Add a configuration for disabling the optimizations
[satune.git] / src / csolver.cc
index 44b29bbad3845ec86009f64a17b6b714f114b7e5..379858685235b90dd9514b4519417696d4bae906 100644 (file)
 #include "orderedge.h"
 #include "orderanalysis.h"
 #include "elementopt.h"
+#include "varorderingopt.h"
 #include <time.h>
 #include <stdarg.h>
+#include "alloyinterpreter.h"
+#include "smtinterpreter.h"
+#include "mathsatinterpreter.h"
+#include "smtratinterpreter.h"
 
 CSolver::CSolver() :
        boolTrue(BooleanEdge(new BooleanConst(true))),
        boolFalse(boolTrue.negate()),
        unsat(false),
+       booleanVarUsed(false),
+       incrementalMode(false),
+       optimizationsOff(false),
        tuner(NULL),
-       elapsedTime(0)
+       elapsedTime(0),
+       satsolverTimeout(NOTIMEOUT),
+       interpreter(NULL)
 {
        satEncoder = new SATEncoder(this);
 }
@@ -78,6 +88,10 @@ CSolver::~CSolver() {
                delete allFunctions.get(i);
        }
 
+       if (interpreter != NULL) {
+               delete interpreter;
+       }
+
        delete boolTrue.getBoolean();
        delete satEncoder;
 }
@@ -127,6 +141,7 @@ void CSolver::resetSolver() {
        allOrders.clear();
        allFunctions.clear();
        constraints.reset();
+       encodedConstraints.reset();
        activeOrders.reset();
        boolMap.reset();
        elemMap.reset();
@@ -134,6 +149,7 @@ void CSolver::resetSolver() {
        boolTrue = BooleanEdge(new BooleanConst(true));
        boolFalse = boolTrue.negate();
        unsat = false;
+       booleanVarUsed = false;
        elapsedTime = 0;
        tuner = NULL;
        satEncoder->resetSATEncoder();
@@ -152,9 +168,9 @@ CSolver *CSolver::clone() {
        return copy;
 }
 
-CSolver *CSolver::deserialize(const char *file) {
-       model_print("deserializing ...\n");
-       Deserializer deserializer(file);
+CSolver *CSolver::deserialize(const char *file, InterpreterType itype) {
+       model_print("deserializing %s ...\n", file);
+       Deserializer deserializer(file, itype);
        return deserializer.deserialize();
 }
 
@@ -184,8 +200,8 @@ Set *CSolver::createRangeSet(VarType type, uint64_t lowrange, uint64_t highrange
        return set;
 }
 
-bool CSolver::itemExistInSet(Set *set, uint64_t item){
-        return set->exists(item);
+bool CSolver::itemExistInSet(Set *set, uint64_t item) {
+       return set->exists(item);
 }
 
 VarType CSolver::getSetVarType(Set *set) {
@@ -223,10 +239,21 @@ Element *CSolver::getElementVar(Set *set) {
        return element;
 }
 
-void CSolver::mustHaveValue(Element *element){
-       element->getElementEncoding()->anyValue = true;
+void CSolver::mustHaveValue(Element *element) {
+       element->anyValue = true;
 }
 
+void CSolver::freezeElementsVariables() {
+       
+       for(uint i=0; i< allElements.getSize(); i++){
+               Element *e = allElements.get(i);
+               if(e->frozen){
+                       satEncoder->freezeElementVariables(&e->encoding);
+               }
+       }
+}
+
+
 Set *CSolver::getElementRange (Element *element) {
        return element->getRange();
 }
@@ -251,7 +278,6 @@ Element *CSolver::getElementConst(VarType type, uint64_t value) {
 
 
 Element *CSolver::applyFunction(Function *function, Element **array, uint numArrays, BooleanEdge overflowstatus) {
-       ASSERT(numArrays == 2);
        Element *element = new ElementFunction(function,array,numArrays,overflowstatus);
        Element *e = elemMap.get(element);
        if (e == NULL) {
@@ -306,6 +332,8 @@ Function *CSolver::completeTable(Table *table, UndefinedBehavior behavior) {
 BooleanEdge CSolver::getBooleanVar(VarType type) {
        Boolean *boolean = new BooleanVar(type);
        allBooleans.push(boolean);
+       if (!booleanVarUsed)
+               booleanVarUsed = true;
        return BooleanEdge(boolean);
 }
 
@@ -381,81 +409,109 @@ BooleanEdge CSolver::rewriteLogicalOperation(LogicOp op, BooleanEdge *array, uin
        return applyLogicalOperation(op, newarray, asize);
 }
 
+BooleanEdge CSolver::applyExactlyOneConstraint (BooleanEdge *array, uint asize){
+       BooleanEdge newarray[asize + 1];
+
+       newarray[asize] = applyLogicalOperation(SATC_OR, array, asize);
+       for (uint i=0; i< asize; i++){
+               BooleanEdge oprand1 = array[i];
+               BooleanEdge carray [asize -1];
+               uint index = 0;
+               for( uint j =0; j< asize; j++){
+                       if(i != j){
+                               BooleanEdge oprand2 = applyLogicalOperation(SATC_NOT, array[j]);
+                               carray[index++] = applyLogicalOperation(SATC_IMPLIES, oprand1, oprand2);
+                       }
+               }
+               ASSERT(index == asize -1);
+               newarray[i] = applyLogicalOperation(SATC_AND, carray, asize-1);
+       }
+       return applyLogicalOperation(SATC_AND, newarray, asize+1);
+}
+
 BooleanEdge CSolver::applyLogicalOperation(LogicOp op, BooleanEdge *array, uint asize) {
-       BooleanEdge newarray[asize];
-       switch (op) {
-       case SATC_NOT: {
-               return array[0].negate();
-       }
-       case SATC_IFF: {
-               for (uint i = 0; i < 2; i++) {
-                       if (isTrue(array[i])) { // It can be undefined
-                               return array[1 - i];
-                       } else if (isFalse(array[i])) {
-                               newarray[0] = array[1 - i];
-                               return applyLogicalOperation(SATC_NOT, newarray, 1);
-                       } else if (array[i]->type == LOGICOP) {
-                               BooleanLogic *b = (BooleanLogic *)array[i].getBoolean();
-                               if (b->replaced) {
-                                       return rewriteLogicalOperation(op, array, asize);
+       if (!useInterpreter()) {
+               BooleanEdge newarray[asize];
+               switch (op) {
+               case SATC_NOT: {
+                       return array[0].negate();
+               }
+               case SATC_IFF: {
+                       for (uint i = 0; i < 2; i++) {
+                               if (isTrue(array[i])) { // It can be undefined
+                                       return array[1 - i];
+                               } else if (isFalse(array[i])) {
+                                       newarray[0] = array[1 - i];
+                                       return applyLogicalOperation(SATC_NOT, newarray, 1);
+                               } else if (array[i]->type == LOGICOP) {
+                                       BooleanLogic *b = (BooleanLogic *)array[i].getBoolean();
+                                       if (b->replaced) {
+                                               return rewriteLogicalOperation(op, array, asize);
+                                       }
                                }
                        }
+                       break;
                }
-               break;
-       }
-       case SATC_OR: {
-               for (uint i = 0; i < asize; i++) {
-                       newarray[i] = applyLogicalOperation(SATC_NOT, array[i]);
+               case SATC_OR: {
+                       for (uint i = 0; i < asize; i++) {
+                               newarray[i] = applyLogicalOperation(SATC_NOT, array[i]);
+                       }
+                       return applyLogicalOperation(SATC_NOT, applyLogicalOperation(SATC_AND, newarray, asize));
                }
-               return applyLogicalOperation(SATC_NOT, applyLogicalOperation(SATC_AND, newarray, asize));
-       }
-       case SATC_AND: {
-               uint newindex = 0;
-               for (uint i = 0; i < asize; i++) {
-                       BooleanEdge b = array[i];
-                       if (b->type == LOGICOP) {
-                               if (((BooleanLogic *)b.getBoolean())->replaced)
-                                       return rewriteLogicalOperation(op, array, asize);
+               case SATC_AND: {
+                       uint newindex = 0;
+                       for (uint i = 0; i < asize; i++) {
+                               BooleanEdge b = array[i];
+                               if (b->type == LOGICOP) {
+                                       if (((BooleanLogic *)b.getBoolean())->replaced)
+                                               return rewriteLogicalOperation(op, array, asize);
+                               }
+                               if (isTrue(b))
+                                       continue;
+                               else if (isFalse(b)) {
+                                       return boolFalse;
+                               } else
+                                       newarray[newindex++] = b;
+                       }
+                       if (newindex == 0) {
+                               return boolTrue;
+                       } else if (newindex == 1) {
+                               return newarray[0];
+                       } else {
+                               bsdqsort(newarray, newindex, sizeof(BooleanEdge), booleanEdgeCompares);
+                               array = newarray;
+                               asize = newindex;
                        }
-                       if (isTrue(b))
-                               continue;
-                       else if (isFalse(b)) {
-                               return boolFalse;
-                       } else
-                               newarray[newindex++] = b;
+                       break;
+               }
+               case SATC_XOR: {
+                       //handle by translation
+                       return applyLogicalOperation(SATC_NOT, applyLogicalOperation(SATC_IFF, array, asize));
+               }
+               case SATC_IMPLIES: {
+                       //handle by translation
+                       return applyLogicalOperation(SATC_OR, applyLogicalOperation(SATC_NOT, array[0]), array[1]);
                }
-               if (newindex == 0) {
-                       return boolTrue;
-               } else if (newindex == 1) {
-                       return newarray[0];
-               } else {
-                       bsdqsort(newarray, newindex, sizeof(BooleanEdge), booleanEdgeCompares);
-                       array = newarray;
-                       asize = newindex;
                }
-               break;
-       }
-       case SATC_XOR: {
-               //handle by translation
-               return applyLogicalOperation(SATC_NOT, applyLogicalOperation(SATC_IFF, array, asize));
-       }
-       case SATC_IMPLIES: {
-               //handle by translation
-               return applyLogicalOperation(SATC_OR, applyLogicalOperation(SATC_NOT, array[0]), array[1]);
-       }
-       }
 
-       ASSERT(asize != 0);
-       Boolean *boolean = new BooleanLogic(this, op, array, asize);
-       Boolean *b = boolMap.get(boolean);
-       if (b == NULL) {
-               boolean->updateParents();
-               boolMap.put(boolean, boolean);
+               ASSERT(asize != 0);
+               Boolean *boolean = new BooleanLogic(this, op, array, asize);
+               Boolean *b = boolMap.get(boolean);
+               if (b == NULL) {
+                       boolean->updateParents();
+                       boolMap.put(boolean, boolean);
+                       allBooleans.push(boolean);
+                       return BooleanEdge(boolean);
+               } else {
+                       delete boolean;
+                       return BooleanEdge(b);
+               }
+       } else {
+               ASSERT(asize != 0);
+               Boolean *boolean = new BooleanLogic(this, op, array, asize);
                allBooleans.push(boolean);
                return BooleanEdge(boolean);
-       } else {
-               delete boolean;
-               return BooleanEdge(b);
+
        }
 }
 
@@ -474,77 +530,83 @@ BooleanEdge CSolver::orderConstraint(Order *order, uint64_t first, uint64_t seco
                }
        }
        Boolean *constraint = new BooleanOrder(order, first, second);
-       Boolean *b = boolMap.get(constraint);
-
-       if (b == NULL) {
-               allBooleans.push(constraint);
-               boolMap.put(constraint, constraint);
-               constraint->updateParents();
-               if (order->graph != NULL) {
-                       OrderGraph *graph = order->graph;
-                       OrderNode *from = graph->lookupOrderNodeFromOrderGraph(first);
-                       if (from != NULL) {
-                               OrderNode *to = graph->lookupOrderNodeFromOrderGraph(second);
-                               if (to != NULL) {
-                                       OrderEdge *edge = graph->lookupOrderEdgeFromOrderGraph(from, to);
-                                       OrderEdge *invedge;
-
-                                       if (edge != NULL && edge->mustPos) {
-                                               replaceBooleanWithTrueNoRemove(constraint);
-                                       } else if (edge != NULL && edge->mustNeg) {
-                                               replaceBooleanWithFalseNoRemove(constraint);
-                                       } else if ((invedge = graph->lookupOrderEdgeFromOrderGraph(to, from)) != NULL
-                                                                                && invedge->mustPos) {
-                                               replaceBooleanWithFalseNoRemove(constraint);
+       if (!useInterpreter() ) {
+               Boolean *b = boolMap.get(constraint);
+
+               if (b == NULL) {
+                       allBooleans.push(constraint);
+                       boolMap.put(constraint, constraint);
+                       constraint->updateParents();
+                       if ( order->graph != NULL) {
+                               OrderGraph *graph = order->graph;
+                               OrderNode *from = graph->lookupOrderNodeFromOrderGraph(first);
+                               if (from != NULL) {
+                                       OrderNode *to = graph->lookupOrderNodeFromOrderGraph(second);
+                                       if (to != NULL) {
+                                               OrderEdge *edge = graph->lookupOrderEdgeFromOrderGraph(from, to);
+                                               OrderEdge *invedge;
+
+                                               if (edge != NULL && edge->mustPos) {
+                                                       replaceBooleanWithTrueNoRemove(constraint);
+                                               } else if (edge != NULL && edge->mustNeg) {
+                                                       replaceBooleanWithFalseNoRemove(constraint);
+                                               } else if ((invedge = graph->lookupOrderEdgeFromOrderGraph(to, from)) != NULL
+                                                                                        && invedge->mustPos) {
+                                                       replaceBooleanWithFalseNoRemove(constraint);
+                                               }
                                        }
                                }
                        }
+               } else {
+                       delete constraint;
+                       constraint = b;
                }
-       } else {
-               delete constraint;
-               constraint = b;
        }
-
        BooleanEdge be = BooleanEdge(constraint);
        return negate ? be.negate() : be;
 }
 
 void CSolver::addConstraint(BooleanEdge constraint) {
-       if (isTrue(constraint))
-               return;
-       else if (isFalse(constraint)) {
-               setUnSAT();
-       }
-       else {
-               if (constraint->type == LOGICOP) {
-                       BooleanLogic *b = (BooleanLogic *) constraint.getBoolean();
-                       if (!constraint.isNegated()) {
-                               if (b->op == SATC_AND) {
-                                       uint size = b->inputs.getSize();
-                                       //Handle potential concurrent modification
-                                       BooleanEdge array[size];
-                                       for (uint i = 0; i < size; i++) {
-                                               array[i] = b->inputs.get(i);
-                                       }
-                                       for (uint i = 0; i < size; i++) {
-                                               addConstraint(array[i]);
+       if (!useInterpreter() && !optimizationsOff) {
+               if (isTrue(constraint))
+                       return;
+               else if (isFalse(constraint)) {
+                       setUnSAT();
+               }
+               else {
+                       if (constraint->type == LOGICOP) {
+                               BooleanLogic *b = (BooleanLogic *) constraint.getBoolean();
+                               if (!constraint.isNegated()) {
+                                       if (b->op == SATC_AND) {
+                                               uint size = b->inputs.getSize();
+                                               //Handle potential concurrent modification
+                                               BooleanEdge array[size];
+                                               for (uint i = 0; i < size; i++) {
+                                                       array[i] = b->inputs.get(i);
+                                               }
+                                               for (uint i = 0; i < size; i++) {
+                                                       addConstraint(array[i]);
+                                               }
+                                               return;
                                        }
+                               }
+                               if (b->replaced) {
+                                       addConstraint(doRewrite(constraint));
                                        return;
                                }
                        }
-                       if (b->replaced) {
-                               addConstraint(doRewrite(constraint));
-                               return;
+                       constraints.add(constraint);
+                       Boolean *ptr = constraint.getBoolean();
+
+                       if (ptr->boolVal == BV_UNSAT) {
+                               setUnSAT();
                        }
-               }
-               constraints.add(constraint);
-               Boolean *ptr = constraint.getBoolean();
 
-               if (ptr->boolVal == BV_UNSAT) {
-                       setUnSAT();
+                       replaceBooleanWithTrueNoRemove(constraint);
+                       constraint->parents.clear();
                }
-
-               replaceBooleanWithTrueNoRemove(constraint);
+       } else {
+               constraints.add(constraint);
                constraint->parents.clear();
        }
 }
@@ -575,65 +637,152 @@ void CSolver::inferFixedOrders() {
        }
 }
 
-#define NANOSEC 1000000000.0
-int CSolver::solve() {
-       long long starttime = getTimeNano();
+int CSolver::solveIncremental() {
+       if (isUnSAT()) {
+               return IS_UNSAT;
+       }
+       
+       
+       long long startTime = getTimeNano();
        bool deleteTuner = false;
        if (tuner == NULL) {
                tuner = new DefaultTuner();
                deleteTuner = true;
        }
+       int result = IS_INDETER;
+       ASSERT (!useInterpreter());
+       if(!optimizationsOff){
+               computePolarities(this);
+       }
+//     long long time1 = getTimeNano();
+//     model_print("Polarity time: %f\n", (time1 - startTime) / NANOSEC);
+//     Preprocess pp(this);
+//     pp.doTransform();
+//     long long time2 = getTimeNano();
+//     model_print("Preprocess time: %f\n", (time2 - time1) / NANOSEC);
+
+//     DecomposeOrderTransform dot(this);
+//     dot.doTransform();
+//     time1 = getTimeNano();
+//     model_print("Decompose Order: %f\n", (time1 - time2) / NANOSEC);
+
+//     IntegerEncodingTransform iet(this);
+//     iet.doTransform();
+
+       //Doing element optimization on new constraints
+//     ElementOpt eop(this);
+//     eop.doTransform();
+       
+       //Since no new element is added, we assuming adding new constraint
+       //has no impact on previous encoding decisions
+//     EncodingGraph eg(this);
+//     eg.encode();
 
+       naiveEncodingDecision(this);
+       //      eg.validate();
+       //Order of sat solver variables don't change!
+//     VarOrderingOpt bor(this, satEncoder);
+//     bor.doTransform();
 
-       {
-               SetIteratorOrder *orderit = activeOrders.iterator();
-               while (orderit->hasNext()) {
-                       Order *order = orderit->next();
-                       if (order->graph != NULL) {
-                               delete order->graph;
-                               order->graph = NULL;
-                       }
-               }
-               delete orderit;
-       }
-       computePolarities(this);
        long long time2 = getTimeNano();
-       model_print("Polarity time: %f\n", (time2 - starttime) / NANOSEC);
-       Preprocess pp(this);
-       pp.doTransform();
-       long long time3 = getTimeNano();
-       model_print("Preprocess time: %f\n", (time3 - time2) / NANOSEC);
+       //Encoding newly added constraints
+       satEncoder->encodeAllSATEncoder(this);
+       long long time1 = getTimeNano();
 
-       DecomposeOrderTransform dot(this);
-       dot.doTransform();
-       long long time4 = getTimeNano();
-       model_print("Decompose Order: %f\n", (time4 - time3) / NANOSEC);
+       model_print("Elapse Encode time: %f\n", (time1 - startTime) / NANOSEC);
 
-       IntegerEncodingTransform iet(this);
-       iet.doTransform();
+       model_print("Is problem UNSAT after encoding: %d\n", unsat);
 
-       ElementOpt eop(this);
-       eop.doTransform();
+       result = unsat ? IS_UNSAT : satEncoder->solve(satsolverTimeout);
+       model_print("Result Computed in SAT solver:\t%s\n", result == IS_SAT ? "SAT" : result == IS_INDETER ? "INDETERMINATE" : " UNSAT");
+       time2 = getTimeNano();
+       elapsedTime = time2 - startTime;
+       model_print("CSOLVER solve time: %f\n", elapsedTime / NANOSEC);
+       
+       if (deleteTuner) {
+               delete tuner;
+               tuner = NULL;
+       }
+       return result;
+}
 
-       EncodingGraph eg(this);
-       eg.buildGraph();
-       eg.encode();
+int CSolver::solve() {
+       if (isUnSAT()) {
+               return IS_UNSAT;
+       }
+       long long startTime = getTimeNano();
+       bool deleteTuner = false;
+       if (tuner == NULL) {
+               tuner = new DefaultTuner();
+               deleteTuner = true;
+       }
+       int result = IS_INDETER;
+       if (useInterpreter()) {
+               interpreter->encode();
+               model_print("Problem encoded in Interpreter\n");
+               result = interpreter->solve();
+               model_print("Problem solved by Interpreter\n");
+       } else {
 
-       naiveEncodingDecision(this);
-       long long time5 = getTimeNano();
-       model_print("Encoding Graph Time: %f\n", (time5 - time4) / NANOSEC);
+               {
+                       SetIteratorOrder *orderit = activeOrders.iterator();
+                       while (orderit->hasNext()) {
+                               Order *order = orderit->next();
+                               if (order->graph != NULL) {
+                                       delete order->graph;
+                                       order->graph = NULL;
+                               }
+                       }
+                       delete orderit;
+               }
+               long long time1, time2;
+               
+               computePolarities(this);
+               time1 = getTimeNano();
+               model_print("Polarity time: %f\n", (time1 - startTime) / NANOSEC);
+               if(!optimizationsOff){
+                       Preprocess pp(this);
+                       pp.doTransform();
+                       time2 = getTimeNano();
+                       model_print("Preprocess time: %f\n", (time2 - time1) / NANOSEC);
+
+                       DecomposeOrderTransform dot(this);
+                       dot.doTransform();
+                       time1 = getTimeNano();
+                       model_print("Decompose Order: %f\n", (time1 - time2) / NANOSEC);
+
+                       IntegerEncodingTransform iet(this);
+                       iet.doTransform();
+
+                       ElementOpt eop(this);
+                       eop.doTransform();
+
+                       EncodingGraph eg(this);
+                       eg.encode();
+               }
+               naiveEncodingDecision(this);
+               //      eg.validate();
+               if(!optimizationsOff){
+                       VarOrderingOpt bor(this, satEncoder);
+                       bor.doTransform();
+                       time2 = getTimeNano();
+                       model_print("Encoding Graph Time: %f\n", (time2 - time1) / NANOSEC);
+               }
 
-       long long startTime = getTimeNano();
-       satEncoder->encodeAllSATEncoder(this);
-       long long endTime = getTimeNano();
+               satEncoder->encodeAllSATEncoder(this);
+               time1 = getTimeNano();
 
-       elapsedTime = endTime - startTime;
-       model_print("Elapse Encode time: %f\n", elapsedTime / NANOSEC);
+               model_print("Elapse Encode time: %f\n", (time1 - startTime) / NANOSEC);
 
-       model_print("Is problem UNSAT after encoding: %d\n", unsat);
-       int result = unsat ? IS_UNSAT : satEncoder->solve();
-       model_print("Result Computed in SAT solver: %d\n", result);
+               model_print("Is problem UNSAT after encoding: %d\n", unsat);
+               
 
+               result = unsat ? IS_UNSAT : satEncoder->solve(satsolverTimeout);
+               model_print("Result Computed in SAT solver:\t%s\n", result == IS_SAT ? "SAT" : result == IS_INDETER ? "INDETERMINATE" : " UNSAT");
+               time2 = getTimeNano();
+               elapsedTime = time2 - startTime;
+               model_print("CSOLVER solve time: %f\n", elapsedTime / NANOSEC);
+       }
        if (deleteTuner) {
                delete tuner;
                tuner = NULL;
@@ -641,6 +790,32 @@ int CSolver::solve() {
        return result;
 }
 
+void CSolver::setInterpreter(InterpreterType type) {
+       if (interpreter == NULL) {
+               switch (type) {
+               case SATUNE:
+                       break;
+               case ALLOY: {
+                       interpreter = new AlloyInterpreter(this);
+                       break;
+               } case Z3: {
+                       interpreter = new SMTInterpreter(this);
+                       break;
+               }
+               case MATHSAT: {
+                       interpreter = new MathSATInterpreter(this);
+                       break;
+               }
+               case SMTRAT: {
+                       interpreter = new SMTRatInterpreter(this);
+                       break;
+               }
+               default:
+                       ASSERT(0);
+               }
+       }
+}
+
 void CSolver::printConstraints() {
        SetIteratorBooleanEdge *it = getConstraints();
        while (it->hasNext()) {
@@ -659,18 +834,27 @@ uint64_t CSolver::getElementValue(Element *element) {
        case ELEMSET:
        case ELEMCONST:
        case ELEMFUNCRETURN:
-               return getElementValueSATTranslator(this, element);
+               return useInterpreter() ? interpreter->getValue(element) :
+                                        getElementValueSATTranslator(this, element);
        default:
                ASSERT(0);
        }
        exit(-1);
 }
 
+void CSolver::freezeElement(Element *e){
+       e->freezeElement();
+       if(!incrementalMode){
+               incrementalMode = true;
+       }
+}
+
 bool CSolver::getBooleanValue(BooleanEdge bedge) {
        Boolean *boolean = bedge.getBoolean();
        switch (boolean->type) {
        case BOOLEANVAR:
-               return getBooleanVariableValueSATTranslator(this, boolean);
+               return useInterpreter() ? interpreter->getBooleanValue(boolean) :
+                                        getBooleanVariableValueSATTranslator(this, boolean);
        default:
                ASSERT(0);
        }