
Conflict-Guided Simplification for SAT

Michael L. Case1,2, Sanjit A. Seshia1,
Alan Mishchenko1, and Robert K. Brayton1

1 University of California, Berkeley
2 IBM Systems and Technology Group, Austin, TX

Abstract. Boolean satisfiability (SAT) solvers are the computational en-
gines used in a variety of applications, including verification and synthesis.
The NP-completeness of SAT implies that solvers often run out of space and
time resources. In this paper, we present a method called conflict guided
simplification (CGS), which uses conflict clauses, generated during a limited
solution attempt, to formulate a set of simpler problems to be solved. This set
is not equivalent to the original problem, but their proofs (or counterexam-
ples) can be used as a guide to a proof of the original. This method represents
a modification to any SAT solver, which can solve ”easy” problems with no
overhead, but for difficult problems, CGS kicks in at a user specified time
limit, yielding impressive speedups on ”hard” instances. We believe this is
the first method that uses partial results generated during a proof attempt
on an unsat problem to simplify it and shorten its proof.

We demonstrate this approach by applying it to Bounded Model Checking
(BMC) as a source of hard SAT problems. IBM’s industrial BMC tool was
modified to utilize CGS. We experimented by testing the maximum depth
that BMC could be done within a time limit of 15 minutes (with CGS enabled
to kick in at 5 seconds or 1000 backtracks) on a set of hard model checking
benchmarks. The new method on average was able to probe 10.71 times
deeper than the unmodified BMC. Thus, hundreds of time steps on some
designs can be checked rather than tens, an order of magnitude improvement.

1 Introduction

Boolean satisfiability (SAT) solvers have become essential tools in a wide variety of
applications, including verification, synthesis, static and dynamic program analysis,
and planning. They are the computational engines for verification systems including
model checkers and solvers for satisfiability modulo theories (SMT). However, the
NP-completeness of SAT implies that solvers often exhaust time and space resources,
resulting in an inconclusive answer after using significant computational effort. For
verification, a timeout can lead to a loss of valuable engineering time and effort
possibly delaying the release of a product.

Several methodologies have been proposed to scale up verification, including ab-
straction, compositional reasoning, and symmetry reduction (see, e.g., [4]). Auto-
matic abstraction-refinement has been arguably one of the most effective techniques,
especially for scaling up SAT-based verification. However, all abstraction-refinement
approaches require the computational engine (SAT solver) to report a precise bi-
nary answer: either satisfiable or unsatisfiable. In the case where neither answer is
available due to a timeout, the abstraction-refinement loop is stuck.

We propose a method to anticipate when a SAT problem might timeout, and to
switch to a simplification mode. At any point in the solution attempt, a solver has a
set of conflict clauses learned as it attempted to construct a proof of unsatisfiability.
Using this partial proof, we construct a set of simpler problems which have been
made simple enough be solved more easily. Their solutions are ”lifted” from the
simplified problems to the originals.

In the case that the original problem was already simple enough, it is solved
directly with no overhead. Thus this technique speeds up the solvers performance
on the difficult problems without hurting it on easy instances.

This conflict-guided simplification (CGS) is similar to abstraction, but the sim-
pler problem is not guaranteed to be either an under-approximation or an over-
approximation of the original problem. A proof of unsatisfiability for the simpler
problem does not imply that the original problem is unsatisfiable, so we present a
method to lift the proof to the original problem. Likewise, if the simpler problem is
satisfiable, the satisfying assignment must be lifted to one for the original problem
and checked. We believe this technique is the first that uses partial information from
a solver to simplify an unsat problem.

To ground this work and as a source of hard SAT problems, an application in
hardware verification was explored. Bounded model checking (BMC) [6, 3] is a tech-
nique to show that a safety property holds for a bounded number of time steps in a
hardware design. A time-unrolled model of the design is constructed and passed to
a SAT solver. Because of the complexity of satisfiability solving, BMC typically is
limited in the number of time steps that can be checked. In this paper we demon-
strate that CGS embedded in a standard SAT solver can substantially improve the
scalability of BMC. This approach was implemented in the IBM internal verifica-
tion tool SixthSense, modifying the basic BMC implementation to utilize CGS. We
show that under a time limit of 15 minutes, the enhanced BMC is able to unroll the
transition relation on average ten times further than the BMC without CGS. Thus
it enables hundreds of time steps of some designs to be checked rather than tens.

2 Background

Most SAT solvers use Conjunctive Normal Form (CNF), a conjunction of clauses,
which are disjunctions of a number of Boolean literals (either a variable or its com-
plement). It will will produce one of three possible outputs:

Satisfiable (sat) means that an assignment to the Boolean variables has been found
such that all of the clauses are satisfied. A satisfying assignment is returned.

Unsatisfiable (unsat) means no satisfying assignment exists. Techniques exist to
obtain a proof as evidence of the unsatisfiability of the CNF.

Timeout means that the solver exhausted its computational resources without any
conclusion.

While the concepts presented in this paper are general, our implementation was
done using an And-Inverter Graph (AIG) representation of a logic network from
which a CNF is extracted. Problem simplification is done by injecting constants di-
rectly into the AIG. This leads to two simplifications, standard in any AIG package,
which can dramatically reduce the size of the logic network and hence its CNF:

constant propagation allows injected constants to simplify all downstream logic,
and structural hashing discovers and simplifies equivalent gates through a quick
structural-based method.

1
a
b x

y

a
b x

y

a
b x

y

Fig. 1. Constant propagation and structural hashing in a Boolean circuit.

Constant propagation and structural hashing work together as illustrated in Fig-
ure 1. They are effective in dramatically decreasing the size of the AIG and corre-
sponding CNF of the simplified problem.

AIGs and CNFs work together to solve a circuit based problem. All simplification
is done on the AIG, and all SAT solving and resultant unsatisfiable proofs are CNF
based. Translation from one representation to the other can be done efficiently [9].

3 Related Work

The closest related work is that on automatic abstraction-refinement for finite-state
model checking. The early work in this area introduced localization reduction [10]
and counterexample-guided abstraction-refinement [5]. Since then, there have been
significant extensions to the approach, including proof-based abstraction [7, 2], hybrid
approaches [1], and applications to bounded model checking [11, 12]. Baumgartner [8]
describes the application of these techniques in an industrial setting.

Figure 2 outlines the basic abstraction-refinement approach. First, an abstraction
of the design is formed, say using the localization technique [10] where parts of the
design are replaced with fresh circuit inputs. This becomes an over-approximation
of the design, so if the simpler problem is unsatisfiable, the unsatisfiability of the
original problem is guaranteed. Otherwise the satisfying assignment produced must
be validated in the original problem. If it cannot be validated, the abstraction must
be refined.

Difficult

Problem

Conclusive Result

Abstract

Simpler

Problem

Validate

Assignment

SAT solver

Refine

AbstractionUnsat Sat

Valid

Invalid

Fig. 2. Typical abstraction-refinement.

Our work does not generate over-
approximations and so is not an ab-
straction technique, but the method is
inspired by the approach depicted in
Figure 2.

This paper uses BMC in a case study
as a source of difficult SAT problems.
Others have attempted to apply ab-
straction techniques to BMC, notably
[11] [12]. Gupta et. al. [11] use a partial
assignment from a solver after timeout
on an abstract model, simulate it on the
concrete model, and use the results to
prune the search on the abstract model.

In contrast, our work constructs simplified problems from the solver’s conflict clauses,
and both sat and unsat results on the simplified problem are lifted to the original
problem domain. Armoni et. al. [12] simplify BMC using domain-specific knowledge,

and preserve equivalence between the original and simplified BMC problems. Our
method does not require domain-specific knowledge and does not preserve equiva-
lence when simplifying. This additional freedom to approximate is part of why it
works well in practice.

4 Conflict-Guided Simplification

The CGS framework is depicted in the flowchart of Figure 3. Initially the solver
works on the unmodified problem ΨO. A user specified time limit controls when the
solver should switch to simplification. If sat or unsat is determined before then,
the algorithm terminates. Otherwise the solver kicks in to CGS mode.

At the point where CGS is invoked, the solver has learned some information
about the problem in the form of a set of conflict clauses which are used to form
a simplified problem, as discussed in Section 4.1. The solver then recurs on the
simplified problem ΨS .

Difficult

Prob. ΨΨΨΨ
O

Conclusive Result

Simplify w/

Learned Clauses

Simpler

Prob. ΨΨΨΨ
S

Refine

Simplification

Timeout
SAT solver

Validate Proof
Validate

Assignment

SAT solver

Refine

Simplification

Timeout

Sat or Unsat

Unsat Sat

Valid Valid

InvalidInvalid

Conclusive Result

Fig. 3. Our Conflict-Guided Simplification algorithm.

If unsat is returned on the simplified problem, a proof of unsatisfiability is
returned also. This proof is checked if it applies to the original problem in a step
called proof lifting, described in Section 4.2. If the proof lifts successfully then unsat
is returned, but if the lifting fails the simplification must be refined.

If the solver finds a satisfying assignment for the simplified problem then, as
in abstraction-refinement, it is checked if it satisfies the original problem. This is
called assignment lifting and is discussed in Section 4.3. If lifting is succesful, sat is
returned, but if it fails then the simplification must be refined. In any recursive call,
the solver may again kick into CGS mode, which causes more simplification.

Refinement involves undoing some of the simplifications (constants injected) that
were made. By analyzing the cause of the failed lifting attempt (either proof or
assignment lifting), a small number of simplifications can be undone to create a new
problem that is simpler than the original yet not too-simple to produce spurious
proofs or assignments. This process is discussed in Section 4.4.

Our approach shown in Figure 3 is similar to the sample abstraction refinement
flow shown in Figure 2. An important difference is that our method utilizes proof-
lifting to compensate for a simplification not being a strict over-approximation of

the original problem. Because both proofs and satisfying assignments are lifted,
our overall framework is both sound and complete, given infinite computational
resources. While modern DPLL-style SAT algorithms are also sound and complete,
we demonstrate in Section 6 that, in practice, our approach scales much better.

4.1 Problem Simplification

A SAT solver can be thought of as performing a series of resolution steps, combi-
nations of existing clauses to form stronger clauses, to prune the search space. The
proof of unsatisfiability is given as a series of resolutions that derives the null clause
from the initial set of CNF clauses. However, at any point in time, only some of
these resolution steps are available and thus only a partial resolution proof.

Figure 4 shows a sample resolution proof. A CNF is input to the solver, and
the solver derives a number of learned clauses as resolutions of the original clauses.
Each learned clause is usually derived as a result of a conflicting partial assignment
and is called a conflict clause. If the null clause is resolved, then there are no legal
assignments, and the original problem is unsatisfiable.

¬A + ¬B + E

¬C + ¬B

B

¬D + ¬B

¬E + ¬B

¬F + ¬B

E + F + C + D + A

{ }

CNF Problem Conflict (learned) clauses

Null clause (unsat)

A

¬A

¬C

¬D

¬F

¬A + E

¬E

Fig. 4. A sample resolution proof.

Att any time, a number of con-
flict clauses has been generated,
which can be leveraged to sim-
plify the problem. The simplifica-
tion should be done so that all con-
flict clauses are still valid, thus pre-
serving any future proof that de-
pends on these.

The conflict clause-preserving
simplifications are simple, as il-
lustrated in Algorithm 1. The
monotone literals that only appear
in one polarity across all conflict

clauses are marked. Each corresponds to a signal (variable) in the original SAT
problem, and a subset of these signals is replaced with constants 0 or 1, consistent
with their monotonicity in the conflict clauses.

As an example, consider the resolution proof shown in Figure 4. Suppose the
solver has derived by resolution the conflict clauses ¬A + E, ¬C, and ¬E. The
literals ¬A and ¬C only appear in one polarity. In the original problem A and C
can both be replaced with a constant 0, and the resultant problem is consistent with
the three conflict clauses.

In Algorithm 1, selecting which and how many monotone literals to simplify is
important to the overall success of CGS. This selection is based on a rank func-
tion rank. In our experiments, we found two factors to be particularly important in
selecting a literal to simplify:

1. The literal should correspond to a wire in the circuit close to the circuit inputs,
since this helps to maximize the amount of downstream logic that can be simpli-
fied. For a literal l, let δ(l) denote the shortest distance of l from a circuit input,
where distance is measured in number of gates.

2. Simplifying with monotone literals from short clauses is less likely to result in
spurious counterexamples and proofs, because a short conflict clause corresponds

Algorithm 1 Simplifying with a set of conflict clauses.
1: function simplify(problem, conflict clauses)
2: literals := all literals from all conflict clauses
3: monotones := literals from literals that only appear in 1 polarity
4: compute rank(l) for each literal l ∈ monotones // described in text below
5: target literals := N literals with smallest rank
6: for all literals lit ∈ target literals do
7: var := variable referenced in lit
8: if lit is complemented then
9: Replace var with 0 in problem

10: else
11: Replace var with 1 in problem
12: end if
13: end for
14: end function

to a stronger ”lemma” that constrains the search space of the SAT solver. There-
fore, we measure the length of the shortest clause in which a monotone literal l
appears, denoted by λ(l).

To obtain a rank function rank, we combine the above quantities linearly, so that
rank(l) = a1δ(l)+a2λ(l), where a1 and a2 are chosen heuristically. A parameterizable
number N of the highest scoring monotone literals are then selected for simplifica-
tion. In our implementation we found that a1 = 2, a2 = 1, and N = 10 worked
well.

4.2 Proof Lifting

If the SAT solver returns unsat on the simplified problem the proof of unsatisfiability
is not necessarily valid for the original problem. In this section we discuss how to
lift this proof to the original problem.

Original

Problem

Simplified

Problem

Simplified

Proof

{ }

Lemma

Proofs

Fig. 5. Lifting a simplified proof to the original problem.

Figure 5 illustrates the lifting of a resolution proof. Any cut across the simpler
resolution proof gives a set of clauses termed lemmas. If each of these lemmas can be
shown to hold in the original problem, then a composition of the lemma proofs and
the simplified problem proof is sufficient to demonstrate the unsatisfiability of the
original problem. In this way, the lemmas provide a way to decompose a complicated
proof into a series of easier proofs. This decomposition can give significant speedups
in practice. Doesn’t this mean that if we put all the proofs together into a

single monolithic resolution proof (like what Satrajit did for CEC) then
we would have a shorter proof?

Algorithm 2 is used to lift the resolution of the simplified problem to the original.
It uses a depth-first traversal over the simplified proof and attempts to lift the lowest-
possible clauses that appear in that proof. On failure, it will try to lift a clause that
appears higher in the resolution proof. In this way, the cut across the simplified proof
that gives the set of lemmas is dynamic. It starts as a cut across the lowest levels of
the resolution proof and rises only as the proofs of lemmas fail. 3

Algorithm 2 Lifting a resolution proof.
1: function liftProof(proof)
2: return justifyClause(proof.nullClause)
3: end function
4:
5: function justifyClause(C)
6: for all child clauses c of C do
7: justifyClause(c) // recurse to the leaves of the proof DAG for C
8: end for
9: if all children clauses lifted then

10: return “lifted” // children lifted ⇒ parent lifted
11: else if C = proof.nullClause && ∃ unlifted child clause then
12: return “not lifted” // null clause’s children must be lifted
13: else
14: // recursive call to CGS, ΨO is the original SAT problem
15: result := CGS satSolve(ΨO ∧ ¬C)
16: return (result = sat) ? “falsified” : “lifted”
17: end if
18: end function

At the heart of Algorithm 2 is an attempt to verify if a clause C holds in the
original problem ΨO. This can be implemented by checking if ΨO∧¬C is unsatisfiable.
As this satisfiability check can also be hard, we recur by calling the CGS-based solver
again. Note that the input to each such invocation is a simpler problem than ΨO,
as ¬C is a partial assignment to the variables in ΨO, so a subsequent invocation
operates on a simpler problem than the preceding one. Thus, the chain of recursive
CGS calls is of finite length.

It is possible for the iterated lifting to fail. In this case, the cut will rise to the
top of the resolution proof and a path from the null clause to the bottom of the
resolution proof will exist such that each lemma along the path failed to lift. This
will cause a refinement step to be done where some of the simplifications of the
original problem are undone in such a way that the lemmas that failed to lift will
be eliminated.

3 Our optimized implementation executes Algorithm 2 twice. The first execution limits
the child CGS engine to 50 backtracks with no simplification. In this case, a failure to
lift a child clause within this limit, triggers an attempt to lift a parent clause. This helps
to find an “easy” set of lemmas, if such a set exists. The second execution of Algorithm
2 uses a backtrack limit of 500 with CGS simplifications enabled.

4.3 Assignment Lifting

Any satisfying assignment to the simplified problem ΨS does not necessarily satisfy
the original SAT instance ΨO and must be lifted. The assignment has values for
all of the variables of the simpler problem, but this is only a subset of the inputs
for the original problem. This partial assignment must be extended to a complete
assignment which demonstrates the satisfiability of the original problem. This can
be done with the following call to a SAT solver:

satSolve(free inputs, assigned inputs, original problem)

where the assigned inputs is the partial assignment from the simpler problem.
If this is satisfiable then the assignment has been extended to a valid satisfying

assignment of original problem. If unsat is returned, then this partial assignment is
spurious. We then refine the simplified problem by undoing some of the simplifica-
tions such that this spurious assignment will not appear again.

4.4 Refinement

If either a proof or a satisfying assignment fails to lift, the simplified problem must
be refined. The simplified problem has been derived from the original by replacing a
number of variables by constants (Section 4.1). Due to these injected constants, one
of two things has gone wrong:

An assignment failed to lift: The simplified problem ΨS was satisfiable under a
given input assignment α, but the original problem ΨO is not satisfiable under
α. In other words, ΨS(α) = 1 but ΨO(α) = 0.

A proof failed to lift: The simplified problem ΨS was proven unsatisfiable, and
clause C was part of the proof. Thus, ΨS ∧¬C is unsat. However, we found that
ΨO ∧ ¬C is sat. Let α be an assignment for which ΨO ∧ ¬C evaluates to 1.

In both of the above cases, the injected constants have caused the simplified and
original problems to differ on some input assignment. Both of the above situations
can be formulated as instances F and F ′ of Boolean formulas on the same input
variables that evaluate differently on assignment α. In the case of assignment lifting,
F = ΨO and F ′ = ΨS . For proof lifting, F = ΨO ∧ ¬C and F ′ = ΨS ∧ ¬C.

Let S be the set of simplifying constants used to obtain ΨS from ΨO. We wish
to discover a subset Sgood of S such that if Sgood were used in place of S, F and F ′

would agree on α. Formally, we will say that Sgood is a safe simplification set for F
on α.

Algorithm 3 illustrates our procedure to identify the set Sgood of safe constants.
The algorithm is passed the current set of simplifying constant assignments simpli-
fying constants, an assignment assign, and a Boolean formula F such that simplify-
ing constants is not a safe simplification set for F on assign.

The algorithm works by repeatedly bisecting the set of simplification constants
until a single constant simplification is found to be an unsafe simplification for
F on assign. At this point, we know that the single constant is responsible for
the difference and the constant is discarded. The only simplification constants that
survive are those on which F and the resulting F ′ do not differ for assignment

Algorithm 3 Refinement to correct spurious behaviour.
1: function refine(simplifying consts, assign, F)
2: return refine rec(∅, simplifying consts, assign, F)
3: end function
4:
5: function refine rec(good consts, unknown consts, assign, F)
6: // Precondition: good consts is a safe simplification set for F
7: // Postcondition: the returned set of constants is a safe simplification set for F
8: F ′ = simplify(F , good consts ∪ unknown consts)
9:

10: if F (α) 6= F ′(α) then
11: if (|unknown consts| = 1) then
12: return good consts // All of unknown consts are bad.
13: else
14: (lhs, rhs) = bisect(unknown consts) // Bisect the set of constants
15: lhs’ = refine rec(good consts, lhs, assign)
16: return refine rec(lhs’, rhs, assign)
17: end if
18: else
19: return good consts ∪ unknown consts // All simplifying constants are safe.
20: end if
21: end function

assign. In fact, because proof or assignment lifting failed, it is guaranteed that the
returned set will be a strict subset of simplifying constants. This in turn guarantees
that the refinement procedure makes progress, eliminating at least one simplifying
constant in each refinement iteration. In the worst case, all simplification constants
are eliminated, leaving us with the original problem ΨO.

5 Application to Bounded Model Checking

The previous sections developed an efficient method to decide the satisfiability of
complex problems by invoking simplification after a limited amount of computation
has been done. To ground these concepts, we explored the use of CGS on hardware
model checking.

An RTL specification of a hardware design is equivalent to a network of gates
and state-holding elements that together embody a finite state machine. We focus on
the verification of safety properties using Bounded Model Checking (BMC), which
checks that the safety property is not violated in any of the first k cycles from the
initial state.

BMC is illustrated in Figure 6. A logic design with internal state can be par-
titioned into state storage and a state transition relation that computes the next
state as a function of the current state and inputs. Suppose the circuit is unrolled
by adjoining several copies of the transition relation. The first copy is fed with the
design’s initial state, and each subsequent copy is fed with the previous copy’s out-
put state. Each copy of the state-free circuit represents a different time step in the
design’s execution, and so the resulting complex model can check the safety property
across several time frames.

BMC translates this unrolled circuit to CNF and feeds the problem to a SAT
solver. This works well for a small number of time frames, but the complexity of

S
ta

te
S

to
ra

g
e

Input(s)
Error

Indicator

Transition

Relation
Transition

Relation

Transition

Relation

Transition

Relation

Transition

Relation
Initial

State

Large, complex SAT problem

Fig. 6. Bounded model checking.

BMC grows with the number of time frames. BMC is amenable to the use of a
CGS-based solver , and we explore the application CGS to BMC.

BMC implementations usually check each frame in a separate SAT call, resulting
in many related SAT problems. In this context, it makes sense to preserve problem
simplifications between CGS calls, and Figure 3 was modified slightly to immediately
simplify the current problem if the simplifications used in the previous problem are
available.

6 Experimental Results

CGS was implemented inside the IBM internal verification tool SixthSense. An addi-
tional engine named CGS was added to SixthSense, with an interface that is identical
to the normal SAT solver. This allows it to be used as a drop-in replacement for
normal SAT in the industrial BMC flow.4

CGS was evaluated on SAT problems encountered during BMC on Intel bench-
marks from the Hardware Model Checking Competition, held at CAV 2007 [13]. All
experiments were done on a 1.8 GHz Pentium M laptop running Linux. The time
limit when CGS invocation happened was set to 5 seconds or 1000 solver backtracks.

Table 1. CGS performance on the CAV ’07 Intel benchmarks [13].

Benchmark
(Post Synthesis)

BMC Depth
(900 sec)

Per-problem Stats.
Normalized

Runtime Breakdown

Name ANDs Regs. Normal CGS
Simp.
Consts

Num.
Refines

Total
Iters.

Sat
Solving

Simp-
lifying

Lifting
Results

intel 003 683 47 265 830 37.13 0.00 1.00 0.99 0.00 0.00
intel 007 10084 607 24 450 32.02 0.01 1.03 0.88 0.01 0.11
intel 009 60718 2890 20 179 49.00 0.03 1.08 0.73 0.04 0.23
intel 010 5369 367 62 684 151.31 0.03 1.06 0.83 0.01 0.17
intel 011 5312 361 65 774 65.91 0.01 1.01 0.80 0.01 0.19
intel 014 42289 2372 22 180 63.57 0.18 1.37 0.80 0.04 0.17
intel 015 5336 381 63 809 65.36 0.01 1.02 0.79 0.01 0.20
intel 016 18911 1353 42 374 64.90 0.05 1.12 0.78 0.02 0.20
intel 017 4183 401 82 388 150.87 0.10 1.30 0.80 0.02 0.18
intel 018 4152 321 67 901 86.89 0.02 1.02 0.78 0.01 0.21
intel 019 4382 338 67 872 99.64 0.04 1.05 0.79 0.01 0.20
intel 020 3573 233 69 1005 72.71 0.01 1.01 0.81 0.01 0.18
intel 021 3669 244 71 971 87.09 0.02 1.02 0.80 0.01 0.19
intel 022 5318 358 69 783 88.02 0.05 1.05 0.80 0.01 0.19
intel 023 3522 240 75 981 74.85 0.01 1.01 0.80 0.01 0.19
intel 024 3530 239 71 989 95.70 0.02 1.02 0.79 0.01 0.20
intel 025 9047 654 55 566 61.99 0.01 1.04 0.79 0.01 0.19
intel 026 3833 349 92 777 176.89 0.02 1.02 0.77 0.01 0.22
intel 027 55423 2779 19 179 37.41 0.03 1.06 0.70 0.04 0.26
intel 028 76224 3947 16 53 16.09 0.09 1.32 0.90 0.10 0.00
intel 029 5471 389 68 813 77.97 0.03 1.03 0.81 0.01 0.18
Average 10.71x 0.04 1.08 0.81 0.02 0.17

4 This modular design allows CGS to replace any SAT solver and hence to be used in any
SAT based application.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

R
u
n
ti
m

e
 (

s
e
c
)

BMC Depth

BMC
BMC + CGS

Fig. 7. BMC runtime comparison for in-
tel 026: 3833 ANDs, 349 registers.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900

N
u
m

b
e
r

o
f
S

im
p
lif

ic
a
ti
o
n
s

Runtime (sec)

Fig. 8. Number of simplifications used in
the “BMC+CGS” run on intel 026.

Table 1 shows the performance of BMC and CGS. BMC was run for 900 seconds
on each of these designs. Column “Normal” gives the number of timeframes that
BMC could be checked using the existing implementation in SixthSense, while Col-
umn “CGS” gives the number when CGS was used. On average, CGS enables BMC
to proceed 10.71 times deeper into the design.

The next columns in Table 1 give average statistics per CGS problem solved.
Each CGS problem is a check of a single design at a single BMC depth, so there
are 13,558 CGS problems in all. Column “Simp. Consts. ” gives the average number
of simplifying constants that were injected into each problem. The implementation
injects 10 additional constants into a design when CGS is invoked, a number that
was found to be large enough for the simplified problem to be easily solved yet small
enough to prevent an abundance of spurious counterexamples and proofs. Column
“Num. refines” gives the average number of times the set of simplifying constants
had to be refined. Because of the small number of constants that were injected,
refinement was rarely needed. The last column “Total iters” gives the average number
of iterations, or attempts to solve a simplified problem. On average, only one attempt
was needed in each CGS problem.

The final group of columns in Table 1 give a breakdown of the average runtime
within one CGS. On average, 81% of the time was spent in the SAT solver in solving
either the original or simplified problem. Simplifying difficult problems was relatively
simple, consuming only 2% of the time. 17% of the time was spent trying to lift results
from a simplified to the original problem. This runtime breakdown is sensitive to
the time bound on the SAT solver. With a large time limit, CGS is called less often,
but the resultant resolution proofs will be larger and more difficult to lift; a shorter
timeout allows the lifter runtimes to be manageable.

The time limit before CGS is invoked is a tuning parameter that affects the
runtime breakdown but has less impact on the total runtime. Varying this limit by
±20% caused the BMC depth achievable within 900 seconds to decrease between
only 2.3 and 2.8%.

Figures 7 - 8 examine the performance of CGS-enhanced BMC on the “intel 026”
benchmark in more detail. Figure 7 shows the runtime as a function of the current
BMC step. ‘The “BMC” plot shows the performance of BMC as it is currently
implemented in SixthSense, and the “BMC+CGS” plot shows the performance after
the SAT solver has been enhanced with CGS. These two BMC versions have similar
performance until CGS begins to kick in, after which BMC is significantly faster.

Figure 8 shows the number of simplifying constants injected by CGS as a function
of time. The number of simplifications increases whenever the problem gets harder
and more constants are injected, and the number decreases when spurious behaviour
is detected and refinement is called.

Figures 7 - 8 illustrate an important trend that is responsible for the speedups
offered by CGS. After some time, the current set of simplifications are able to pro-
vide a simplified problem that is easy to solve for subsequent timeframes, and the
simplifications lead to a simplified resolution proof that is easy to lift. This says
that the speedup by CGS is mostly due to running a set of SAT prob-
lems that are related and taking advantage of this fact, rather than it
speeding up individual SAT problems alone. We may have to modify our
claims for CGS then. This establishes a steady state where no new simplifications
are needed and no simplifications are discarded, enabling BMC to proceed rapidly
through a large number of time steps. Note that “intel 026” has three steady states.
At depths 99 (71 sec) and 189 (316 sec) the simplifications from the previous fixed
point no longer adequately simplified the problem. This triggered a re-simplification,
and CGS settled into a new steady state. This steady state settling means that on
average little simplification or refinement is needed, and CGS is able to efficiently
partition each difficult problems into a simpler problem plus a set of simple lemma
proofs.

Similar plots on some other benchmarks are included in the Appendix.

7 Conclusion and Future Work

We presented a method to enhance the solving of difficult SAT problems, creating
a CGS-based SAT solver. It works by using conflict clauses, generated during SAT
solving up to a given time limit, to simplify a problem. The SAT solver is then
applied to the simplified problem and the results are lifted back to the original. To
our knowledge, this is the first method that uses partial information, gathered in an
attempt to solve a difficult problem, to simplify the problem.

An application to bounded model checking was explored. A Conflict-Guided
Simplification framework was used to assist in the SAT solving of difficult BMC
instances. CGS enabled BMC to check an order of magnitude more time frames, on
average, in the same amount of runtime.

CGS is a “resource-aware” approach to SAT solving that can enhance any SAT
solver to be more efficient on difficult problems. Future work will include exploring
the application of CGS-based SAT solving to other problem domains.

References

1. N. Amla, X. Du, A. Kuehlmann, R.P. Kurshan, and K.L. McMillan, “An Analysis of SAT-based Model
Checking Techniques in an Industrial Environment,” in CHARME 2005.

2. N. Amla and K.L. McMillan, “A hybrid of counterexample-based and proof-based abstraction,” in
FMCAD 2004.

3. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, “Bounded Model Checking,” in Advances
in Computers, volume 58, Academic Press, 2003.

4. E. Clarke, O. Grumberg, and D. Peled, “Model Checking,” MIT Press, 2000.
5. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, “Counterexample-Guided Abstraction Refine-

ment,” CAV 2000, pages 154-169.
6. E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking Using Satisfiability Solving,”

Formal Methods in System Design, volume 19 issue 1, July 2001.

7. A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative Abstraction using SAT-based BMC with Proof
Analysis,” in ICCAD 2003.

8. J. Baumgartner, “Integrating FV Into Main-Stream Verification: The IBM Experience,” Tutorial
Given at FMCAD 2006.

9. M.N. Velev, “Efficient Translation of Boolean Formulas to CNF in Formal Verification of Microproces-
sors,” in ASPDAC 2004.

10. R. P. Kurshan, “Computer-Aided-Verification of Coordinating Processes,” Princeton University
Press, 1994.

11. A. Gupta and O. Strichman, “Abstraction Refinement for Bounded Model Checking,” in CAV 2005.
12. R. Armoni, L. Fix, R. Fraer, T. Heyman, M. Vardi, Y. Vizel, and Y. Zbar, “Deeper Bound in BMC

by Combining Constant Propagation and Abstraction,” in ASPDAC 2007.
13. Hardware Model Checking Competition 2007 Benchmark Suite, in CAV 2007.

Appendix: Additional Runtime Plots

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350 400 450

R
u
n
ti
m

e
 (

s
e
c
)

BMC Depth

BMC
BMC + CGS

Fig. 9. BMC runtime comparison for in-
tel 007: 10084 ANDs, 607 registers.

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900

N
u
m

b
e
r

o
f
S

im
p
lif

ic
a
ti
o
n
s

Runtime (sec)

Fig. 10. Number of simplifications used
in the “BMC+CGS” run on intel 007.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160 180

R
u
n
ti
m

e
 (

s
e
c
)

BMC Depth

BMC
BMC + CGS

Fig. 11. BMC runtime comparison for in-
tel 014: 42289 ANDs, 2372 registers.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900

N
u
m

b
e
r

o
f
S

im
p
lif

ic
a
ti
o
n
s

Runtime (sec)

Fig. 12. Number of simplifications used
in the “BMC+CGS” run on intel 014.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350 400

R
u
n
ti
m

e
 (

s
e
c
)

BMC Depth

BMC
BMC + CGS

Fig. 13. BMC runtime comparison for in-
tel 017: 4183 ANDs, 401 registers.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900

N
u
m

b
e
r

o
f
S

im
p
lif

ic
a
ti
o
n
s

Runtime (sec)

Fig. 14. Number of simplifications used
in the “BMC+CGS” run on intel 017.

