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ABSTRACT

We present Bristlecone, a programming language for robust soft-
ware systems. The Bristlecone language contains two components:
a high-level organization specification component that describes
how the software system’s conceptual operations interact, and a
low-level operational specification component that describes the se-
quence of instructions that comprise an individual conceptual op-
eration. The Bristlecone implementation uses the high-level orga-
nization specifications to detect software errors, to recover the soft-
ware system from an error to a consistent state, and to reason how
to safely continue the software system’s execution after the error.

We have implemented a compiler and runtime for the Bristle-
cone language. We have evaluated this implementation on three
benchmark applications: a web crawler, a web server, and a multi-
room chat server. We developed both a Bristlecone version and a
multi-threaded Java version of each of the benchmark applications.
We designed the Java versions of the benchmark applications to use
threads to tolerate many software faults. We injected failures into
each version of the benchmark applications and then observed the
effects of the injected failures. We found that the Bristlecone ver-
sions of the benchmark applications were able to more successfully
survive the injected failures.

1. INTRODUCTION

Software faults pose a significant challenge to developing reli-
able, robust software systems. The current approach to addressing
software faults is to work hard to minimize the number of software
faults through development processes, automated tools, and testing.
While minimizing the number of software faults is a critical com-
ponent in the development process for reliable software, it is not
sufficient: the faults that inevitably slip through the development
and testing processes will still cause deployed systems to fail.

The key insight in this research is that many software errors
propagate through software systems to cause further damage either
through data structure corruption or control-flow—induced coupling
between conceptual operations. We have developed Bristlecone, a
programming language for robust software systems, to address the
error propagation problem. The basic idea is to address error prop-
agation by having developers write software systems as a set of
decoupled tasks with each task encapsulating an individual con-
ceptual operation. The developer also provides specifications that
describe how these decoupled tasks interact and optionally what
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consistency properties should hold for data structures. The runtime
checks for data structure consistency violations and monitors for
illegal operations (such as illegal memory accesses or arithmetic
errors) to detect software errors. If the runtime detects an error
in the execution, the runtime rolls back the data structures to their
state at the beginning of the task’s execution, and then uses the task
specifications to adapt the execution of the software system to avoid
re-executing the same error while still making forward progress.

Alternatively, we can view Bristlecone as a programming lan-
guage that allows for a large space of possible execution paths for
any given software system with an implicit ordering of how desir-
able any given path is. If the most desirable path results in an error,
the runtime rolls back the execution enough to follow a different
path thereby avoiding the error. The result is a robust software sys-
tem that can continue to successfully provide service even in the
presence of errors.

1.1 Bristlecone Language

Figure 1 gives an overview of the components in the Bristlecone
system. We can view software systems as a composition of thou-
sands of conceptual operations — in practice, the correct execution
of any conceptual operation is likely to be independent of many of
the other conceptual operations. However, many traditional pro-
gramming languages force developers to linearize the conceptual
operations of a software system. This linearization tightly couples
these conceptual operations: if one conceptual operation fails, it is
unclear how to safely execute any future conceptual operations.
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Figure 1: Overview of the Bristlecone System
Bristlecone avoids artificially coupling operations by providing
the developer with the fask program construct. The developer uses
a task to encompass a single conceptual operation. Tasks are repre-
sented in Figure 1 as rectangles. A set of task specifications loosely
couple the tasks together. Each task contains a task specification



that the runtime uses to determine (1) when to execute the task,
(2) what data the task needs, (3) how the task changes the role this
data plays in the computation, and (4) optionally, the data structure
consistency properties that should hold when the task exits. If a
task fails, the runtime uses the task specifications to reason how to
adapt the future execution of the software system so that the execu-
tion does not depend on the failed task.

Software errors in one task can potentially silently corrupt data
structures. Bristlecone can use developer-provided data struc-
ture consistency specifications to detect data structure corrup-
tion, enabling the Bristlecone runtime to take corrective action.
These specifications are written in the data structure consistency
specification language the first author developed in his previous
work [13, 15]. These consistency specifications are represented
by the rectangle labeled Data Structure Consistency
Specification in Figure 1.

Bristlecone contains the following components (represented by
rounded boxes in the figure):

o Bristlecone Compiler: The Bristlecone compiler com-
piles the tasks and task specifications. The ellipse labeled
Compiled Tasks represents the compiled tasks.

e Data Structure Consistency Specification Compiler: The
data structure specification compiler compiles the data structure
specifications into code that checks that the data structure con-
sistency specifications hold when the task exits. The ellipse la-
beled Data Structure Consistency Checker rep-
resents the generated repair code.

o Runtime: The runtime uses the compiled code and compiled
specifications generated by the compilers (represented by the
ellipses in the figure) to execute the software system. It uses the
consistency checker to detect errors that silently corrupt data
structures. The runtime then uses rollback to recover consistent
data structures if it detects a software error. Finally, it uses the
task specifications to determine when to execute the tasks and
how to recover from errors.

1.2 Scope

Bristlecone is not suitable for all software systems. Certain com-
putations, such as some scientific simulations, are inherently tightly
coupled. While Bristlecone may detect errors in such software
systems, it is unlikely to enable these systems to recover in any
meaningful way. For other computations, it may be desirable for
a software system to shut down rather than deviate from a specific
designed behavior or produce a partial result.

Bristlecone is designed for software systems that place a pre-
mium on continued execution and that can tolerate some degra-
dation from a specific designed behavior. For example, we ex-
pect that Bristlecone will be useful for financial server software, e-
commerce systems, office applications, web browsers, online game
servers, sensor networks, and control systems for physical phenom-
ena. For applications like finance, Bristlecone can be used to de-
velop software systems that only process error-free transactions and
back out all changes that corrupt data structures, while still ensuring
that cosmetic errors do not cause potentially expensive downtime.
Ultimately, the software developer must decide whether using this
approach is reasonable for a given software system.

This decision could depend on the environment in which a sys-
tem is deployed. For example, in systems with redundant backup
systems, we expect that developers would design the primary sys-
tem to fail-fast and the backup system to be robust in the presence
of errors.

1.3 Contributions
This paper makes the following contributions:

o Bristlecone Language: It presents a programming language
which exposes both the conceptual operations and the ordering
and data dependences between these conceptual operations to
the compiler and runtime system.

o Recovery Strategy: It presents a strategy for repairing the
damage caused by a software error and adapting the software
system’s execution in response to the error to enable it to safely
continue execution.

o Experience: It presents our experience using Bristlecone to
develop three robust software systems: a web crawler, a web
server, and a multi-room chat server. For each benchmark, we
developed both a Bristlecone version and a Java version. We de-
signed the Java versions to be resilient: they use threads to tol-
erate failures. Our experience indicates that the Bristlecone ver-
sions are able to successfully recover from significantly more of
the injected failures.

2. EXAMPLE

We next present a web server example that illustrates the oper-
ation of Bristlecone. This web server has specialized e-commerce
functionality and maintains state to track inventory.

As the example web server executes, the conceptual state or
role of objects in the computation evolves. This evolution changes
the way that the software system uses the object and can change
the functionality that the object supports. For example, the Java
connect method changes the functionality of a Socket object
in a computation: after the connect method is invoked, data can
be written to or read from that Socket object.

The Bristlecone language provides flags to track the conceptual
state of an object. The runtime uses the conceptual state of the ob-
ject as indicated by the object’s flag to determine which conceptual
operations or fasks to invoke on the given object. When a task exits,
it can change the values of the flags of its parameter objects.

2.1 Classes

Figure 2 gives part of the WebRequest class definition. The
web server example uses instances of the WebRequest class to
manage connections to the web server. The WebRequest class
definition declares three flags: the initialized flag, which in-
dicates whether the connection is in the initial state; the file_req
flag, which indicates that the server has received a file request from
this client connection; and the write_log flag, which indicates
whether the connection information is available for logging.

class WebRequest {
/* This flag indicates that the WebRequest
object is in its initial state. x/
flag initialized;

/+ This flag indicates that the system has
received a request to send a requested
file. =/

flag file_req;

/+* This flag indicates that the connection
should be logged. =/
flag write_log;

Figure 2: WebRequest Class Declaration
In many cases, the developer may need to invoke a task on multi-
ple objects that are related in some way. Bristlecone provides a tag
construct, which the developer can use to group objects together.



New tag instances are created using tag allocation statements of
the form tag tagname=new tag (tagtype). Such a tag al-
location statement allocates a new tag instance of type tagtype
and assigns the variable tagname to this tag instance. The devel-
oper can tag multiple objects with a tag instance to group them, and
then use that tag instance to ensure that the runtime invokes a task
on two or more objects in the group defined by the tag instance. For
example, the example uses tags to group a WebRequest object
with the corresponding Socket object that provides the TCP con-
nection for that web request. Tag instances can be added to objects
when the object is allocated, and they can be added or removed to
or from a task’s parameter objects when the task exits.

2.2 Tasks

Bristlecone software systems consist of a collection of interact-
ing tasks. The key difference between tasks and methods is that
the runtime invokes a task when the heap contains objects with the
specified flag settings to serve as the task’s parameters. Note that
while the runtime controls task invocation, tasks can call methods.
The runtime uses a task’s specification to determine which objects
serve as the task’s parameters and when to invoke the task.

Each task declaration consists of the keyword task, the task’s
name, the task’s parameters, an optional set of flag changes that
occur when the task is invoked, and the body of the task. Fig-
ure 3 gives the task declarations for the web server example. The
first task declaration declares a task named startup that takes a
StartupObject object as a parameter and points the parame-
ter variable start to this object. The declaration also contains a
guard that states that the StartupObject object must have its
initialstate flag set before the runtime can invoke this task.
The runtime invokes the task when there exist parameter objects
in the heap that satisfy the parameters’ guard expressions. Before
exiting, the taskexit statement in the startup task resets the
initialstate flaginthe StartupObject to false to prevent
the runtime from repeatedly invoking the startup task.

Task declarations can contain constraints on tag bindings to
ensure that the parameter objects are related. A tag binding
constraint contains the keyword with followed by the type of
the tag and the tag variable. For example, the task declaration
task readRequest (WebRequest w in initialized
with connection t, Socket s in IO_Pending
with connection t) ensures that the runtime only invokes
the readRequest task on parameter objects where the first pa-
rameter object is bound to an instance of a connection tag and
the second parameter object is bound to the same connection
tag instance. When the task executes, the tag variable t is bound
to that connection tag instance.

2.3 Error-Free Execution

Figure 4 gives a diagram of the dependences between tasks in
the web server example. The ellipses in the graph represent tasks
and the edges represent the control and data dependences between
the tasks. The rectangle labeled Runtime initialization
represents the initialization performed by the Bristlecone runtime.
From this diagram, we can see that the web server performs the
following operations in an error-free execution (although not nec-
essarily in this order):

1. Startup: When a Bristlecone program is executed, the Bristle-
cone runtime creates a StartupObject object and then sets
its initialstate flag to true. Setting this flag causes the
runtime to invoke the startup task in our example. Note
that the code never explicitly calls a task. Instead, the runtime
keeps track of the status of the flags of objects in the heap and
invokes a task when the heap contains objects with the specified

/+ This task starts the web server */
task startup(StartupObject start in initialstate) {

ServerSocket ss=new ServerSocket (80);
Logger l=new Logger () (set initialized to true);
taskexit ((start: set initialstate to false));

}

/* This task accepts incoming connection requests
and creates a Socket object. */
task acceptConnection (ServerSocket ss in
pending_socket) {

tag t=new tag(connection);
WebRequest w=new WebRequest (...)

(set initialized to true) (add t);
ss.accept (t);

}

/* This task reads a request from a client. =/

task readRequest (WebRequest w in initialized with
connection t, Socket s in IO_Pending with
connection t) {

taskexit ((w: set initialized to false, set
file_reqg to true, set write_log to true));

}

/* This task sends the request to the client. «/
task sendPage (WebRequest w in file_req with
connection t, Socket s with connection t) {

taskexit ((w: set file_reqg to false));

}

/* This task logs the request. x/
task logRequest (WebRequest s in write_log, Logger
1 in initialized) {

taskexit ((s: set write_log to false));

}
Figure 3: Flag Specifications for Tasks

flag settings to serve as parameters.

When the runtime invokes the startup task, the startup
task creates a ServerSocket object to accept incoming con-
nections to the web server. Next, it creates a Logger object to
manage logging web page requests and setsits initialized
flag to indicate that the object is ready to provide logging
functionality. Finally, it resets the StartupObject object’s
initialstate flag to false to prevent the runtime from re-
peatedly invoking the startup task.

2. Accepting an Incoming Connection: At some point, the web
server will receive an incoming connection request from a web
browser. This causes the runtime to set the ServerSocket
object’s pending_socket flag to true, which in turn
causes the runtime to invoke the acceptConnection task
with this ServerSocket object as its parameter. The
acceptConnection task creates a WebRequest object
to store the connections state and calls the accept method
on the ServerSocket to create a Socket object to man-
age communication with the web browser. Note that the
acceptConnection task creates a new connection tag
instance to group the Socket object and WebRequest object
together by binding this tag instance to the WebRequest ob-
ject and then passing this tag instance into the accept method
to bind the newly created Socket object.
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Figure 4: Task Diagram for the Web Server

sendPage Task

3. Reading a Request: After a connection is established, the
client web browser sends a web page request to the server. In
response to this incoming web page request, the runtime sets
the Socket object’s T0_pending flag to true', which in turn
causes the runtime to invoke the readRequest task. The
readRequest task checks whether the server has received
the complete request.” If it has received the complete request, it
sets both the file_req flag and the write_log flag to true
and resets the initialized flag to false. These flag changes
cause the runtime to eventually invoke both the sendPage and
the logRequest tasks and prevents repeated invocations of
the readRequest task on the same object.

4. Sending the Page: The runtime invokes the sendPage task
when the WebRequest object’s request_processedflag
is set to true. The sendPage task then reads the requested file
and sends the contents of the file to the client browser. The
sendPage task then resets the received_request flag to
false to prevent repeated invocations of the sendPage task.

5. Logging the Request: The runtime invokes the 1logRequest
task when both the WebRequest object’s write_log flag
is set to true and the Logger object’s initialized flag
is set to true. The logRequest task writes a log entry to
record which web page was requested. The 1ogRequest task
then resets the write_log flag to false to prevent repeated
invocations of the 1ogRequest task.

2.4 Error Handling

The Bristlecone runtime uses task specifications to automatically
recover from errors. For example, suppose that the LogRequest
task fails while updating the Logger object. If the web server
were written in a traditional programming language, it could be
difficult to recover from such a failure. While some traditional lan-
guages provide exceptional handling mechanisms, using them ef-
fectively is challenging — the developer must both identify which
failures are likely to occur and reason about how to recover from

'The 10_pending flag is declared with the external key-
word to indicate that the runtime manages setting and clearing this
flag. The current runtime implementation of Bristlecone is single-
threaded and, therefore, uses non-blocking I/0. Future runtime im-
plementations will support multiple concurrent tasks and (transac-
tional) blocking 1/0 [21].

Note that it is possible for client browser to split a long request
across multiple packets and therefore it may be necessary to invoke
the readRequest task multiple times to receive a single request.

those failures. Alternatively, the program could simply ignore the
failure. Unfortunately, if the web server were to simply ignore the
failure, it could easily leave the Logger object in an inconsistent
state, possibly eventually causing a catastrophic failure.

To address this issue Bristlecone tasks have transactional seman-
tics — upon failure, the Bristlecone runtime aborts the enclosing
transaction to return the affected objects, including the Logger
object, to consistent states. The runtime then records that the
logRequest task failed when invoked on the combination of
those specific WebRequest and Logger objects. The runtime
uses this record to avoid re-executing the same specific failure. At
this point, the Bristlecone runtime has returned the web server to
a known consistent state and must now determine how to safely
continue the web server’s execution.

The traditional problem with using transactions to recover from
deterministic software faults is that after aborting a transaction
the software system cannot make forward progress — retrying the
same transaction will cause the system to repeat the same failure.
Bristlecone solves this problem by using the flags, tags, and task
specifications to determine which other tasks are safe to execute af-
ter the error. Although the software fault prevents the system from
logging this request, since the file_req flag is set to true, the
task specification for the sendPage task allows the runtime to in-
voke the sendPage task. Therefore, the runtime can still safely
serve the web page request.

The end result is that the software system is able to safely con-
tinue to execute even in the presence of software errors. Bristlecone
is able to successfully isolate the effects of the error to a minimal
part of the web server’s execution — only a single task is aborted
and the abort is logged. Without Bristlecone, the web server could
potentially leave the Logger object in an inconsistent state, possi-
bly causing the web server to fail to log future requests. If the web
server written in a conventional language was designed to log re-
quest before serving a request, corruption of the log data structure
could even cause the server to stop serving requests.

3. LANGUAGE DESIGN

The Bristlecone language includes a task specification language
that describes how to orchestrate task execution. We intend that the
developer will construct software systems as collections of loosely
coupled tasks. Bristlecone introduces object flags to store the con-
ceptual state of the object. Each task contains a corresponding
task specification that describes which objects the task operates on,
when the task should execute, and how the task affects the concep-
tual state of objects.

Bristlecone is an object-oriented, type-safe language with syn-
tax similar to Java. Figure 5 presents the grammar for Bristlecone’s
task extensions. The developer includes a flag declaration inside a
class declaration to declare that objects of that class contain the de-
clared flag. Flag declarations use the £1ag keyword followed by
the flag’s name. The developer may optionally use the external
keyword to specify that the flag is set and reset by the runtime sys-
tem. External flags are intended to handle asynchronous events
such as communication over the Internet or mouse clicks. External
flags are intended to be declared in library code with the corre-
sponding runtime component setting and clearing the external flag.

The developer can use tags to enforce relations between the pa-
rameters of a task. The developer can create new tags with the new
tag statement and a tag type. Note that there may be many in-
stances of a given type of tag. Each different instance of that tag
is distinct — objects labeled by two different instances of the same
tag type are not grouped together. The developer can bind tags to
objects when an object is allocated or bind or unbind tags to or from



flagdecl := flag flagname; | external flag flagname;

tagdecl := tagtypetagname;
taskdecl := task name(taskparamlist)
taskparamlist := taskparamlist,taskparam | taskparam
taskparam := type name in flagexp | type name in

flagexp with tagexp;

flagexp := flagexp and flagezp | flagexp or flagexp |
|flagexp | (flagexp) | flagname | true
tagexp = tagexp, tagtype tagname | tagtype tagname
statements := ... | taskexit(flagactionlist) |

tag tagname = new tag(tagtype) |
new name(params)(flagactions) |
new name(params)(tagactions) |

new name(params)(flagactions)(tagactions)

flagactionlist := flagactionlist,var flagaction | var flagaction
params := ... | tagtagname
var flagaction := (name : flagactions)
flagactions := flagactions, flagaction | flagaction

flagaction set flagname to bool

tagactions

tagactions, tagaction | tagaction

tagaction := addtagname | clear tagname
flagname := name
bool := true | false
assertionlist := assertionlist,assertion | assertion
assertion := specificationame(bindinglist)
bindinglist := bindinglist, binding | binding
binding := wvar :expression

Figure 5: Task Grammar

parameter objects at the task’s exit.

The developer declares a task using the t ask keyword followed
by the task’s name, the task’s parameters, and the task’s code. Each
task parameter declaration contains the parameter’s name, the pa-
rameter’s type, a flag guard expression that specifies the state of
the parameter’s flags, and an (optional) tag guard expression that
specifies the tags the object has. The task may be executed when
all of its parameters are available. A parameter is available if the
heap contains an object of the appropriate type, that object’s flags
satisty the parameter’s guard expression, and that object contains
any tag instances that the parameter’s guard expression specifies.
Bristlecone adds a modified new statement that specifies the initial
flag settings and tag bindings for a newly allocated object. These
take effect when the task exits.

Bristlecone contains a taskexit statement that specifies how
the task changes the state of the flags or tag bindings of its pa-
rameter objects at that task exit point. The taskexit statement
may optionally include the assert keyword to specify both a data
structure consistency specification and the data structure for which
the specification should hold on. These data structures specifica-
tions are written in the data structure specification language that
the first author developed in his previous work [13, 15]. These
consistency specifications can be automatically generated in many
cases [14]. The runtime uses these consistency specifications to
detect if the task has corrupted any data structures.

4. RUNTIME SYSTEM
The Bristlecone runtime is responsible for dispatching tasks, de-
tecting errors, and recovering from errors.

4.1 Task Execution

Recall that the task specification gives the guard expressions for
all of the task’s parameters and that the runtime executes a task

when parameter objects are available that satisfy these guards. We
next discuss how our implementation efficiently performs task dis-
patch. A naive approach to task dispatch could potentially be very
inefficient — a parameter’s guard expression is quantified over all
objects in the heap!

4.1.1 Parameter Sets

The runtime maintains a parameter set for each parameter of
each task. A parameter set contains all of the objects that satisfy
the corresponding parameter’s guard. For each object type, the run-
time precomputes a list of parameter sets that objects of this type
can potentially be a member of. When a task exit changes an ob-
ject’s flag settings or tag bindings, the runtime updates that object’s
membership in the parameter sets by traversing the precomputed
list of possible parameter sets for the class and evaluating whether
the object satisfies the guard expression to be a member of the pa-
rameter set.

Bristlecone also uses the parameter sets as root sets for garbage
collection. Objects in Bristlecone are garbage collected if (1) the
object is unreachable from any potential parameter objects and (2)
the object cannot be a parameter object of any task as determined
by membership in a parameter set.

4.1.2 Task Queue

A task invocation is tuple that includes both a task and bindings
for that task’s object parameters and tag parameters. An active task
invocation is a task invocation that satisfies all of task specifica-
tion’s guards and can therefore safely be invoked by the runtime.
The runtime maintains the task queue of all active task invocations
and executes task invocations from this task queue.

Our implementation maintains a conservative approximation of
the task queue — our implementation’s task queue may contain a
number of non-active task invocations in addition to all of the ac-
tive task invocations. When an object is added to a parameter set,
the implementation generates all active task invocations that bind
that object to the corresponding parameter and then adds these ac-
tive task invocations to the task queue. When an object is removed
from a parameter set, our implementation does not remove task in-
vocations from the task queue. Instead, before the implementation
executes a task invocation in the queue, the implementation verifies
that the task invocation is still active.

4.1.3 Iterators

We next describe how our implementation efficiently generates
all active task invocations. Note that tag bindings restrict how pa-
rameter objects can be grouped together into a task invocation,
and therefore, a naive implementation can needlessly explore many
task invocations that do not satisfy tag guards. For example, the
sendPage task in a web server may require both a WebRequest
object and a Socket object tagged with the same connection
instance as parameters. An efficient implementation must prune the
search space of possible task invocations to avoid the overhead of
exploring many task invocations that do not satisfy the tag guards.

Our implementation searches the parameter binding space using
a sequence of iterators. It uses two iterator types: object instance it-
erators and tag instance iterators. Object instance iterators iterate
over the objects in the corresponding parameter set that are com-
patible with all tag variable bindings made by previous iterators.
In general, we expect that relatively few objects will be bound to a
given tag instance and relatively few tag instances will be bound to
a given object. Our implementation uses this expectation to opti-
mize the object iterators: if the parameter has a tag guard with a tag
variable that was bound by a previous tag iterator, the implemen-
tation optimizes the object iterator to only iterate over the objects



bound to that tag instance. Tag iterators iterate over tag instances
that are bound to an object. Tag iterators are used to bind the tag
variables in tag guards to tag instances.

As described above, our iterators use the constraints provided
by the tag guards to prune the search space. Note that the order
of the iterators can affect the size of the search space that the im-
plementation explores to generate all active task invocations. Our
implementation precomputes iterator orderings for each parameter
of each task. The implementation uses the following ordering pri-
ority:

1. Tag iterators have the highest priority. We expect that the set of
iterated tag instances will be small and, therefore, tag bindings
will substantially prune subsequent object iterations for param-
eters bound to the same tag variable.

2. Object iterators for parameters with tags that are bound by pre-
vious tag iterators.

3. Object iterators for parameters with tags that have not yet been
iterated over.

4. Remaining object iterators have the lowest priority.

4.1.4 Task Execution Semantics

Tasks may fail either as a result of software errors, hardware fail-
ures, or user errors. If a task fails, it may leave data structures in
inconsistent states. Further computation using these inconsistent
data structures will likely have unpredictable and potentially catas-
trophic results. To avoid this problem, tasks in Bristlecone have
transactional semantics — if a task fails, the Bristlecone runtime
aborts the task’s transaction.

Recall that a potential issue with the use of transactions in tra-
ditional programming languages is that after the system recovers
to the previous point, the system may simply re-execute the same
deterministic fault and that fault will cause the system to fail re-
peatedly in the same way. Bristlecone addresses this issue by us-
ing the flexibility provided by the task-based language to avoid re-
executing the same failure. The Bristlecone runtime records the
combination of task and parameter assignments that caused the fail-
ure and uses this record to avoid re-executing the failed combina-
tion task and parameter assignments. Instead, the runtime executes
other tasks to avoid retriggering the same underlying fault.

4.2 Error Detection

Errors can cause the computation to produce incorrect results and
corrupt data structures, potentially eventually causing the software
system to perform unacceptably. Bristlecone uses runtime checks
to detect errors, enabling the software system to adapt its execution.
The Bristlecone runtime uses error detection routines to trigger re-
covery actions.

Bristlecone uses checks to detect many software errors. For ex-
ample, the Bristlecone compiler generates array bounds checks.
These checks verify that the software system does not read or write
past the end of arrays. The Bristlecone compiler also generates
the necessary type checks for array operations and cast operations.
These checks ensure that the dynamic types of objects do not vio-
late type safety.

The runtime uses hardware page protection to perform null
pointer checks. These checks ensure that the software system does
not attempt to dereference a null pointer or write values to the fields
of a null pointer. The runtime also uses hardware exceptions to de-
tect arithmetic errors including division by zero. Native library rou-
tines also signal errors to the runtime. For example, if a software
systems attempts to send data over a closed network connection,
the runtime will signal an error.

Software errors can also cause a program to loop. Looping can

prevent the software system from providing services. It is straight-
forward to incorporate time-outs to detect looping tasks. Bristle-
cone can generate code to check for data structure corruption using
a set of data structure consistency specifications. These checkers
enable the Bristlecone runtime to detect data structure corruption
errors early. Some developers may find it easier to use an imper-
ative language to express data structure consistency properties. It
is straightforward to support imperative data structure consistency
checks written in the Bristlecone programming language.

4.3 Error Recovery

Bristlecone was designed to support reasoning about failures us-
ing the high-level task abstraction. In Bristlecone, a task either
successfully completes execution or does not execute at all. The
Bristlecone runtime uses checkpointing to implement this failure
abstraction. Before a task is executed, the runtime creates a snap-
shot of all objects reachable from the task’s parameters. If Bristle-
cone detects an error, it simply fails the entire task and uses this
stored checkpoint to rollback the state affected by the failed task.

This recovery strategy greatly simplifies reasoning about the
state of the software system after a failure. Restoring state from
the previous checkpoint ensures that a failure does not leave par-
tially updated data structures in inconsistent states.

Many software errors are deterministic. If Bristlecone re-
executes a failed task on the same parameters in the same state,
it is likely that the task will fail again due to the same error. Bristle-
cone addresses this issue by maintaining a record of failures. For
each failure, this record contains the combination of the failed task
and the parameter assignments that failed. Bristlecone uses this
record to avoid re-executing the same failures. To reason how to
safely continue execution after the failure, the Bristlecone runtime
uses the object flags to determine which tasks can be executed even
though part of the computation has failed.

4.4 Debugging and Error Logging

While it is desirable for deployed Bristlecone software systems
to make every effort to avoid failures, during the development phase
this behavior can mask failures and therefore complicate the de-
bugging process. To facilitate debugging, Bristlecone can be con-
figured to fail-fast. The fail-fast mode ensures that developers will
notice software errors during the development process.

Furthermore, both developers and system administrators often
want to be aware of failures in deployed systems so that the un-
derlying software faults, if any, can be fixed. Bristlecone contains
a logging mechanism that records both the task that failed and the
type of error. This log ensures that developers and system admin-
istrators are aware of failures in Bristlecone software systems and
gives the developers a starting point for diagnosing the cause of the
failure. Moreover, it would be straightforward to have the runtime
record the state of the objects that caused the task failure by using
the stored checkpoints. This information could help with debug-
ging many software errors.

5. EXPERIENCE

We next discuss our experiences using Bristlecone to develop
three robust software systems: a web crawler, a web server, and a
multi-room chat server.

5.1 Methodology

We have implemented the Bristlecone compiler. Our implemen-
tation consists of approximately 22,400 lines of Java code and
C code for the Bristlecone compiler and runtime system. The
Bristlecone compiler generates C code that runs on both Linux
and Mac OS X. The Bristlecone runtime uses precise stop-and-
copy garbage collection. The source code for our compiler and



runtime is available at http://newport.eecs.uci.edu/
~bdemsky/bristlecone/. We ran the benchmarks on a Mac-
Book with a 2 GHz Intel Core Duo processor, 1 GB of RAM, and
Mac OS X version 10.4.8.

For each benchmark, we developed two versions: a Bristlecone
version and a Java version. We designed the Java versions to
tolerate faults by isolating components of the computation using
threads. Without the use of threads to provide fault tolerance, the
Java versions would have halted with the first failure.

We used failure injection to evaluate the robustness of the bench-
mark software systems. Our injected failures simulate the entire
class of software faults that causes a failure in the same task that
contains the fault. This fault class includes illegal memory ac-
cesses, failed assertions, failed data structure consistency checks,
library errors, and arithmetic exceptions. We used the Bristlecone
compiler to automatically insert failure injection code after each
instruction. The failure injection code takes three parameters at
runtime: the number of instructions to execute before considering
injecting a failure, the probability that a failure will be injected, and
the total number of failures to inject. For each benchmark, we se-
lected the number of failures and then set the failure probability to
ensure that the normal execution of the benchmark would reach the
set number of failures.

5.2 Web Crawler

The web crawler takes an initial Uniform Resource Locator
(URL) as input, visits the web page referenced by the URL, ex-
tracts the hyperlinks from the page, and then repeats this process to
visit all of the URLSs transitively reachable from the initial URL.

The Bristlecone version contains four tasks. The Startup
task creates a Query object to store the initial URL that was
specified on the command line and creates a QueryList ob-
ject to store the list of URLs that the web crawler has extracted.
The requestQuery task takes a newly created Query object
as input, contacts the web server specified by the Query object,
and then requests the URL specified by the Query object. The
readResponse task reads the data that is currently available on
the connection and then checks if the task has received the com-
plete web page. The processPage task extracts URLs from the
web page, checks the QueryList object to see if the crawler has
seen this URL before, and then creates a Query object if the URL
has not been seen before.

The Java version uses a pool of three threads to crawl web pages.
Each thread dequeues a URL from a global list of pages to visit,
downloads the corresponding web page, extracts URLs from the
web page, and then stores any URLs it has not seen before into the
global list of pages to visit.

We evaluated the robustness of the web crawler by developing
both a workload and a failure injection strategy. Our workload con-
sisted of a set of 100 web pages that each contain 3 hyperlinks to
other web pages in the set. We used randomized failure injection to
inject failures into the executions of the web crawlers. We injected
3 failures into each execution with each instruction having a 1 in
426,000 chance of failing.

We performed 100 trials of the experiment on each of the two
versions. For each trial, we measured how many web pages the
crawler downloaded. Figure 6 presents the results of the web
crawler experiments. Without the injected failures, both versions
download 100 web pages. With the inject failures, on average the
Bristlecone version downloaded 91 out of 100 web pages and the
Java version downloaded 6 out of 100 web pages. While most of
the injected failures in the Bristlecone version only affect crawling
single web page, failures that are injected into either the startup task

Java | Bristlecone
Web Pages Crawled (out of 100) 6 91

Figure 6: Summary of Web Crawler Benchmark Results

or the processing of the initial web page can affect crawling many
web pages. Such failures prevent the Bristlecone version from dis-
covering the URLs of any further pages and significantly lowered
the Bristlecone version’s average number of crawled pages.

5.3 Web Server

The web server benchmark contains features that are intended to
model an e-commerce server. The web server maintains an inven-
tory of merchandise and supports requests to perform commercial
transactions on this inventory, including adding new items, selling
items, and printing the inventory.

The Bristlecone version contains six tasks. The StartUp task
creates a ServerSocket object to accept incoming connections,
creates a Logger object to log the connections, and creates an
Inventory object to keep track of the current inventory of mer-
chandise. The AcceptConnection task processes incoming
connections and creates a WebSocket objects to manage each
connection. The ProcessRequest task reads the data that is
currently available from the incoming connection and then checks
if the task has received the complete request. When the complete
request is available, the ProcessRequest task parses the re-
quest to determine whether the request is an e-commerce transac-
tion or a simple file request.

The Transaction task processes e-commerce transaction re-
quests. It first inspects the request to determine whether the request
is to add new items to the inventory, to make a purchase, or to
display inventory and then performs the requested operation. For
example, after receiving a purchase request the task looks up the
price of the item in the Inventory object, verifies that the item
is available, and if so, decrements the inventory count for the item
and adds the price of the item to the sales figure.

The SendFile task processes file requests. It opens the re-
quested file, reads the file’s contents, and writes the file’s contents
to the socket. The LogRequest task logs all of the requests to the
log file.

The Java version of the web server uses a thread to monitor for
incoming connections. When a new connection arrives, the server
spawns a separate connection thread for that incoming connection.
The server uses a global object to store the inventory values. This
design isolates failures in connection threads to that specific re-
quest unless the failure corrupts the shared state. Note that unlike
the Bristlecone version of the web server, a failure in a connection
thread will prevent the server from performing any further opera-
tions for that connection including logging the request.

We evaluated the robustness of both versions of the web server
by developing both a workload and a failure injection strategy. Our
workload simulated web traffic to the server. Our workload con-
sisted of a sequence of 4,400 transaction requests. Our failure in-
jection strategy utilized the failure injection code described in the
previous section.

We used failure injection to randomly inject 50 failures into the
execution with a probability of injecting a failure after a given in-
struction of 1 in 2,100,000. We performed 200 trials on each of the
two versions. For each trial we recorded whether the final inventory
request was served, whether the final inventory was consistent, how
many requests each version failed to serve, and how many request
each version failed to log.

Figure 7 summarizes the results of the fault injection experi-
ments with the web server. The Java version failed to serve the



Java | Bristlecone
Failures to serve Inventory Responses | 4.5% 1.5%
Correct Inventory Responses 68.6% 100%
Failures to Serve Request 3.8% 2.2%
Failures to Log Request 3.9% 2.6%

Figure 7: Summary of Web Server Benchmark Results

inventory request in 4.5% of the trials while the Bristlecone version
failed to serve the inventory request in 1.5% representing a three-
fold reduction in the number of failures to serve inventory requests.
More importantly, while the Java version served correct inventory
responses only 68.6% of the time, the Bristlecone version served
the correct inventory response 100% of the time. The Java version
failed to serve 3.8% of the web requests and Bristlecone version
failed to serve 2.2% of the web requests, representing a 42% re-
duction in the failure rate. The Java version failed to log 3.9% of
the web requests and Bristlecone version failed to log 2.6% of the
web requests, representing a 33% reduction in the failure rate.

5.4 Chat Server

The multi-room chat server benchmark accepts incoming con-
nections, asks the user to create a new room or select an exist-
ing room, and then allows users to chat with other users in the
same chat room. The Bristlecone version contains six tasks. The
StartUp task creates a ServerSocket object to accept incom-
ing connections and a RoomOb ject to manage the chat rooms.
The AcceptConnection task processes incoming chat connec-
tions. It creates a Chat Socket object to manage this connection
and then sends a message to ask the user to select a chat room.

The ReadRequest task reads the user’s chat room selection.
It reads the currently available data from the incoming connection
and checks if the chat server has received the complete chat room
selection. When the complete room request has been received, the
ProcessRoom task processes the request. If the requested room
does not exist, it creates the requested chat room. It then adds the
user to the requested chat room. The chat server stores the mapping
of chat room names to the set of chat room participants and for each
room, maintains a list of participants in the corresponding room.

The Message task processes incoming chat messages and
stores these message in a Message object. The SendMessage
task then reads these Message objects, parses the messages, and
then sends the messages to all of the participants in the chat room.
Note that a problematic message or other error condition that
causes the SendMessage task to fail will not prevent the server
from processing future messages from the same connection.

The Java version of the chat server uses a thread to monitor for
incoming connections. When a new connection arrives, the server
spawns a separate connection thread for that incoming connection.
The server uses a global object to store the set of chat rooms. This
design isolates failures in connection threads to the specific con-
nect unless that failure corrupts the room list. Note that unlike the
Bristlecone version of the chat server, a single failure in a connec-
tion thread will prevent the server from relaying any further mes-
sages from that connection.

We evaluated the robustness of both versions by developing both
a workload and a failure injection strategy. Our workload simulated
multiple users chatting on the server. Our workload sent a total of
800 messages. Our failure injection strategy utilized the failure
injection code described in the previous section.

We used failure injection to randomly inject 10 failures into the
execution with a probability of injecting a failure after a given in-
struction of 1 in 270,000. We performed 100 trials on each of the
two versions. For each trial we recorded how many messages were
successfully transmitted.

In the presence of the injected failures, the Java version failed to
deliver 39.9% of the messages and the Bristlecone version failed to
deliver 19.3% of the messages, representing a factor of two reduc-
tion in the failure rate.

5.5 Experiences Writing Bristlecone Applica-
tions

We have developed Bristlecone and Java versions of three differ-
ent benchmark applications. In general, we found writing Bristle-
cone applications to be straightforward. Typically, writing the
Bristlecone version of an application simply requires reorganizing
the application’s code.

The Bristlecone versions of the benchmarks were approximately
the same size as the Java versions. The Bristlecone version of the
web crawler contained 20% fewer lines of code than the Java ver-
sion, the Bristlecone version of the web server contained 2% more
lines of code than the Java version, and the Bristlecone version of
the chat server contained 5% more lines of code. The Bristlecone
version of the web crawler was shorter because it did not require an
auxiliary data structure to store queries.

5.6 Performance

Although Bristlecone uses standard compilation techniques for
the code inside of methods and tasks,it incurs extra overheads to
support transactions and task invocation. Our current runtime im-
plements transactions using a combination of checkpointing and
single-threaded execution. We have measured the checkpointing
and task invocation overhead of our current implementation to be
4.7 microseconds per task invocation on a 3 GHz Pentium-D ma-
chine for a microbenchmark. Researchers have developed efficient
hardware or software transactional memory implementations [39,
3, 22, 42, 23, 24, 29, 20] that could be used to lower the transac-
tion implementation overhead. In the future, static task scheduling
could be used to statically schedule a sequence of task invocations
to reduce the task invocation overhead.

5.7 Discussion

Our experience indicates that software systems developed using
Bristlecone can recover from many otherwise fatal failures. The
Bristlecone versions of all three benchmarks were able to recover
from many more injected failures and provided a higher of quality
of service than the hand-designed Java versions.

6. RELATED WORK

We survey related work in testing, static analysis, exception
mechanisms, fault tolerance, programming languages, and soft-
ware architectures.

6.1 Approaches to Reliable Software

The standard approach to dealing with software failures is to
work hard to find and eliminate software faults. Approaches such
as extensive testing [8], static analysis [17, 44, 36], software model
checking [12], error correction codes [40], and software isolation
mechanisms [1] are all designed, in part, to eliminate as many po-
tential errors as possible. We expect that Bristlecone will com-
plement these other techniques: Bristlecone will enable software
systems to recover from software errors that the other techniques
do not catch.

Many programming languages, including Java, provide an ex-
ception handling mechanism [18]. One issue with exceptions is
that it can be very difficult for developers to reason about which
instructions are likely to throw exceptions — in many languages, a
significant fraction of all statements in the program can potentially
throw an exception. Moreover, writing exception handlers requires
developers to reason about how to recover the computation from



a failure — note that the failed operation may leave critical data
structures in inconsistent, partially updated states.

Software fault tolerance researchers have developed many meth-
ods to address software failures. Recovery blocks[4] allow a de-
veloper to provide multiple implementations of a given algorithm
and an acceptance test for these implementations. This technique
requires the developer to expend the effort to develop multiple im-
plementations of a given algorithm and an acceptance test for the
recovery block. Furthermore, the recovery block technique may
fail if the algorithms share a common defect or if there is an error
in the acceptance test.

Backward recovery uses a combination of checkpointing and ac-
ceptance tests (or error detection) to prevent a software system from
entering an incorrect state [46, 33, 10, 45]. Unfortunately, it can be
difficult to handle deterministic failures using backward recovery
as the same software error will likely cause the software system to
repeatedly fail. Forward recovery uses multiple copies of a com-
putation to recover from transient errors [26]. Forward recovery is
designed to handle intermittent failures — it cannot help determin-
istic errors that affect all copies of the computation.

Databases utilize transactions to ensure that the database is never
left in a half-updated state by a partially completed sequences of
operations [19]. Transactions ensure that either all or none of the
operations update the database. Researchers have developed soft-
ware transactional memory to provide transactions to software sys-
tems as an alternate synchronization method [39, 3, 22, 42, 23].

In N-version programming, the developer constructs a software
system out of multiple, independent implementations and a de-
cision algorithm to decide which result to use in the event of a
disagreement [6]. However, N-version programming may be pro-
hibitively expensive. It requires multiple implementations which
must be independent enough to not share failure modes but simi-
lar enough to be comparable. It can be difficult to ensure that the
different versions are not vulnerable to the same failure modes.

There has recently been renewed interest in developing recovery
mechanisms. The Recovery-Oriented Computing project has ex-
plored integrating an undo operation into software systems [32] and
constructing systems out of a set of individually rebootable compo-
nents [9]. Failure oblivious computing is designed to address mem-
ory errors in C programs [35]. It detects erroneous memory opera-
tions and discards illegal write operations and manufactures values
for invalid read operations. DieHard handles similar memory errors
by using replication and randomization of the memory layout [7].
Randomization probabilistically ensures that illegal memory oper-
ations can only damage data structures in one of the replicants.

Specification-based data structure repair automatically generates
repair algorithms from declarative consistency specifications [15]
and imperative consistency checking code [28]. This technique en-
ables software systems to recover from data structure consistency
errors. The results from this research indicate that the generated
repair algorithms can effectively repair inconsistent data structures
in these software systems to enable the software systems to con-
tinue to operate successfully in cases where the original application
would have failed.

Researchers have used meta-languages to decompose numerical
computations into parallelizable tasks [34]. This technique is ap-
plicable to parallelizable numerical computations that compute the
answers to many subproblems and then combine these answers to
compute an overall answer. If one of the subcomputations fails, this
approach simply ignores the failure. The developer uses random
sampling to estimate how likely a failure is to yield unacceptable
results. Bristlecone is designed to handle a broader class of soft-
ware systems including servers, control systems, and office appli-

cations. Bristlecone is designed for software systems that may re-
quire stronger correctness guarantees; Bristlecone uses consistency
checking and rollback to prevent software errors from corrupting
critical data structures. Bristlecone also uses developer-provided
specifications to guarantee that the software systems continued ex-
ecution is safe.

6.2 Related Languages

A key component of Bristlecone is decoupling unrelated con-
ceptual operations and tracking data dependences between these
operations. This part of Bristlecone is related to the dataflow com-
putational model. Dataflow computation keeps track of data de-
pendences between operations so that the operations can be par-
allelized [27]. Dataflow programs consist of a set of operations
connected by queues. However, dataflow languages are not design
to handle failures. Failures will either cause corrupt values to be
placed in the queues, likely further propagating the error, or cause
an operation to fail to place any value in the queue (possibly caus-
ing other operations to pair the wrong values together).

Tuple-space languages, such as Linda [16], also decouple com-
putations to enable parallelization. The threads of execution com-
municate through a set of primitives that manipulate a global tuple
space. These primitives add, read, and remove tuples of values
from a global tuple-space. However, these language were not de-
signed to address software errors. Software errors can permanently
halt threads of execution in these languages causing the system to
eventually fail. Simply automatically restarting these threads is un-
likely to work as local state has been lost. Furthermore, the com-
munication primitives can be used in a very general fashion — au-
tomatically extracting communication patterns can be difficult.

The orchestration language Orc [11] specifies how work flows
between tasks. Orc is designed to decouple operations and expose
parallelism. Note that if an operation fails, any work (and any cor-
responding data) flowing through the task may be lost. Since the
goal of Orc is not failure recovery, it was not designed to contain
mechanisms to recover data from failed tasks. Therefore, errors
can cause critical information to disappear, eventually causing the
software system to fail. Bristlecone uses flags to keep track of the
conceptual states (or roles) that objects are in, enabling software
systems to recover data from software errors and to continue to ex-
ecute successfully.

Actors communicate through messages [25, 2]. Actors were
originally designed as a concurrent programming paradigm. Fail-
ures may cause actors to drop messages and corrupt or lose their
state. Bristlecone’s objects persist across task failures and can still
be used by other tasks. Moreover, state corruption in actors can
cause actors to permanently crash. Since Bristlecone’s tasks are
stateless, a previous failure of task do not affect future invocations
of the task on different inputs.

Argus is a distributed programming language that organizes pro-
cesses under guardians and isolates a process failure to the guardian
under which it executes [30]. Inconsistencies could potentially
cause the enclosing guardian to shut down. Argus supports failure
recover through an exception handling mechanism. This approach
is complementary to Bristlecone: a developer can write exception
handlers for anticipated failures and Bristlecone can be used to re-
cover from unexpected failures.

Oz is a concurrent, functional language that organizes computa-
tions as a set of tasks [41, 31]. Tasks are created and destroyed by
the program. A task becomes reducible (executable) once the con-
straint store satisfied the task’s guard. Task reducibility is mono-
tonic — once a task is reducible it is always reducible. Task acti-
vation in Bristlecone is not monotonic — the developer can tem-



porarily disable a task when other tasks have placed objects into
states that are incompatible with the task or when the effect of task
is no longer desirable. Non-monotonicity makes it straightforward
for a Bristlecone application to use multiple implementations of the
same functionality for redundancy. Moreover, since task creation
is controlled by the program in Oz, it is more difficult to reason
statically about tasks.

Concurrent Prolog is logic-based language that uses unification
to prove a goal [38, 37]. The proof corresponds to the execution
of the program. Concurrent Prolog’s guarded notation is similar to
Bristlecone’s flag expressions, but Concurrent Prolog’s evaluation
strategy starts from an end goal and reasons backwards. Concur-
rent Prolog programs may be able to recover from some failures by
finding a different execution that reaches the same end goal. The
downside is that if a failure prevents the program from completely
achieving its end goal, the program will be unable to make partial
progress. Bristlecone works forward from an initial flag setting for
the startup object and therefore can make progress even if a failure
prevents the system from completely achieving its goal.

Erlang has been used to implement robust systems using a soft-
ware architecture containing a set of supervisors and a hierarchy of
increasingly simple implementations of the same functionality [5].
The supervisors monitor the computation for errors. If an error
is detected, the system falls back to a simpler implementation in
the hierarchy. Ericsson has used this approach in their telephone
switches. Bristlecone is complementary to the supervisor approach
— while the supervisor approach gives the developer complete con-
trol of the recovery process, the downside of this approach is that
it requires the developer to manually develop multiple implemen-
tations of the same functionality. Bristlecone requires minimal de-
velop effort — it can automatically perform recovery using only
the task declarations. Furthermore, while a shared but minor fault
could cause the entire Erlang implementation hierarchy to fail, in
many cases Bristlecone may be able to execute around the fault and
still provide nearly complete functionality.

6.3 Related Software Architectures

The staged event-driven architecture (SEDA) pushes events
through stages [43]. Each stage processes an event in its in-queue
and places events into the queues of other stages. Note that this
architecture was been designed to support high-performance com-
putation and not to provide fault tolerance. An error in a stage can
cause the stage to fail to relay the event and cause information to be
lost. Stages also have local state, therefore, corruption of this state
will cause that stage to shutdown until reboot.

In general, this approach is less flexible that the Bristlecone lan-
guage. It appears difficult to use this approach to specify that the
software system should either execute one sequence of operations
or a second sequence, but not both.

7. CONCLUSION

We have successfully developed several robust software systems
using Bristlecone. Bristlecone software systems consist of a set
of interacting tasks with each task implementing one of the con-
ceptual operations in the software system. The developer specifies
how these tasks interact using task specifications. Bristlecone uses
transaction to recover data structures from task failures. Bristle-
cone then uses task specifications to reason about how to continue
execution in the presence of a failed task. The key results in this pa-
per include the Bristlecone language, the Bristlecone compiler and
runtime, and our experience using the Bristlecone language. Our
experience indicates that the task-based approach used in Bristle-
cone can effectively enable software systems to recover from oth-
erwise fatal errors. Bristlecone promises to increase the robustness

of software systems and to decrease the cost of developing many
classes of robust software systems.
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