analysis. This algorithm starts with the set of tasks as its
roots and explores the call graph, specializing each method
with a calling context containing a list of the types of all
its tag parameters. When the analysis processes a method
or task it uses the method’s calling context or the task’s
specification along with any tag declarations to determine the
types of all tag variables. It can then process each allocation
site to determine that allocation site’s exact abstract flag state.
When the analysis discovers a method call to a previously
unseen combination of method and calling context, it adds
that combination of method and calling context to the queue.
It continues this process until it has processed all reachable
tasks and method calling contexts. It then processes the tasks
and method calling contexts in topological order to compute
all of the flag states that either the task, the method, or any
method that it (transitively) calls allocates.

B. State Transition Analysis

The state transition analysis determines the flag state transi-
tions that tasks can potentially perform. This analysis uses the
results of the new object analysis to determine the flag states
of all objects that a task could potentially allocate.



1) Add StartupObject withits initialstate flag set to
true to queue.

2) Remove flag state q from head of the queue.

3) Loop through each task t and each parameter i of task t.

4) Check if q’s type is compatible with the declared type of
parameter i of task t. If not, then goto step 3.

5) Check if q’s flag state satisfies the flag guards of parameter i
of task t. If not, then goto step 3.

6) Check if q’s flag state has all of the tags declared for parameter
i of task t. If not, then goto step 3.

7) Use the results of the new object allocation analysis to de-
termine which new flag states task t can create. If the state
transition analysis has not previously discovered this flag state,
add the flag state into the queue.

8) Loop through each task exit in t. Apply the flag and tag changes
described in t to the flag state q to generate the new flag state
q’. Add an edge from q to q” and label this edge with the task
t and parameter i. If the analysis has not previously discovered
flag state q’ yet, add the flag state q’ to the queue.

9) If the queue is not empty, goto step 2.

Fig. 7. State Transition Analysis

Figure 7 presents pseudo-code for the state transition anal-
ysis. The analysis starts by processing the StartupObject
object in its initial state with its initialstate flag set
to true. For each flag state, the analysis analyzes the task
specification to determine all of the tasks that an object with
this flag state could potentially serve as a parameter. For each
such task, the state transition analysis uses the results of the
new object analysis to determine the flag states of all of the
objects that this task may potentially allocate. For any flag
state the analysis has not already discovered, it adds that flag
state to the queue. The analysis then examines each possible
task exit to determine how that task changes the flags and tags
of the parameter object.

Our implementation extends this basic algorithm to conser-
vatively analyze the action of the runtime on external flags
by modelling the action of the runtime on an external flag
as equivalent to a pair of tasks: one task that operates on all
objects with the external flag cleared and sets it and a second
task that operates on objects with the external flag set and
clears it.

C. Automated Analysis of Flag State Transition Diagrams

We believe that automated analyses of the flag state tran-
sition diagrams can help the developer quickly understand
key properties of an application’s use of a certain class of
object. We have developed an analysis of flag state diagrams
that checks necessary conditions for an object to be garbage
collected. In general, objects in Bristlecone can be garbage
collected if (1) the object is unreachable from any potential
parameter objects and (2) the object cannot be a parameter
object of any task. This analysis determines which states
can be garbage collected, from which states that objects can
eventually transition into a garbage collectible state, and from
which states objects can never reach a garbage collectible
state. Our tool communicates this information to the developer
through the shape of the nodes in the flag state transition
diagram.

D. Task Diagram

Depending on the task at hand, the developer may wish to
view a coarser abstraction of the program. Our tool can gener-
ate task diagrams to help the developer understand how objects
flow between tasks. Task diagrams provide the developer with
a task-centric view of the program. There is a task diagram
for each class in the heap.

The nodes in a class’s task diagram represent the tasks that
take objects of that class as parameters. The edges in the
diagram model the flow of objects between tasks — there is
an edge from one task to a second task if a parameter object of
the first task can be used as a parameter object of the second
task immediately after the first task exits.

In some cases, the developer may wish to view how all
of the tasks in the program interact. Our tool can generate
an overview task diagram that unifies all of the class task
diagrams into a single diagram. In addition, overview task
diagrams contain edges that capture the dependence between
a task that allocates new objects and other tasks that operate
on these newly allocated objects. This diagram gives the
developer an overview of the relationships between all of the
tasks in an application.

V. USER INTERFACE

The user interface presents five kinds of web pages: flag
state transition diagram pages, flag state allocation pages, task
pages, task diagram pages, and an overview task diagram page.
Each flag state transition page presents the flag state transition
diagram for a class. From these pages, the developer can
click on both nodes with double peripheries and edges to see
the corresponding flag state allocation pages and task pages,
respectively. Each flag state allocation page presents the set
of tasks that may allocate new objects with the corresponding
initial flag state. The developer can click on these tasks to
bring up the corresponding task page. Each task page presents
a list of the task’s parameters and a list of the initial flag states
for all objects that the task allocates. This web page contains
a link for each parameter and each newly allocated flag state
to the corresponding flag state transition diagram page and
task diagram page. Each task diagram page presents the task
diagram for a class. The developer can click on a task node
in this diagram to see the corresponding task page. Finally,
the overview task diagram page presents a task diagram for
the entire application. The developer can click on task node
in this diagram to see the corresponding task page.

VI. EXPERIENCE

We next discuss our experiences using the flag state analysis
tool to explore the behavior of several Bristlecone programs.
We have implemented the Bristlecone compiler. Our imple-
mentation consists of approximately 19,700 lines of Java
code and C code for the Bristlecone compiler and runtime
system. The Bristlecone compiler generates C code that runs
on both Linux and Mac OS X. The Bristlecone runtime uses
a precise stop-and-copy garbage collector. The source code
for our compiler and runtime including the static analysis
and web interface is available at http://newport.eecs.



Flag ReceiveRequest, Tag connect(1)

Fig. 8. Flag State Transition Diagram with ReceiveRequest reset

uci.edu/ bdemsky/bristlecone/. We report our ex-
perience for: TTT, a tic-tac-toe game; a web server; and a
chat server. In these experiments, the individual using the
static analysis tool had no prior experience with the benchmark
program.

A. Tic-Tac-Toe Server

TTT, a tic-tac-toe game server, was developed by a student
in the author’s class as a class project. Users can connect to
TTT through telnet and play a game of tic-tac-toe against
the computer. This was the student’s first experience with
Bristlecone. The student only had access to example programs
and the Bristlecone technical report — the student did not have
access to a Bristlecone tutorial or receive any other assistance
writing TTT. When we attempted to run TTT, we discovered
some surprising behaviors. For example, the server did not
allow us to complete the game and it printed out multiple
copies of the board after each move. We used the flag state
analysis tool to understand the erroneous behavior of TTT.
Our tool produced a flag state diagram for the initial buggy
version of TTT that contained too many nodes and edges to
be understood..

Although we found it difficult to learn much about TTT
from this initial diagram, we did observe many self-edges.
We found these self-edges to be interesting, because they
indicate that a task can potentially fire repeatedly on the same
object. For example, we were able to use the initial diagram
to determine that the ProcessRequest task can potentially
fire multiple times. Since the TTTServerSocket object can
only store a single request, this could potentially result in a
race condition in which a second request clobbers the first
request before the server can process the first request. To
correct this bug, we modified the task specification to reset
the ReceiveRequest flag after processing each request.

Figure 8 presents the flag state transition diagram after
this correction. The nodes in this diagram represent the flag
states of objects of the TTTServerSocket class and the
edges represent the effects of task invocations on these ob-
jects. Double peripheries around a node indicate that new
objects may be allocated with this flag state. A rectangular
node indicates that objects in the flag state represented by
the node will never reach a state in which no task can be
invoked on it, and therefore such objects can never be garbage
collected. We observed that the only node in this diagram
with a double periphery is rectangular — this implies that
TTTServerSocket objects can never be garbage collected.

We next observed that this new diagram contains self-edges
for the SendBoardDisplay, SendErrorMessage, and
GameOver tasks, indicating that these task may be executed

Flag ReceiveRequest, Tag connect(1)

Fig. 9.
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Flag ReceiveRequest, Tag connect(1)

SendErrorMessage \ProcessRequest
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Fig. 10. Final Flag State Transition Diagram

repeatedly causing the server to display multiple copies of the
same board, print error messages many times, and print the exit
message multiple times, respectively. Moreover, these possible
repeated task invocations prevent these objects from being
garbage collected. To correct these bugs, we modified the
task specification to reset the SendBoard, SendError, and
SendDone flags upon exiting the SendBoardDisplay,
SendErrorMessage, and GameOver tasks, respectively.

Figure 9 presents the flag state transition diagram for the
version that corrects these errors. Note that all of the nodes
but one are elliptical, which indicates that the corresponding
objects may eventually reach a garbage collectible state.
The remaining diamond shaped node indicates that objects
in this flag state will no longer be parameters of tasks
and can be garbage collected if no references keep them
alive. Finally, we observed that there are no paths from the
SendBoardDisplay task or the SendErrorMessage
task to the ProcessRequest task in the flag state transition
diagram. This implies that the player can only make one
move in the game. To correct this bug, we modified the task
specification to set the ReceiveRequest flag upon exiting
the SendBoardDisplay and SendErrorMessage tasks.
Figure 10 presents the flag state transition diagram for the final
version of TTT. Note that the SendBoardDisplay task and
the SendErrorMessage task now return the object to the
Flag ReceiveRequest, Tag connect (1) flag state
where the ProcessRequest task is active.
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Flag State Transition Diagram for the WebServerSocket class
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B. Web Server

The web server benchmark contains features that are in-
tended to closely resemble an e-commerce server. The web
server maintains an inventory of merchandise and supports
requests to perform commercial transactions on this inventory,
including adding new items, selling items, and printing the
inventory. We used the flag-state analysis tool to explore the
behavior of this benchmark.

Figure 11 presents the flag state transition diagram for the
WebServerSocket class. The nodes in this graph represent
the flag states for the WebServerSocket class and the
edges represent the task transitions. The absence of rectangular
nodes in the graph indicates that a WebServerSocket
object can reach a state in which it will be garbage collected
unless a reference keeps it alive.

The diagram shows the two possible paths that a user
request can take through the web server: a user may request
the web server to serve a file or to perform a transaction on the
inventory. The absence of a path from the (Tag Link (1))
node to the start node (Flag WebInitialize, Tag
Link (1)) implies that the web server serves users on a
single request basis. We also made an interesting observation:
writing to the log is independent of serving the user request
— they can be performed in either order.

Figure 12 shows the flag state transition diagrams for the
Inventory and the Logger classes. These two diagrams
show that instances of these classes are live for the lifetime
of the web server. Inspection of the code reveals the reason
that these objects are live for the entire execution of the web
server — a single Inventory object is used to store the
inventory of the e-commerce server and a single Logger
object manages access to the log file.

C. Chat Server

The multi-room chat server benchmark accepts incoming
connections, asks the user to create a new room or select an
existing room, and then allows the user to chat with the other

Flag Initidized, Tag link(1) ' ReadRequest

ReadRequest

Flag ProcessRoom, Tag link(1)

[ProcessRoom

Flag InRoom, Tag link(1) essage

Flag-State Transition Diagram for the ChatSocket Class

Fig. 13.

Task ReadRequest '

Fig. 14. Task Diagram for the ChatSocket Class

users in that chat room. We explored the behavior of the chat
server using our flag state analysis tool.

Figure 13 presents the flag-state transition diagram for
the ChatSocket class. The presence of rectangular nodes
indicate a limitation in the chat server — ChatSocket
objects can never be garbage collected. We inspected the code
and discovered that the issue is that the chat server does not
contain functionality to allow the user to exit the chat room.

The flag state transition diagram for the RoomOb ject class
contains a single node with a self-edge. The presence of the
self-edge in that diagram indicates that this object can never
be garbage collected. We inspected the code and discovered
that the chat server uses a single instance of this class to
maintain the list of chat rooms, and therefore, this is the
desired behavior.

In many cases, a developer may wish to see a courser
abstraction of an application’s behavior. The task diagram is
designed to further abstract the interaction patterns between
tasks and objects. Figure 14 presents the task graph for
the ChatSocket class. The nodes in this graph represent
the tasks that act upon the ChatSocket object. From this
diagram, we can see that after a new user connects to the
chat server, the chat server reads the user’s chat room request,
processes this request, and then processes any messages that
the user sends to the room.

D. Discussion

In general, the state transition diagrams helped us to quickly
understand the structure of Bristlecone programs and to find
and correct bugs in the task specifications. Based on our
experience, we believe that this tool will make writing correct
task specifications even easier.

Our experience using the task state analysis to find bugs in
TTT raises an important question: If Bristlecone is designed
to tolerate software bugs, why did we use the static analysis



to explore bug in a program? Note that there is an important
distinction to be made between bugs in the code and bugs
in the task specifications. Bristlecone is primarily designed to
address bugs in the actual code. Bristlecone relies on correct
task specifications to correctly compose the program: errors in
the task specifications can result in the application exhibiting
surprising behaviors.

However, our experience leads us to believe that writing
correct task specifications is easier than writing correct code.
In our experience, task specifications tend to be simple —
they express how high-level operations in the software system
interact. Errors in task specifications have been readily appar-
ent within the first few executions of a Bristlecone program.
We believe that this observation is a result of the high-level
nature of task specifications and will hold across a wide range
of Bristlecone programs. Furthermore, task specifications are
amenable to static analysis, like the one presented in this
behavior, that can help the developer understand all of the
possible behaviors of the program.

While we selected a student-written program with task
specification bugs because it was an interesting case study
for our analysis, we believe that this benchmark represents an
exception rather than the rule. We do not know of any task
specification bugs in the several other Bristlecone programs
written by others. It is important to remember that TTT was
written by a student that did not have access to any Bristlecone
tutorial, assistance from Bristlecone developers, or the static
analysis developed in the paper.

VII. RELATED WORK

We survey related work in testing, static analysis, exception
mechanisms, fault tolerance, programming languages, and
software architectures.

A. Program Understanding Tools

Daikon [16], [17] extracts likely algebraic invariants from
information gathered during the program’s execution. For
example, Daikon can infer invariants such as “y = 2z”.
Our work differs in that the properties we infer focus on the
interactions between objects and task and are guaranteed to
hold for all executions.

Womble [27] and Chava [30] both use a static analysis to
automatically extract object models for Java programs. Both
tools use information from the class and field declarations;
Womble also uses a set of heuristics to generate conjectures
regarding associations between classes, field multiplicities, and
mutability.

Unlike our tool, Womble and Chava do not support the
concept of an object that changes state during the execution
of the program. They instead statically group all instances of
the same class into the same category of objects in the object
model, ignoring any conceptual state changes that may occur.

Our previous work on role-based exploration of programs
used dynamic analysis to automatically extract the role of
objects and the interactions between these objects and the
code [14]. Unlike our current tool, the previous tool used a
dynamic analysis and, therefore, the validity of the extracted
information depends on using an set of adequate test cases.

B. Approaches to Reliable Software

The standard approach to dealing with software errors is
to work hard to prevent any inconsistencies from occurring
in the first place. Approaches such as extensive testing [7],
static analysis [19], [44], software model checking [11], error
correction codes [41], and software isolation mechanisms [1]
are all designed, in part, to eliminate as many potential data
structure corruption errors as possible. We expect that Bristle-
cone will complement these other techniques: Bristlecone will
enable software systems to recover from software errors that
the other techniques do not catch. However, Bristlecone relies
on these other techniques to ensure that the software system
does not contain so many errors that the software system fails
to perform any useful work.

Many programming languages, including Java, provide an
exception handling mechanism [20]. This mechanism is in-
tended to facilitate handling erroneous conditions. One issue
with exceptions is that it is very difficult for developers to
reason about which instructions are likely to throw exceptions.
Java field accesses, array accesses, and numerical operations
can all potentially throw exceptions — therefore, it turns
out that a significant percentage of all Java instructions can
potentially throw an exception. Moreover, it is difficult for
developers to reason about how to resume the computation
after an exception — the developer does not know how the
computation will fail and the failure may leave the computa-
tion in an inconsistent state.

Software fault tolerance researchers have developed many
techniques to address software failures. These techniques
include recovery blocks [3], N-version programming [5],
checkpointing [47], [35], [9], [46], and forward recovery [26].
These techniques typically have one of two shortcomings: they
either require significant developer effort to create alternative
implementations of the application or they are unable to
execute past a deterministic failure.

Databases utilize transactions to ensure that the database is
never left in a half-updated state by a partially completed se-
quences of operations [21]. Transactions ensure that either all
the operations or none of the operations update the database.
Researchers have developed software transactional memory
to provide transactions to software systems as an alternate
synchronization method [40], [2], [22], [43], [23].

Self-checking software is a general term that refers to
software that verifies certain aspects of its own correct ex-
ecution [45]. These aspects include the function of a process,
the control sequence of a process, and the data of a process.
If the software detects a failure, it may then take corrective
action to recover.

There has recently been renewed interest in developing
recovery mechanisms for hardware and software systems. The
Recovery-Oriented Computing project has explored integrating
an undo operation into software systems [34], constructing
systems out of a set of individually rebootable components [8],
and developing redundant hardware systems. Failure obliv-
ious computing is designed to address memory errors in
C programs [37]. It detects erroneous memory operations
and discards illegal write operations and manufactures values



for invalid read operations. DieHard handles similar memory
errors by using replication and randomization of the memory
layout [6]. The randomization probabilistically ensures that
illegal memory operations can only damage data structures in
one of the replicants.

Researchers have developed a specification-based repair
system that automatically generates repair algorithms from
declarative consistency specifications [15] and imperative con-
sistency checking code [29]. This technique enables software
systems to recover from data structure consistency errors. The
results from this research indicate that the generated repair
algorithms can effectively repair inconsistent data structures
in these software systems to enable the software systems to
continue to operate successfully in cases where the original
application would have failed.

Researchers have used meta-languages to decompose nu-
merical computations into parallelizable tasks [36]. This tech-
nique is applicable to parallelizable numerical computations
that compute the answers to many subproblems and then
combine these answers to compute an overall answer. If one
of the subcomputations fails, this approach simply ignores
the failure. The developer uses random sampling to estimate
how likely a failure is to yield unacceptable results. If a task
fails, the system would use this estimate to determine how
likely the computed result is to be acceptable. Bristlecone
is designed to handle a broader class of software systems
including servers, control systems, and office applications.
Bristlecone is designed for software systems that may require
stronger correctness guarantees; Bristlecone uses consistency
checking and transactions to prevent software errors from
corrupting critical data structures. Bristlecone uses the task
specifications to reason which tasks are safe to invoke to
continue the application’s execution after a failure.

C. Related Languages

A key component of Bristlecone is decoupling unrelated
conceptual operations and keeping track of data dependences
between these operations. This part of the research is closely
related to the dataflow computational model. Dataflow compu-
tation keeps track of data dependences between operations so
that the operations can be parallelized [28]. Dataflow programs
consist of a set of operations connected by queues. However,
dataflow languages are not design to handle failures. Failures
will either cause corrupt values to be placed in the queues,
likely further propagating the error, or cause an operation to
fail to place any value in the queue (possibly causing other
operations to pair the wrong values together).

Tuple-space languages, such as Linda [18], also decouple
computations to enable parallelization. These languages pro-
vide a set of primitives that the threads of execution use to
communicate. These languages include primitives that add,
read, and remove tuples of values from a global tuple-space.
However, these language were not designed to address soft-
ware errors. Software errors can permanently halt threads of
execution in these languages causing the system to eventually
fail. Automatically restarting these threads is unlikely to work
as critical local state may have been lost. Furthermore, the

communication primitives can be used in a very general fash-
ion — automatically analyzing the communication patterns is
generally difficult.

The orchestration language Orc [10] specifies how work
flows between tasks. Orc is designed to decouple operations
and expose parallelism. Note that if an operation fails, any
work (and any corresponding data) flowing through the task
may be lost. Since the goal of Orc is not failure recovery, it
was not designed to contain mechanisms to recover data from
failed tasks. Therefore, errors can cause critical information
to disappear, eventually causing the software system to fail.
Bristlecone uses flags to keep track of the conceptual states
(or roles) that objects are in, enabling software systems to
recover data from software errors and to continue to execute
successfully.

Actors communicate through messages [25]. Actors were
originally designed as a concurrent programming paradigm.
Failures may cause actors to drop messages and corrupt
or lose their state. Bristlecone’s objects persist across task
failures and can still be used by other tasks. Moreover, state
corruption in actors can cause actors to permanently crash.
Since Bristlecone’s tasks are stateless, a previous failure of
task do not affect future invocations of the task on different
inputs.

Argus is a distributed programming language that organizes
processes under guardians and isolates a process failure to
the guardian under which it executes [31]. Inconsistency
can cause the enclosing guardian to shut down. Guardians
are stored in a persistent store and persist across failures
of the underlying machine. Argus supports failure recover
through an exception handling mechanism. This approach is
complementary to Bristlecone: a developer can write exception
handlers for anticipated failures and Bristlecone can be used
to recover from unexpected failures.

Oz is a concurrent, functional language that organizes its
computation as a set of tasks [42], [32]. Tasks are created
and destroyed by the program. A task becomes reducible
(executable) once its guard is satisfied by the constraint store.
Task reducibility is monotonic — once a task is reducible
it is always reducible. Task activation in Bristlecone is not
monotonic, and allows a developer to temporarily disable a
task if, for example, other tasks have placed an object into a
state that is incompatible with the task or if the effect of task is
no longer desirable. Non-monotonicity also allows developers
to use different task to specify multiple implementations of
the same functionality for redundancy. Moreover, since task
creation is controlled by the program in Oz, it is more difficult
to reason statically about task. For example, it appears difficult
to automatically generate diagrams to show how Oz tasks and
objects interact.

Concurrent Prolog is logic-based language that uses unifi-
cation to prove a goal [39], [38]. The proof corresponds to
the execution of the program. Concurrent Prolog’s guarded
notation is similar to Bristlecone’s flag expressions, but Con-
current Prolog’s evaluation strategy starts from an end goal
and reasons backwards. Concurrent Prolog programs may be
able to recover from some failures by finding a different
execution that reaches the same end goal. The downside of



this approach is that if a failure prevents the program from
completely achieving its end goal, the program will be unable
to make partial progress. Bristlecone works forward from an
initial flag setting for the startup object. A task is invoked if
the heap contains objects with flags that satisfy the guards
of the task’s parameters. This evaluation strategy can make
progress even if a failure prevents the system from completely
achieving its goal.

Erlang has been used to implement robust systems using
a software architecture containing a set of supervisors and a
hierarchy of increasingly simple implementations of the same
functionality [4]. The set of supervisors monitor the compu-
tation for errors. If an error is detected, the system falls back
to a simpler implementation in the hierarchy. This approach
has been used to develop reliable telephone switches. The
two approaches are complementary — while the supervisor
approach gives the developer complete control of the recovery
process, the downside of this approach is that it requires the
developer to manually develop multiple implementations of
the same functionality. Bristlecone requires minimal develop
effort — it can automatically perform recovery using only the
task declarations. Furthermore, while a shared but minor fault
could cause the entire Erlang implementation hierarchy to fail,
in many cases Bristlecone may be able to execute around the
fault and still provide nearly complete functionality.

VIII. CONCLUSION

Our experience shows that flag state transition diagrams and
task diagrams were valuable abstractions for understanding
the behavior of our benchmarks. We have implemented a
static flag state analysis tool and a web-based, graphical user
interface that helps developers explore the behavior of software
applications. Our experience with several Bristlecone pro-
grams indicates that the tool can be useful for understanding
and correcting software bugs and understanding the interaction
between tasks and objects. Other potential applications include
statically verifying properties of an application’s execution,
understanding the possible consequences of a failure, and
providing a connection between an application’s high-level
design and the application’s implementation.
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