Adding a directed search based config for the tuner
[satune.git] / src / csolver.cc
index 19ebe3156e4691d63e19d4e91fc8549babc0d0f4..9f374cc00df78fc08ac6c7097f0e78aaa4b12b2d 100644 (file)
 #include "sattranslator.h"
 #include "tunable.h"
 #include "polarityassignment.h"
-#include "transformer.h"
+#include "decomposeordertransform.h"
 #include "autotuner.h"
 #include "astops.h"
 #include "structs.h"
+#include "orderresolver.h"
+#include "integerencoding.h"
+#include "qsort.h"
+#include "preprocess.h"
+#include "serializer.h"
+#include "deserializer.h"
+#include "encodinggraph.h"
+#include "ordergraph.h"
+#include "orderedge.h"
+#include "orderanalysis.h"
+#include "elementopt.h"
+#include <time.h>
+#include <stdarg.h>
 
 CSolver::CSolver() :
-       boolTrue(new BooleanConst(true)),
-       boolFalse(new BooleanConst(false)),
+       boolTrue(BooleanEdge(new BooleanConst(true))),
+       boolFalse(boolTrue.negate()),
        unsat(false),
        tuner(NULL),
-       elapsedTime(0)
+       elapsedTime(0),
+       satsolverTimeout(NOTIMEOUT)
 {
        satEncoder = new SATEncoder(this);
-       transformer = new Transformer(this);
 }
 
 /** This function tears down the solver and the entire AST */
 
 CSolver::~CSolver() {
+       //serialize();
        uint size = allBooleans.getSize();
        for (uint i = 0; i < size; i++) {
                delete allBooleans.get(i);
@@ -42,7 +56,8 @@ CSolver::~CSolver() {
 
        size = allElements.getSize();
        for (uint i = 0; i < size; i++) {
-               delete allElements.get(i);
+               Element *el = allElements.get(i);
+               delete el;
        }
 
        size = allTables.getSize();
@@ -59,30 +74,105 @@ CSolver::~CSolver() {
        for (uint i = 0; i < size; i++) {
                delete allOrders.get(i);
        }
-
        size = allFunctions.getSize();
        for (uint i = 0; i < size; i++) {
                delete allFunctions.get(i);
        }
 
-       delete boolTrue;
-       delete boolFalse;
+       delete boolTrue.getBoolean();
        delete satEncoder;
-       delete transformer;
+}
+
+void CSolver::resetSolver() {
+       //serialize();
+       uint size = allBooleans.getSize();
+       for (uint i = 0; i < size; i++) {
+               delete allBooleans.get(i);
+       }
+
+       size = allSets.getSize();
+       for (uint i = 0; i < size; i++) {
+               delete allSets.get(i);
+       }
+
+       size = allElements.getSize();
+       for (uint i = 0; i < size; i++) {
+               Element *el = allElements.get(i);
+               delete el;
+       }
+
+       size = allTables.getSize();
+       for (uint i = 0; i < size; i++) {
+               delete allTables.get(i);
+       }
+
+       size = allPredicates.getSize();
+       for (uint i = 0; i < size; i++) {
+               delete allPredicates.get(i);
+       }
+
+       size = allOrders.getSize();
+       for (uint i = 0; i < size; i++) {
+               delete allOrders.get(i);
+       }
+       size = allFunctions.getSize();
+       for (uint i = 0; i < size; i++) {
+               delete allFunctions.get(i);
+       }
+       delete boolTrue.getBoolean();
+       allBooleans.clear();
+       allSets.clear();
+       allElements.clear();
+       allTables.clear();
+       allPredicates.clear();
+       allOrders.clear();
+       allFunctions.clear();
+       constraints.reset();
+       activeOrders.reset();
+       boolMap.reset();
+       elemMap.reset();
+
+       boolTrue = BooleanEdge(new BooleanConst(true));
+       boolFalse = boolTrue.negate();
+       unsat = false;
+       elapsedTime = 0;
+       tuner = NULL;
+       satEncoder->resetSATEncoder();
+
 }
 
 CSolver *CSolver::clone() {
        CSolver *copy = new CSolver();
        CloneMap map;
-       SetIteratorBoolean *it = getConstraints();
+       SetIteratorBooleanEdge *it = getConstraints();
        while (it->hasNext()) {
-               Boolean *b = it->next();
-               copy->addConstraint(b->clone(copy, &map));
+               BooleanEdge b = it->next();
+               copy->addConstraint(cloneEdge(copy, &map, b));
        }
        delete it;
        return copy;
 }
 
+CSolver *CSolver::deserialize(const char *file) {
+       model_print("deserializing %s ...\n", file);
+       Deserializer deserializer(file);
+       return deserializer.deserialize();
+}
+
+void CSolver::serialize() {
+       model_print("serializing ...\n");
+       char buffer[255];
+       long long nanotime = getTimeNano();
+       int numchars = sprintf(buffer, "DUMP%llu", nanotime);
+       Serializer serializer(buffer);
+       SetIteratorBooleanEdge *it = getConstraints();
+       while (it->hasNext()) {
+               BooleanEdge b = it->next();
+               serializeBooleanEdge(&serializer, b, true);
+       }
+       delete it;
+}
+
 Set *CSolver::createSet(VarType type, uint64_t *elements, uint numelements) {
        Set *set = new Set(type, elements, numelements);
        allSets.push(set);
@@ -95,6 +185,14 @@ Set *CSolver::createRangeSet(VarType type, uint64_t lowrange, uint64_t highrange
        return set;
 }
 
+bool CSolver::itemExistInSet(Set *set, uint64_t item) {
+       return set->exists(item);
+}
+
+VarType CSolver::getSetVarType(Set *set) {
+       return set->getType();
+}
+
 Element *CSolver::createRangeVar(VarType type, uint64_t lowrange, uint64_t highrange) {
        Set *s = createRangeSet(type, lowrange, highrange);
        return getElementVar(s);
@@ -116,16 +214,29 @@ uint64_t CSolver::createUniqueItem(MutableSet *set) {
        return element;
 }
 
+void CSolver::finalizeMutableSet(MutableSet *set) {
+       set->finalize();
+}
+
 Element *CSolver::getElementVar(Set *set) {
        Element *element = new ElementSet(set);
        allElements.push(element);
        return element;
 }
 
+void CSolver::mustHaveValue(Element *element) {
+       element->anyValue = true;
+}
+
+Set *CSolver::getElementRange (Element *element) {
+       return element->getRange();
+}
+
+
 Element *CSolver::getElementConst(VarType type, uint64_t value) {
        uint64_t array[] = {value};
        Set *set = new Set(type, array, 1);
-       Element *element = new ElementConst(value, type, set);
+       Element *element = new ElementConst(value, set);
        Element *e = elemMap.get(element);
        if (e == NULL) {
                allSets.push(set);
@@ -139,10 +250,13 @@ Element *CSolver::getElementConst(VarType type, uint64_t value) {
        }
 }
 
-Element *CSolver::applyFunction(Function *function, Element **array, uint numArrays, Boolean *overflowstatus) {
+
+Element *CSolver::applyFunction(Function *function, Element **array, uint numArrays, BooleanEdge overflowstatus) {
+       ASSERT(numArrays == 2);
        Element *element = new ElementFunction(function,array,numArrays,overflowstatus);
        Element *e = elemMap.get(element);
        if (e == NULL) {
+               element->updateParents();
                allElements.push(element);
                elemMap.put(element, element);
                return element;
@@ -152,14 +266,14 @@ Element *CSolver::applyFunction(Function *function, Element **array, uint numArr
        }
 }
 
-Function *CSolver::createFunctionOperator(ArithOp op, Set **domain, uint numDomain, Set *range,OverFlowBehavior overflowbehavior) {
-       Function *function = new FunctionOperator(op, domain, numDomain, range, overflowbehavior);
+Function *CSolver::createFunctionOperator(ArithOp op, Set *range, OverFlowBehavior overflowbehavior) {
+       Function *function = new FunctionOperator(op, range, overflowbehavior);
        allFunctions.push(function);
        return function;
 }
 
-Predicate *CSolver::createPredicateOperator(CompOp op, Set **domain, uint numDomain) {
-       Predicate *predicate = new PredicateOperator(op, domain,numDomain);
+Predicate *CSolver::createPredicateOperator(CompOp op) {
+       Predicate *predicate = new PredicateOperator(op);
        allPredicates.push(predicate);
        return predicate;
 }
@@ -170,14 +284,14 @@ Predicate *CSolver::createPredicateTable(Table *table, UndefinedBehavior behavio
        return predicate;
 }
 
-Table *CSolver::createTable(Set **domains, uint numDomain, Set *range) {
-       Table *table = new Table(domains,numDomain,range);
+Table *CSolver::createTable(Set *range) {
+       Table *table = new Table(range);
        allTables.push(table);
        return table;
 }
 
-Table *CSolver::createTableForPredicate(Set **domains, uint numDomain) {
-       return createTable(domains, numDomain, NULL);
+Table *CSolver::createTableForPredicate() {
+       return createTable(NULL);
 }
 
 void CSolver::addTableEntry(Table *table, uint64_t *inputs, uint inputSize, uint64_t result) {
@@ -190,217 +304,338 @@ Function *CSolver::completeTable(Table *table, UndefinedBehavior behavior) {
        return function;
 }
 
-Boolean *CSolver::getBooleanVar(VarType type) {
+BooleanEdge CSolver::getBooleanVar(VarType type) {
        Boolean *boolean = new BooleanVar(type);
        allBooleans.push(boolean);
-       return boolean;
+       return BooleanEdge(boolean);
 }
 
-Boolean *CSolver::getBooleanTrue() {
+BooleanEdge CSolver::getBooleanTrue() {
        return boolTrue;
 }
 
-Boolean *CSolver::getBooleanFalse() {
+BooleanEdge CSolver::getBooleanFalse() {
        return boolFalse;
 }
 
-Boolean *CSolver::applyPredicate(Predicate *predicate, Element **inputs, uint numInputs) {
-       return applyPredicateTable(predicate, inputs, numInputs, NULL);
+BooleanEdge CSolver::applyPredicate(Predicate *predicate, Element **inputs, uint numInputs) {
+       return applyPredicateTable(predicate, inputs, numInputs, BooleanEdge(NULL));
 }
 
-Boolean *CSolver::applyPredicateTable(Predicate *predicate, Element **inputs, uint numInputs, Boolean *undefinedStatus) {
+BooleanEdge CSolver::applyPredicateTable(Predicate *predicate, Element **inputs, uint numInputs, BooleanEdge undefinedStatus) {
        BooleanPredicate *boolean = new BooleanPredicate(predicate, inputs, numInputs, undefinedStatus);
-       Boolean * b = boolMap.get(boolean);
+       Boolean *b = boolMap.get(boolean);
        if (b == NULL) {
+               boolean->updateParents();
                boolMap.put(boolean, boolean);
                allBooleans.push(boolean);
-               return boolean;
+               return BooleanEdge(boolean);
        } else {
                delete boolean;
-               return b;
+               return BooleanEdge(b);
        }
 }
 
-bool CSolver::isTrue(Boolean *b) {
-       return b->isTrue();
+bool CSolver::isTrue(BooleanEdge b) {
+       return b.isNegated() ? b->isFalse() : b->isTrue();
 }
 
-bool CSolver::isFalse(Boolean *b) {
-       return b->isFalse();
+bool CSolver::isFalse(BooleanEdge b) {
+       return b.isNegated() ? b->isTrue() : b->isFalse();
 }
 
-Boolean *CSolver::applyLogicalOperation(LogicOp op, Boolean * arg1, Boolean * arg2) {
-       Boolean * array[] = {arg1, arg2};
+BooleanEdge CSolver::applyLogicalOperation(LogicOp op, BooleanEdge arg1, BooleanEdge arg2) {
+       BooleanEdge array[] = {arg1, arg2};
        return applyLogicalOperation(op, array, 2);
 }
 
-Boolean *CSolver::applyLogicalOperation(LogicOp op, Boolean *arg) {
-       Boolean * array[] = {arg};
+BooleanEdge CSolver::applyLogicalOperation(LogicOp op, BooleanEdge arg) {
+       BooleanEdge array[] = {arg};
        return applyLogicalOperation(op, array, 1);
 }
 
+static int booleanEdgeCompares(const void *p1, const void *p2) {
+       BooleanEdge be1 = *(BooleanEdge const *) p1;
+       BooleanEdge be2 = *(BooleanEdge const *) p2;
+       uint64_t b1 = be1->id;
+       uint64_t b2 = be2->id;
+       if (b1 < b2)
+               return -1;
+       else if (b1 == b2)
+               return 0;
+       else
+               return 1;
+}
+
+BooleanEdge CSolver::rewriteLogicalOperation(LogicOp op, BooleanEdge *array, uint asize) {
+       BooleanEdge newarray[asize];
+       memcpy(newarray, array, asize * sizeof(BooleanEdge));
+       for (uint i = 0; i < asize; i++) {
+               BooleanEdge b = newarray[i];
+               if (b->type == LOGICOP) {
+                       if (((BooleanLogic *) b.getBoolean())->replaced) {
+                               newarray[i] = doRewrite(newarray[i]);
+                               i--;//Check again
+                       }
+               }
+       }
+       return applyLogicalOperation(op, newarray, asize);
+}
 
-Boolean *CSolver::applyLogicalOperation(LogicOp op, Boolean **array, uint asize) {
-       Boolean * newarray[asize];
-       switch(op) {
+BooleanEdge CSolver::applyLogicalOperation(LogicOp op, BooleanEdge *array, uint asize) {
+       BooleanEdge newarray[asize];
+       switch (op) {
        case SATC_NOT: {
-               if (array[0]->type == LOGICOP && ((BooleanLogic *)array[0])->op==SATC_NOT) {
-                       return ((BooleanLogic *) array[0])->inputs.get(0);
-               } else if (array[0]->type == BOOLCONST) {
-                       return array[0]->isTrue() ? boolFalse : boolTrue;
-               }
-               break;
+               return array[0].negate();
        }
        case SATC_IFF: {
-               for(uint i=0;i<2;i++) {
-                       if (array[i]->type == BOOLCONST) {
-                               if (array[i]->isTrue()) {
-                                       return array[1-i];
-                               } else {
-                                       newarray[0]=array[1-i];
-                                       return applyLogicalOperation(SATC_NOT, newarray, 1);
+               for (uint i = 0; i < 2; i++) {
+                       if (isTrue(array[i])) { // It can be undefined
+                               return array[1 - i];
+                       } else if (isFalse(array[i])) {
+                               newarray[0] = array[1 - i];
+                               return applyLogicalOperation(SATC_NOT, newarray, 1);
+                       } else if (array[i]->type == LOGICOP) {
+                               BooleanLogic *b = (BooleanLogic *)array[i].getBoolean();
+                               if (b->replaced) {
+                                       return rewriteLogicalOperation(op, array, asize);
                                }
                        }
                }
                break;
        }
-       case SATC_XOR: {
-               for(uint i=0;i<2;i++) {
-                       if (array[i]->type == BOOLCONST) {
-                               if (array[i]->isTrue()) {
-                                       newarray[0]=array[1-i];
-                                       return applyLogicalOperation(SATC_NOT, newarray, 1);
-                               } else
-                                       return array[1-i];
-                       }
-               }
-               break;
-       }
        case SATC_OR: {
-               uint newindex=0;
-               for(uint i=0;i<asize;i++) {
-                       Boolean *b=array[i];
-                       if (b->type == BOOLCONST) {
-                               if (b->isTrue())
-                                       return boolTrue;
-                               else
-                                       continue;
-                       } else
-                               newarray[newindex++]=b;
+               for (uint i = 0; i < asize; i++) {
+                       newarray[i] = applyLogicalOperation(SATC_NOT, array[i]);
                }
-               if (newindex==0) {
-                       return boolFalse;
-               } else if (newindex==1)
-                       return newarray[0];
-               else if (newindex == 2) {
-                       bool isNot0 = (newarray[0]->type==BOOLCONST) && ((BooleanLogic *)newarray[0])->op == SATC_NOT;
-                       bool isNot1 = (newarray[1]->type==BOOLCONST) && ((BooleanLogic *)newarray[1])->op == SATC_NOT;
-
-                       if (isNot0 != isNot1) {
-                               if (isNot0) {
-                                       newarray[0] = ((BooleanLogic *) newarray[0])->inputs.get(0);
-                               } else {
-                                       Boolean *tmp =  ((BooleanLogic *) array[1])->inputs.get(0);
-                                       array[1] = array[0];
-                                       array[0] = tmp;
-                               }
-                               return applyLogicalOperation(SATC_IMPLIES, newarray, 2);
-                       }
-               } else {
-                       array = newarray;
-                       asize = newindex;
-               }
-               break;
+               return applyLogicalOperation(SATC_NOT, applyLogicalOperation(SATC_AND, newarray, asize));
        }
        case SATC_AND: {
-               uint newindex=0;
-               for(uint i=0;i<asize;i++) {
-                       Boolean *b=array[i];
-                       if (b->type == BOOLCONST) {
-                               if (b->isTrue())
-                                       continue;
-                               else
-                                       return boolFalse;
+               uint newindex = 0;
+               for (uint i = 0; i < asize; i++) {
+                       BooleanEdge b = array[i];
+                       if (b->type == LOGICOP) {
+                               if (((BooleanLogic *)b.getBoolean())->replaced)
+                                       return rewriteLogicalOperation(op, array, asize);
+                       }
+                       if (isTrue(b))
+                               continue;
+                       else if (isFalse(b)) {
+                               return boolFalse;
                        } else
-                               newarray[newindex++]=b;
+                               newarray[newindex++] = b;
                }
-               if (newindex==0) {
+               if (newindex == 0) {
                        return boolTrue;
-               } else if(newindex==1) {
+               } else if (newindex == 1) {
                        return newarray[0];
                } else {
+                       bsdqsort(newarray, newindex, sizeof(BooleanEdge), booleanEdgeCompares);
                        array = newarray;
                        asize = newindex;
                }
                break;
        }
+       case SATC_XOR: {
+               //handle by translation
+               return applyLogicalOperation(SATC_NOT, applyLogicalOperation(SATC_IFF, array, asize));
+       }
        case SATC_IMPLIES: {
-               if (array[0]->type == BOOLCONST) {
-                       if (array[0]->isTrue()) {
-                               return array[1];
-                       } else {
-                               return boolTrue;
-                       }
-               } else if (array[1]->type == BOOLCONST) {
-                       if (array[1]->isTrue()) {
-                               return array[1];
-                       } else {
-                               return applyLogicalOperation(SATC_NOT, array, 1);
-                       }
-               }
-               break;
+               //handle by translation
+               return applyLogicalOperation(SATC_OR, applyLogicalOperation(SATC_NOT, array[0]), array[1]);
        }
        }
-       
+
        ASSERT(asize != 0);
        Boolean *boolean = new BooleanLogic(this, op, array, asize);
        Boolean *b = boolMap.get(boolean);
        if (b == NULL) {
+               boolean->updateParents();
                boolMap.put(boolean, boolean);
                allBooleans.push(boolean);
-               return boolean;         
+               return BooleanEdge(boolean);
        } else {
                delete boolean;
-               return b;
+               return BooleanEdge(b);
        }
 }
 
-Boolean *CSolver::orderConstraint(Order *order, uint64_t first, uint64_t second) {
+BooleanEdge CSolver::orderConstraint(Order *order, uint64_t first, uint64_t second) {
+       //      ASSERT(first != second);
+       if (first == second)
+               return getBooleanFalse();
+
+       bool negate = false;
+       if (order->type == SATC_TOTAL) {
+               if (first > second) {
+                       uint64_t tmp = first;
+                       first = second;
+                       second = tmp;
+                       negate = true;
+               }
+       }
        Boolean *constraint = new BooleanOrder(order, first, second);
-       allBooleans.push(constraint);
-       return constraint;
+       Boolean *b = boolMap.get(constraint);
+
+       if (b == NULL) {
+               allBooleans.push(constraint);
+               boolMap.put(constraint, constraint);
+               constraint->updateParents();
+               if (order->graph != NULL) {
+                       OrderGraph *graph = order->graph;
+                       OrderNode *from = graph->lookupOrderNodeFromOrderGraph(first);
+                       if (from != NULL) {
+                               OrderNode *to = graph->lookupOrderNodeFromOrderGraph(second);
+                               if (to != NULL) {
+                                       OrderEdge *edge = graph->lookupOrderEdgeFromOrderGraph(from, to);
+                                       OrderEdge *invedge;
+
+                                       if (edge != NULL && edge->mustPos) {
+                                               replaceBooleanWithTrueNoRemove(constraint);
+                                       } else if (edge != NULL && edge->mustNeg) {
+                                               replaceBooleanWithFalseNoRemove(constraint);
+                                       } else if ((invedge = graph->lookupOrderEdgeFromOrderGraph(to, from)) != NULL
+                                                                                && invedge->mustPos) {
+                                               replaceBooleanWithFalseNoRemove(constraint);
+                                       }
+                               }
+                       }
+               }
+       } else {
+               delete constraint;
+               constraint = b;
+       }
+
+       BooleanEdge be = BooleanEdge(constraint);
+       return negate ? be.negate() : be;
 }
 
-void CSolver::addConstraint(Boolean *constraint) {
-       if (constraint == boolTrue)
+void CSolver::addConstraint(BooleanEdge constraint) {
+       if (isTrue(constraint))
                return;
-       else if (constraint == boolFalse)
+       else if (isFalse(constraint)) {
                setUnSAT();
-       else
+       }
+       else {
+               if (constraint->type == LOGICOP) {
+                       BooleanLogic *b = (BooleanLogic *) constraint.getBoolean();
+                       if (!constraint.isNegated()) {
+                               if (b->op == SATC_AND) {
+                                       uint size = b->inputs.getSize();
+                                       //Handle potential concurrent modification
+                                       BooleanEdge array[size];
+                                       for (uint i = 0; i < size; i++) {
+                                               array[i] = b->inputs.get(i);
+                                       }
+                                       for (uint i = 0; i < size; i++) {
+                                               addConstraint(array[i]);
+                                       }
+                                       return;
+                               }
+                       }
+                       if (b->replaced) {
+                               addConstraint(doRewrite(constraint));
+                               return;
+                       }
+               }
                constraints.add(constraint);
+               Boolean *ptr = constraint.getBoolean();
+
+               if (ptr->boolVal == BV_UNSAT) {
+                       setUnSAT();
+               }
+
+               replaceBooleanWithTrueNoRemove(constraint);
+               constraint->parents.clear();
+       }
 }
 
 Order *CSolver::createOrder(OrderType type, Set *set) {
        Order *order = new Order(type, set);
        allOrders.push(order);
+       activeOrders.add(order);
        return order;
 }
 
+/** Computes static ordering information to allow isTrue/isFalse
+    queries on newly created orders to work. */
+
+void CSolver::inferFixedOrder(Order *order) {
+       if (order->graph != NULL) {
+               delete order->graph;
+       }
+       order->graph = buildMustOrderGraph(order);
+       reachMustAnalysis(this, order->graph, true);
+}
+
+void CSolver::inferFixedOrders() {
+       SetIteratorOrder *orderit = activeOrders.iterator();
+       while (orderit->hasNext()) {
+               Order *order = orderit->next();
+               inferFixedOrder(order);
+       }
+}
+
+#define NANOSEC 1000000000.0
 int CSolver::solve() {
+       long long startTime = getTimeNano();
        bool deleteTuner = false;
        if (tuner == NULL) {
                tuner = new DefaultTuner();
                deleteTuner = true;
        }
-               
-       long long startTime = getTimeNano();
+
+
+       {
+               SetIteratorOrder *orderit = activeOrders.iterator();
+               while (orderit->hasNext()) {
+                       Order *order = orderit->next();
+                       if (order->graph != NULL) {
+                               delete order->graph;
+                               order->graph = NULL;
+                       }
+               }
+               delete orderit;
+       }
        computePolarities(this);
-       transformer->orderAnalysis();
+       long long time1 = getTimeNano();
+       model_print("Polarity time: %f\n", (time1 - startTime) / NANOSEC);
+       Preprocess pp(this);
+       pp.doTransform();
+       long long time2 = getTimeNano();
+       model_print("Preprocess time: %f\n", (time2 - time1) / NANOSEC);
+
+       DecomposeOrderTransform dot(this);
+       dot.doTransform();
+       time1 = getTimeNano();
+       model_print("Decompose Order: %f\n", (time1 - time2) / NANOSEC);
+
+       IntegerEncodingTransform iet(this);
+       iet.doTransform();
+
+       ElementOpt eop(this);
+       eop.doTransform();
+
+       EncodingGraph eg(this);
+       eg.encode();
+
        naiveEncodingDecision(this);
+//     eg.validate();
+
+       time2 = getTimeNano();
+       model_print("Encoding Graph Time: %f\n", (time2 - time1) / NANOSEC);
+
        satEncoder->encodeAllSATEncoder(this);
-       int result = unsat ? IS_UNSAT : satEncoder->solve();
-       long long finishTime = getTimeNano();
-       elapsedTime = finishTime - startTime;
+       time1 = getTimeNano();
+
+       model_print("Elapse Encode time: %f\n", (time1 - startTime) / NANOSEC);
+
+       model_print("Is problem UNSAT after encoding: %d\n", unsat);
+       int result = unsat ? IS_UNSAT : satEncoder->solve(satsolverTimeout);
+       model_print("Result Computed in SAT solver:\t%s\n", result == IS_SAT? "SAT" : result == IS_INDETER? "INDETERMINATE" : " UNSAT");
+       time2 = getTimeNano();
+       elapsedTime = time2 - startTime;
+       model_print("CSOLVER solve time: %f\n", elapsedTime / NANOSEC);
        if (deleteTuner) {
                delete tuner;
                tuner = NULL;
@@ -408,6 +643,19 @@ int CSolver::solve() {
        return result;
 }
 
+void CSolver::printConstraints() {
+       SetIteratorBooleanEdge *it = getConstraints();
+       while (it->hasNext()) {
+               BooleanEdge b = it->next();
+               b.print();
+       }
+       delete it;
+}
+
+void CSolver::printConstraint(BooleanEdge b) {
+       b.print();
+}
+
 uint64_t CSolver::getElementValue(Element *element) {
        switch (element->type) {
        case ELEMSET:
@@ -420,7 +668,8 @@ uint64_t CSolver::getElementValue(Element *element) {
        exit(-1);
 }
 
-bool CSolver::getBooleanValue(Boolean *boolean) {
+bool CSolver::getBooleanValue(BooleanEdge bedge) {
+       Boolean *boolean = bedge.getBoolean();
        switch (boolean->type) {
        case BOOLEANVAR:
                return getBooleanVariableValueSATTranslator(this, boolean);
@@ -430,8 +679,8 @@ bool CSolver::getBooleanValue(Boolean *boolean) {
        exit(-1);
 }
 
-HappenedBefore CSolver::getOrderConstraintValue(Order *order, uint64_t first, uint64_t second) {
-       return getOrderConstraintValueSATTranslator(this, order, first, second);
+bool CSolver::getOrderConstraintValue(Order *order, uint64_t first, uint64_t second) {
+       return order->encoding.resolver->resolveOrder(first, second);
 }
 
 long long CSolver::getEncodeTime() { return satEncoder->getEncodeTime(); }
@@ -439,8 +688,10 @@ long long CSolver::getEncodeTime() { return satEncoder->getEncodeTime(); }
 long long CSolver::getSolveTime() { return satEncoder->getSolveTime(); }
 
 void CSolver::autoTune(uint budget) {
-       AutoTuner * autotuner=new AutoTuner(budget);
+       AutoTuner *autotuner = new AutoTuner(budget);
        autotuner->addProblem(this);
        autotuner->tune();
        delete autotuner;
 }
+
+