
Clause Form Conversions for Boolean Circuits

Paul Jackson and Daniel Sheridan

School of Informatics,
University of Edinburgh, Edinburgh, UK

pbj@inf.ed.ac.uk

d.j.sheridan@sms.ed.ac.uk

Abstract. The Boolean circuits is well established as a data structure
for building propositional encodings of problems in preparation for sat-
isfiability solving. The standard method for converting Boolean circuits
to clause form (naming every vertex) has a number of shortcomings.

In this paper we give a projection of several well-known clause form
conversions to a simplified form of Boolean circuit. We introduce a new
conversion which we show is equivalent to that of Boy de la Tour in
certain circumstances and is hence optimal in the number of clauses that
it produces. We extend the algorithm to cover reduced Boolean circuits,
a data structure used by the model checker NuSMV.

We present experimental results for this and other conversion pro-
cedures on BMC problems demonstrating its superiority, and conclude
that the CNF conversion has a significant role in reducing the overall
solving time.

1 Introduction

SAT solvers based on the DPLL procedure typically require their input to be in
conjunctive normal form (CNF). Earlier papers dealing with encoding to SAT,
particularly much of the planning literature, encode directly from the input rep-
resentation to clause form. More recent encoding work makes little mention of
CNF conversion. Biere et al., proposing BMC [3], give an encoding to proposi-
tional logic — we assume from their space complexity claim that a DAG repre-
sentation is in use — but they make no mention of the final conversion to CNF.

The microprocessor verification work of Velev includes a thorough analysis
of improving the clause form generated [10], but the work is not immediately
applicable to general propositional logic. Nevertheless, Velev is able to claim a
speed up by a factor of 32 by altering the clause form conversion.

There is other evidence to motivate the study of clause form conversions for
SAT. While focussing on CNF representations of cardinality constraints, Bailleux
and Boufkhad [2] give a reformulation of the parity problems which have been
standard SAT benchmarks for a number of years. They argue that the problems
are made harder than they should be by a poor clause form representation, and
demonstrate a dramatic speedup on the par32 problem with modern solvers on
the reformulated problem.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 183–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 P. Jackson and D. Sheridan

In the first-order logic domain, the CNF conversion problem was handled
comprehensively by Boy de la Tour [4]. The algorithm given is impractical with-
out the improvements by Nonnengart et al. [8], and the resulting algorithm is
fiddly to implement making it hard to be confident of a correct implementation.

In this paper we introduce a simple and easy to understand CNF conversion
algorithm for propositional logic constructed as a hybrid between the structure-
preserving conversion [9] and the standard distributivity law application. We
prove that it produces the minimum number of clauses for certain classes of
formula. As its time complexity is linear in the size of the input formula, it
represents a significant improvement over the (quadratic time) Boy de la Tour
algorithm. Of course, it is well known that problem size does not necessarily
correspond to solving time in SAT, so we present some experimental results
demonstrating the effect that our algorithm has on some BMC [3] problems.

1.1 Notation Conventions

In an attempt to improve the clarity of the presentation, we use a number of
conventions in our notation. Much of the work is concerned with both graphs
and propositional logic, so we distinguish between graph variables ranging over
vertices and edges given in italic capitals (X, Y) and propositional variables
given in italic lower case (x, y); vertices are typically denoted V and edges E
and this notation is significant in determining the type of a function. We will
use the shorthand of referring to a subgraph by a single edge; the subgraph thus
identified includes all of the descendents of the edge given, and such an edge is
called the root of the subgraph and denoted T . Sets of vertices or edges are given
in bold type (X, Y).

Where a function creates new propositional variables, these are given the
name xi where i is some identifier (typically a graph vertex). These variables are
assumed to be unused in any other context.

2 Boolean Circuits

In contrast to the formulaic representation of propositional logic normally used,
Boolean circuits are much closer to an electronics view of logic. Labelled input
wires take the place of variables and together with (possibly unlabelled) internal
wires they are connected by logic gates which compute various logic functions.
This makes it very natural for the results of sub-circuits to be shared amongst
other parts of the circuit, as would be expected in the physical world.

Boolean circuits may be efficiently represented as directed acyclic graphs
(DAGs). Vertices having outgoing edges correspond to gates, with the edges
pointing to the inputs to the gate. Vertices without outgoing edges (which we
will call leaf vertices) are the inputs and outputs for the circuit, corresponding
to variables in a propositional formula.

Abdulla, Bjesse, and Eén proposed reduced Boolean circuits (RBCs) [1] as a
DAG representation of a propositional formula with additional restrictions on

Clause Form Conversions for Boolean Circuits 185

↔

∧A

a b

∧B

∧−

a+ ↔−

b0 c0

(a) a ∧ b ↔ (a → b) (b) a ∨ (b ↔ ¬c)
reduced to ¬(a ∧ b ↔ (a ∧ ¬b)) reduced to ¬(¬a ∧ (b ↔ c))

Fig. 1. Example RBCs showing vertex labelling

the type and relationships of the gates which place RBCs somewhere between
being a normal form and a canonical form for propositional formulæ. One of the
key strengths of Boolean circuits is the ability to use one circuit to represent
a formula both positively and negatively. To preserve this property, Abdulla et
al. eschew NNF in favour of restricting gates to conjunctions and equivalences
(bi-implications), marking negation on the edges of the graph.

Definition 1. An RBC is a DAG consisting of edges E and vertices V =
VI ∪ VL where internal vertices VI represent operators, and leaf vertices VL

represent variables. The following properties are required to hold and form the
encoding of Boolean circuits as DAGs:

– Each V ∈ VI consists of an operator op(v) ∈ {∧,↔} and a left and right
edge (left(V), right(V) ∈ E).

– Each V ∈ VL contains a variable var(V).
– Each E ∈ E has a sign sign(E) ∈ {+,−} and a target vertex target(E) ∈ V.

The sign attribute encodes negation, where sign(E) = + indicates an unnegated
edge and sign(E) = − indicates a negated edge. The following additional proper-
ties serve to reduce the number of representations possible for equivalent formulæ:

– All common subformulæ are shared:
∀V, V ′ ∈ VI, left(V) = left(V ′) ∧ right(V) = right(V ′) → V = V ′.

– The constant ⊤ only occurs in single-vertex RBCs.
– For all vertices, left(V) 6= right(V).
– If op(V) =↔ then left(V) and right(V) are unsigned.
– There is a total order ≺ such that for all V ∈ V, left(V) ≺ right(V).

For example, Figure 1a shows the RBC representing the formula a ∧ b ↔
¬(a → b), with some internal vertices annotated by a subscript capital. The
annotations allow us to refer to the subformula a∧b by the vertex A, for example,
and also allows us to depict RBC fragments by identifying a vertex without giving
any further details.

To simplify the definitions in this paper we extend the set of properties on
RBC vertices and edges with the inverse function of target :

source(E) =

{

V if E = left(V) ∨ E = right(V)

undefined otherwise

186 P. Jackson and D. Sheridan

RBC Operations. Two RBCs rooted at edges L and R, are composed given
an operation o ∈ {∧,↔} and a sign s ∈ {+,−} to give the RBC rbc(L,R, o, s):

– If o may be trivially evaluated using identity and other properties, return
the result of doing so.

– Otherwise, check L ≺ R and swap if not.
– If o =↔ then s becomes s ⊕ sign(L) ⊕ sign(R), and sign(L) and sign(R)

become + (⊕ is the exclusive-or operation).
– The new vertex V = 〈o, L,R〉 is inserted into the DAG.
– The result is the edge 〈sign, V 〉.

3 CNF Conversions on Linear Trees

We begin by examining CNF conversions for a restriction of RBCs, which will
become a building block for the CNF conversions of full RBCs. Linear trees
represent linear formulæ (those without equivalence operators) without taking
into account the possibility for sharing.

Definition 2. A linear tree is an RBC with the following changes to its struc-
ture:

– The only internal vertices are conjunction vertices
– No vertices are shared: the graph is a tree

Given a linear tree, we define the following additional properties over vertices

inedge(V) = E where target(E) = V

sib(V) =

{

target(left(V ′)) if inedge(V) = right(V ′)

target(right(V ′)) if inedge(V) = left(V ′)

We give the various well-known CNF conversions informally and as depth-
first procedures on linear trees. Each conversion produces a set of clauses; we
write |C| for the number of clauses in C, and use the union (∪) operator to
combine sets of clauses, and the cross-multiply operator (×), to form the set of
clauses corresponding to the disjunction of two sets, obtained by

A × B = {x ∪ y |x ∈ A, y ∈ B}

The standard CNF conversion is that obtained by exploiting the distribu-
tive properties of ∧ and ∨ on a formula already in NNF to push disjunctions
in towards the literals. This produces an equivalent (rather than equisatisfi-
able) formula at the expense of a potentially exponential number of clauses.
Nevertheless, the conversion is optimal for some input formulæ. We define the
conversion for linear trees as a recursive descent. CNF(T) given in Figure 2
denotes the standard CNF conversion of the subtree beginning at a root
edge T .

Clause Form Conversions for Boolean Circuits 187

CNF(E) =

{

CNF(target(V)) if sign(E) = +

CNF−(target(V)) if sign(E) = −

CNF−(E) =

{

CNF−(target(V)) if sign(E) = +

CNF(target(V)) if sign(E) = −

CNF(V) =

{

var(V) if V ∈ VL

CNF(left(V)) ∪ CNF(right(V)) if op(V) = ∧

CNF−(V) =

{

¬ var(V) if V ∈ VL

CNF−(left(V)) × CNF−(right(V)) if op(V) = ∧

Fig. 2. The standard clause form conversion for linear trees

3.1 Clause Form Conversions with Renaming

Renaming subformulæ is a strategy for reducing the number of clauses produced
by a formula. The observation is made that a subformula may be replaced by
a single variable if clauses are given to constrain that variable such that the
satisfiability of the overall formula is unaffected. Such a conversion is said to
be equisatisfiable: the introduced variables break equivalency. For example, the
formula (a∧ b∧ c)∨ (d∧ e∧ f) produces nine clauses in the standard conversion;
introducing a new variable for the left-hand disjunct to produce the formula

xa∧b∧c ∨ (d ∧ e ∧ f) ∧ xa∧b∧c ↔ (a ∧ b ∧ c)

with xa∧b∧c constrained by the equivalence on the right hand side results in only
seven clauses. Nevertheless, it is satisfiable by precisely those assignments that
satisfy the original formula.

Def(E) =

{

Def(target(V)) if sign(E) = +

Def
−(target(V)) if sign(E) = −

Def(V) =



















var(V) if v ∈ VL

{{¬xV , xtarget(left(V))}, {¬xV , xtarget(right(V))}}

∪{{xV ,¬xtarget(left(V)),¬xtarget(right(V))}}

∪Def(left(V)) ∪ Def(right(V)) if op(V) = ∧

Def
−(V) =



















¬ var(V) if v ∈ VL

{{xV , xtarget(left(V))}, {xV , xtarget(right(V))}}

∪{¬xV ,¬xtarget(left(V)),¬xtarget(right(V))}}

∪Def(left(V)) ∪ Def(right(V)) if op(V) = ∧

Fig. 3. The definitional clause form conversion

188 P. Jackson and D. Sheridan

ren(T,R) = rbc(def(T, T,R), sub(T,R),∧, +)

def(T, E,R) = def(T, target(E),R)

def(T, V,R) =











































V if V ∈ VL

rbc(







⊤ if V /∈ R

rbc(xV , sub−(V,R \ {V }),∧,−) if pol(T, V) = 1

rbc(¬xV , sub+(V,R \ {V }),∧,−) if pol(T, V) = −1







,

rbc(def(T, left(V),R), def(T, right(V),R),∧, +),

∧, +) if V ∈ VI

sub(E,R) = subsign(E)(target(E),R)

subs(V,R) =











V if V ∈ VL

xV if V ∈ R

rbc(sub(left(V),R), sub(right(V),R), op(V), s) otherwise

Fig. 4. The vertex-based renaming construction ren(T,R). R identifies the subgraphs
to be renamed; sub(T,R) returns a copy of the graph with root edge T , replacing
renamed subgraphs by new variables; def(T, T ′,R) returns the graph which is the
conjunction of the definition of all of the introduced variables below T ′ (T is used to
establish the polarity of the subgraph)

The most straightforward algorithm of this type gives a new name to every
internal vertex of the tree and is known as the definitional clause form conversion,
given in Figure 3. In fact, as observed by Plaisted and Greenbaum [9], if a
subformula occurs with positive or negative polarity — if it appears under an
even or odd number of negations — then only an implication is required to
constrain the new variable, with the direction of the implication corresponding
to the polarity of the subformula. We define the polarity function pol(T, V) for
a vertex V in a linear trees T as

pol(T, T) = 1

pol(T,E) =

{

pol(T, source(E)) if sign(E) = +

−pol(T, source(E)) if sign(E) = −

pol(T, V) = pol(inedge(V))

In the example above, the subformula a∧b∧c appears positively, so the renaming
can be shortened to

xa∧b∧c ∨ (d ∧ e ∧ f) ∧ xa∧b∧c → (a ∧ b ∧ c)

producing only six clauses.
For linear trees, we consider only renamings of vertices (other analyses place

an equivalent restriction on renaming subfomulæ with negation as the main

Clause Form Conversions for Boolean Circuits 189

connective). The order in which renamings are made does not affect the final
result due to the commutivity of ∧, so we are able to give renaming-based clause
form conversions in terms of the sets of vertices that they rename. The general
transformation in Figure 4 constructs the renamed formula in two parts: a copy of
the original graph with renamed subgraphs replaced by the appropriate variables;
and a graph giving the definitions of all of the introduced variables. The case
split by polarity in def(T, T ′,R) constructs the RBCs for xV → V or V →
xV as appropriate; the remainder of def(T, T ′,R) simply constructs a tree of
conjunctions while traversing the RBC recursively. The correctness of ren(T,R)
and hence of the conversions based on it follows directly from the correctness
of renaming in general. We can now write the structure-preserving clause form
conversion due to Plaisted and Greenbaum [9] as simply

SP(T) = CNF(ren(T,VI))

It is easy to construct cases where the definitional and structure-preserving
conversions perform significantly worse than the standard conversion, despite
the difference in asymptotic complexity — the worst case is a formula already in
CNF, the SP conversion doubling the size of the clause form while the standard
conversion leaves the formula unchanged. By carefully selecting the vertices to
rename we can obtain a blend of the two algorithms.

3.2 The Conversion Due to Boy de la Tour

Boy de la Tour [4] presents a comprehensive solution to the problem of choosing
the subformulæ to rename. The approach taken is to compute the impact of
renaming any given subformula and to perform the renaming only if it will not
increase the number of clauses produced by the formula as a whole. We give
a very terse presentation below as our main interest is in making use of its
optimality for formulæ without equivalences.

Boy de la Tour defines the functions p+(T) = |CNF(T)| and p−(T) =
|CNF(¬T)| using a simple lookup table (Table 1) which enables these values
to be computed without constructing the clauses themselves. The benefit (the
reduction in the total number of clauses) of renaming a vertex V in a tree T is
given by

B(T, V) = p+(T) − p+(ren(T, {V }))

Table 1. The clause counting functions p+(V) and p−(V)

p+(E) p−(E)

sign(E) = + p+(target(E)) p−(target(E))
sign(E) = − p−(target(E)) p+(target(E))

p+(V) p−(V)

v ∈ VL 1 1
op(V) = ∧ p+(left(V)) + p+(right(V)) p−(left(V))p−(right(V))

190 P. Jackson and D. Sheridan

Table 2. Computation of the coefficients aT

V and bT

V

aT

E bT

E

E = T 1 0
sign(E) = + aT

source(E) bT

source(E)

sign(E) = − bT

source(E) aT

source(E)

aT

V bT

V

op(V) = ∧ aT

inedge(V) bT

inedge(V)p
−(sib V)

BDLT(T, E) = BDLT(T, target(V))

BDLT(T, V) =



















∅ if v ∈ VL, or

BDLT(T, left(V)) ∪ BDLT(T, right(V)) if B(T, V) < 0, or

{V } ∪ BDLT(ren(T, {V }), left(v))

∪BDLT(ren(T, {V }), right(V)) if B(T, V) ≥ 0

Fig. 5. Renaming sets construction for the Boy de la Tour conversion

In order to make a decision about renaming at a particular vertex without
needing to analyse the whole tree, p+(T) is rewritten in terms of p+(V) and
p−(V):

p+(T) = aT
V p+(V) + bT

V p−(V) + cT
V

Where the coefficients a, b may be considered as the number of occurrences of
the clauses representing V and ¬V respectively, such that the first sum counts the
total number of clauses including subformulæ of V ; the coefficient c represents
the number of clauses due to the rest of the tree. a and b are computed from
the context of V as in Table 2. Note that the values are related to the polarity
of the vertices: aT

V = 0 if pol(T, V) = −1 and bT
V = 0 if pol(T, V) = 1. When

computing the benefit, the coefficient c is cancelled, so we do not need to give
its construction. The benefit function can now be given in terms of polarity as

aT
V p+(V) − (aT

V + p+(V)) if pol(T, V) = 1

bT
V p−(V) − (bT

V + p−(V)) if pol(T, V) = −1

The algorithm given by Boy de la Tour is a top-down computation of the
benefit of a renaming given those that have gone before. The construction of the
renaming set in Table 5 allows us to write the algorithm as

BDLT(T) = CNF(ren(T,BDLT+(T, T) ∪ BDLT−(T, T)))

A dynamic programming implementation of B(T, V) as given by Boy de la
Tour [4] requires O(1) computations at each vertex but the arithmetic is on
|V|-bit words which leads to a per-vertex complexity of O(|V|). The resulting

algorithm is O(|V|2) in contrast to Def and SP which are both linear.

Clause Form Conversions for Boolean Circuits 191

The presentation by Nonnengart et al. [8] removes the need for arbitrary-
length arithmetic by reducing B(T, V) ≥ 0 to an elaborate series of syntactic
conditions on the formula.

4 The Compact Conversion

We present a new clause form conversion, the compact conversion, which com-
putes the sets of renamed vertices locally and bottom-up. For each vertex we
consider the number of clauses it will generate based on whether a child ver-
tex is renamed. Consider a disjunction φ ∨ ψ, with all subformulæ of φ and
ψ already renamed as appropriate. The disjunction is converted by either re-
naming an argument, eg φ to xφ, which produces a definition xφ → φ and
replaces the disjunction by the renamed form xφ∨ψ; or alternatively computing
CNF(φ) × CNF(ψ) — the standard conversion of the disjunction. The decision
is made based on which generates the most clauses, determined by the sum or
the product, respectively, of the number of clauses in φ and ψ.

More precisely, we define the function Comp(T, V) in Figure 6 to give the set
of renamings on the tree beginning at V . The auxiliary function dis(V) chooses
the best child of V , if any, to rename by using the sum-vs-product decision.
The renaming condition is computed on the tree after all vertices below that
considered have been renamed. We define a new pair of clause-counting functions
p+

r (V,R) and p−r (V,R) giving the number of clauses produced by the graph
beginning at vertex V after the application of renaming R (Table 3). That is,
ps

r(V,R) = |subs(V,R)| (the clauses in defs(V,R) are disregarded as they play
no further part in determining the size of the result).

Since we are targeting a SAT solver with this conversion, with its (assumed)
exponential complexity in the number of variables, we choose to rename only if
it reduces the number of clauses produced; the analysis of the Boy de la Tour
conversion is simplified by allowing renamings which result in the same number
of clauses.

Comp(T, E) = Comp(T, target(V))

Comp(T, V) =











∅ if V ∈ VL, or

Comp(T, left(V)) ∪ Comp(T, right(V)) if pol(T, V) = 1, or

dis(V) ∪ Comp(T, left(V)) ∪ Comp(T, right(V)) if pol(T, V) = −1

dis(V) =











∅ if nlnr ≤ nl + nr, or

{left(V)} if nl > nr

{right(V)} if nl ≤ nr











where























nl = p−

r (left(V),

Comp(T, left(V)))

nr = p−

r (right(V),

Comp(T, right(V)))























Fig. 6. Renaming sets construction for the compact conversion

192 P. Jackson and D. Sheridan

Table 3. The renaming-compensated clause counting functions p+
r (T,R) and p−

r (T,R)

p+
r (E,R) p−

r (E,R)

sign(E) = + p+
r (target(E),R) p−

r (target(E),R)
sign(E) = − p−

r (target(E),R) p+
r (target(E),R)

p+
r (V,R) p−

r (V,R)

V ∈ VL 1 1
V ∈ R 1 1

op(V) = ∧ p+
r (left(V),R) + p+

r (right(V),R) p−

r (left(V),R) · p−

r (right(V),R)

4.1 Optimality of the Compact Conversion for Linear Trees

The main result of this paper is to show the optimality of the compact conversion
which we do by a comparison with the Boy de la Tour conversion. We establish
which vertices appear in the renaming sets of one conversion and not the other,
and then analyse the impact that the differences make.

When comparing the decision taken to include a vertex in the renaming sets
by the two algorithms we take into account the different contexts: in the Boy de
la Tour algorithm, the superformulæ have already been renamed; in the compact
conversion the subformulæ have been renamed. Writing R for a set of renamings,
we have R⊐V for the subset of renamings involving the superformulæ of V and
R⊏V for the subset involving the subformulæ of V . The compact conversion
depends only on p+

r and p−r but these are computed after subformula renaming.
That is, the decision to rename the vertex V1 in V1 ∧ V2 is based on the values
p+

r (V1,R⊏V1
), p−r (V2,R⊏V2

) and their complements. In contrast, for the Boy de

la Tour algorithm the decision is based on the values a
ren(T,R⊐V1

)

V1
, b

ren(T,R⊐V1
)

V1
,

p+(V1), p−(V1)
We begin by establishing some basic lemmas about the Boy de la Tour co-

efficients and the clause counting functions; in each case we refer to a vertex V
and renamings R and R′ on a tree T .

Lemma 1. a
ren(T,R)
V = 1 if pol(T, V) = 1, and b

ren(T,R)
V = 1 if pol(T, V) = −1

Proof. After renaming, a vertex V becomes part of the definition of the replace-
ment variable xV . According to Figure 4, the definition is attached by a tree
of positive conjunctions to the root with the sign of the inedge of V reflecting
its original polarity. By the definition of aT

V and bT
V on conjunctions, the lemma

holds.

Lemma 2. If R′ ⊆ R, ps
r(V,R) ≤ ps

r(V,R′) ≤ ps(V)

Proof. This follows from the definitions of ps
r and pr. Both increase monotoni-

cally with tree depth. As renaming effectively prunes part of the tree, it can only
reduce the values of the functions.

Clause Form Conversions for Boolean Circuits 193

4.2 Positive Polarity

Lemma 3. Neither conversion renames the children of positive polarity con-
junctions. That is, for pc = {V ∈ VI |pol(T, source(inedge(V))) = 1}, pc ∩
BDLT(T, V) = ∅ and pc ∩ Comp(T, V) = ∅

Proof. The argument for the compact conversion follows trivially from its defini-
tion. For the Boy de la Tour conversion, consider the vertex X in Figure 7a. The
benefit of renaming, B(T,X), is evaluated in the context ren(T,R⊐X). From

Figure 2, a
ren(T,R⊐X)
X = a

ren(T,R⊐X)
B , hence the benefit is

a
ren(T,R⊐X)
B p+(X) − (a

ren(T,R⊐X)
B + p+(X))

The condition B(T,X) ≥ 0 reduces to a
ren(T,R⊐X)
B ≥ 2 and p+(X) ≥ 2. From

Lemma 1, in order to obtain the former vertex B must not be renamed. From
B /∈ R, we deduce R⊐B = R⊐X and hence write the condition B(T,B) < 0 as

a
ren(T,R⊐X)
B p+(B) − (a

ren(T,R⊐X)
B + p+(B)) < 0

which together with the earlier conditions constrains p+(B) = 1. Since B is a
conjunction it produces p+(X) + p+(Y) clauses and the condition on p+(X) is
thus in conflict with the condition that B is not renamed.

The argument for Y follows similarly, as do the cases of BX or BY being
signed.

∧+
B

X Y

∧−

B

X Y

∧+
A

∧

X Y

∧

∧+
A

∧

X Y

∧

(a) Positive (b) Negative (c) Positive equivalence (d) Negative equivalence

Fig. 7. RBC subgraphs for the optimality proofs and equivalence discussion

4.3 Negative Polarity

We break the negative polarity argument into several pieces, firstly simplifying
the Boy de la Tour benefit function. Consider vertex X in Figure 7b. From Fig-

ure 2, b
ren(T,R⊐X)
X = b

ren(T,R⊐X)
B p−(Y), hence the benefit of renaming B(T,X),

in the context ren(T,R⊐X) is

b
ren(T,R⊐X)
B p−(Y)p+(X) − (b

ren(T,R⊐X)
B p−(Y) + p+(X))

We consider two cases for B(T,X) ≥ 0. If b
ren(T,R⊐X)
B = 1 then the renaming

decision is localised: it is based only on p+(X) and p−(Y):

B′(T,X) = p−(Y)p+(X) − (p−(Y) + p+(X))

194 P. Jackson and D. Sheridan

If b
ren(T,R⊐X)
B ≥ 2, we must consider the same situation as for the positive case:

the condition that B /∈ R−. The inequality B(T,B) < 0 reduces to

b
ren(T,R⊐X)
B p−(B) < b

ren(T,R⊐X))
B + p−(B)

This holds only when p−(B) = 1. Given p−(B) = p+(X)p−(Y) we also have
p+(X) = p−(Y) = 1 and hence the vertex X is not renamed. This configuration
is covered by the reduced condition B′(T,X) which is thus sufficient condition
for making the renaming decision. That is, the renaming decision is made inde-

pendently of the value of b
ren(T,R⊐X)
B .

Lemma 4. For linear trees, the renaming given by the Boy de la Tour algorithm
with benefit function B′(T, V) is the same as with the original function B(T, V).

Proof. The argument for the children of negative polarity vertices is given above
(the arguments for Y and different edge signs follow similarly). For children of
positive polarity vertices, it is easy to see that Lemma 3 still holds. The remaining
case is the root vertex, which is not renamed under either condition.

Using this reduced condition, the Boy de la Tour conversion has no restriction
on the order of evaluation: we can compare it more directly with the compact
conversion. We define the conversion BDLT′(T, V) to be a bottom-up conver-
sion using the benefit function B′(T, V). From Lemmas 3 and 4 we know that
BDLT(T, T) = BDLT′(T, T) for all linear trees T . All remaining lemmas are on
this bottom-up conversion.

Lemma 5. For all linear trees T , Comp(T, T) ⊆ BDLT′(T, T)

Proof. We argue in the negative as it is more convenient. Consider vertex X
in Figure 7a, with X /∈ BDLT′(T, T). From the definition of the Boy de la
Tour conversion, B′(T,X) < 0 which reduces to the two possibilities p(X) =
1 or p(Y) = 1. By Lemma 2, this means that either p+

r (X,R⊏B) = 1 or
p+

r (Y,R⊏B) = 1 and hence the renaming condition for the compact conversion,
p+

r (X,R⊏B)p+
r (Y,R⊏B) > p+

r (X,R⊏B) + p+
r (Y,R⊏B), is violated.

The argument follows similarly for Y .

Lemma 6. For all linear trees T , with a renaming R = Comp(T, T), for all
V /∈ R, ps

r(V,R) = 1 → ps(V) = 1

Proof. We show this by induction on the structure of the tree. The base case
V ∈ VL (V is a leaf) is trivial from the definition of p. For the step case, if
V is a disjunction, then ps

r(left(V),R) = ps
r(right(V),R) = 1. This means, if

X = target(left(V)) and Y = target(right(V)),

– X /∈ R, Y /∈ R: proof follows from the inductive hypothesis
– X /∈ R, Y ∈ R: the condition necessary to rename Y is violated because, by

Lemma 2, ps
r(X,R⊏V) = ps(X) = 1.

Clause Form Conversions for Boolean Circuits 195

– X ∈ R, Y /∈ R: as above, by symmetry
– X ∈ R, Y ∈ R: prohibited by the definition of the compact conversion

V cannot be a conjunction as ps
r(V,R) ≥ 2 is in contradiction with the induction

hypothesis.

We can now fix the precise difference between the two conversions. Consider
vertex X in Figure 7a, with X /∈ Comp(T, T). By the definition of the compact
conversion, p+

r (X,R⊏B)p+
r (Y,R⊏B) ≤ p+

r (X,R⊏B)+p+
r (Y,R⊏B) which reduces

to the three possibilities p+
r (X,R⊏B) = 1 or p+

r (Y,R⊏B) = 1 or p+
r (X,R⊏B) =

p+
r (Y,R⊏B) = 2. In the first case, X may be a leaf vertex, in which case

X /∈ BDLT′(T, T), or a disjunction, in which case by Lemma 6, p+(X) = 1
and hence1 X /∈ BDLT′(T, T). A conjunction is ruled out by the restriction on
the number of clauses. The cases for Y and for signed edges follow similarly. For
the final case, by Lemma 2, the Boy de la Tour conversion always renames either
X or Y : this defines the set of vertices renamed by Boy de la Tour but not by
compact.

Lemma 7. For all linear trees T , Comp(T, T) ∪ Z = BDLT′(T, T) where Z

is the set of vertices such that for all V ∈ Z, p+
r (V,Comp(T, V)) = 2 and

p+
r (sib(V),Comp(T, V)) = 2

Proof. From above and by Lemma 5, no other vertex is in BDLT′(T, T) that is
not in Comp(T, T).

Theorem 1. The size of the clause form generated by the compact and Boy de
la Tour conversions is the same: p+

r (T,Comp(T, T)) = p+
r (T,Comp(T, T))

Proof. Since renamings may be applied in any order, we show that after applying
those in Comp(T, T), the benefit of applying any of those in Z is zero. By Boy
de la Tour’s fundamental theorem of monotonicity [4], the members of Z may
be considered in any order for this proof.

Consider a vertex X ∈ Z as depicted in Figure 7b. The benefit B′(T,X)
of renaming X after Comp(T, T) is p+

r (X,Comp(T, T))p−r (Y,Comp(T, T)) −
(p+

r (X,Comp(T, T)) + p−r (Y,Comp(T, T)). However, by the definition of Z in
Lemma 7, and by Lemma 2, p+

r (X,Comp(T, T)) = 2 and p+
r (Y,Comp(T, T)) =

2, and hence B′(T, V) = 0.

5 Extension to RBCs

We have shown that the compact conversion produces an optimal number of
clauses for linear trees, so we now extend the algorithm to general RBCs. The
extension is heuristic: like Boy de la Tour, we do not claim optimality for the
resulting clause form conversion.

1 The case split for BDLT′ is given in the proof of Lemma 5

196 P. Jackson and D. Sheridan

Removal of Equivalences. An RBC with equivalence vertices can be trans-
formed into a linear RBC with only a linear increase in size by replacing equiva-
lences with the subgraphs given in Figures 7c and d. The different treatments for
positive and negative polarity equivalences reduce the number of clauses gener-
ated [9]. Note that a negative equivalence is replaced by a positive subgraph so
the incoming edge has its sign changed. The conversion remains optimal provided
equivalences are not nested.

Polarity Zero Vertices. The children of equivalence nodes are referenced both
positively and negatively (as can be seen from the replacement subgraphs), some-
times referred to as zero polarity. Similarly, the sharing used in RBCs encourages
a single vertex to be referenced with both polarities. We can convert an RBC
with zero polarity vertices to one without by splitting every zero polarity vertex
into a pair, one of each polarity, and suitably treating the incoming edges. Such
treatment results in at most a doubling of the size of the RBC.

The substitution and subsequent splitting of equivalences differs significantly
from the direct treatment of Boy de la Tour. In particular, Boy de la Tour’s
algorithm renames a descendant vertex of an equivalence both positively and
negatively, simultaneously. This sometimes results in a tradeoff: the renaming
of one polarity must have sufficient benefit to outweigh any negative benefit
of renaming the other polarity. By splitting the polarities and treating them
independently we improve the flexibility of the conversion and reduce the number
of clauses in some circumstances, as compared to Boy de la Tour.

Shared Subgraphs. Having removed equivalences and zero polarity vertices
we are close to a linear tree structure. In fact, we can see the resulting structure
as a collection of trees joined at the shared vertices. We can incorporate treat-
ment of shared vertices into the bottom-up compact conversion algorithm by
renaming any shared vertex which generates more than one clause and repeat-
ing the subgraph otherwise. The resulting algorithm is locally optimal as each
constituent tree is optimally converted and the shared subgraphs are renamed
only when renaming does not increase the resulting size. We believe that a truly
optimal handling of shared vertices is impossible without a significant increase
in conversion complexity. This solution is a good compromise for RBCs with a
small proportion of shared vertices.

6 Implementation and Evaluation

We have implemented the RBC extension of the compact conversion as part
of the NuSMV model checker [5]. The implementation performs the substitu-
tions and duplications described above implicitly rather than constructing the
resulting graph explicitly. Each vertex is considered simultaneously as both a
positive and a negative polarity vertex; a depth-first traversal marks each ver-
tex with the number of incoming edges in each polarity. A second depth-first
traversal produces the clause form. Bottom-up, each vertex is annotated with

Clause Form Conversions for Boolean Circuits 197

Table 4. Benchmark results for three clause form conversions

Problem Conv. Clauses Vars Total zChaff [6] Jerusat [7]
literals Decisions Time (s) Time (s)

Def 89150 31328 229882 40332 24.2 155.3
DME (Access) SP 53285 22866 129840 39283 25.8 104.9

Comp 22979 4986 70278 48232 10.6 32.1

Def 234515 79577 569387 28798 52.5 149.8
DME (Priority) SP 109637 51965 273339 21894 8.1 47.1

Comp 52312 7587 456576 34936 5.2 3.53

Def 737157 247079 1741365 25991 181.3 1084
DME (OT) SP 280979 140302 700484 32023 50.4 150.9

Comp 141604 12779 3322302 34808 10.4 38.9

Def 234397 78483 548461 52450 68.3 369.2
Elevator SP 109677 39373 274751 147791 74.4 338.3

Comp 83901 23157 343673 168902 190 15.1

the clauses produced after renaming (ie, CNF(sub(V,Comp(T, V)))), the defini-
tional clauses being saved in a global variable (ie, CNF(def(V,Comp(T, V)))).
Whenever a shared vertex is encountered, it is renamed according to the strategy
described above. No explicit computation of ps

r(V) is required: they correspond
to the sizes of the sets of clauses — a constant time operation.

In Table 4 we compare the behaviour of the built-in CNF conversion in
NuSMV (the definitional conversion) against the structure-preserving conversion
and the compact conversion using two leading satisfiability solvers. We report re-
sults for the standard DME benchmark2 and a deadlock problem3 (Elevator), as
they were found to be representative of other hardware and deadlock problems.
The compact conversion consistently generates fewer clauses and the solving
times are also better in most cases, sometimes dramatically so; the conversion
time was similar in all cases, and negligible compared to the solving time. More
surprising is the increase in the number of decisions made by zChaff in every
case: for the DME example, decisions are made more quickly, while for the Ele-
vator, the rise in the number of decisions is more dramatic and the time taken
by zChaff is increased. Interestingly, the time taken by Jerusat in this case is
dramatically better than the best case for zChaff; it is outperformed by zChaff
in most cases.

The results also illustrate the effect of the compact conversion preferring
to repeat small sets of clauses rather than renaming them: the total number
of literals is, in the worst case, double that for the definitional conversion;
this is contrasted with the order of magnitude reductions in the number of
variables.

2 See the NuSMV distribution
3 Thanks to Toni Jussila for providing the files for this example

198 P. Jackson and D. Sheridan

7 Conclusions and Future Work

Despite optimising a problem attribute that is not directly connected to the
solving time — the number of clauses — the compact conversion algorithm
produces a set of clauses that are in most cases more quickly solved. With the
compact conversion, in contrast to the Boy de la Tour conversion or the use
of preprocessing procedures to obtain similar results, this is achieved without
changing the complexity class (or the observed time taken) of the conversion as
compared to the more well-known clause form conversions.

The empirical study above is limited in its scope; the next step for this work
must be a more thorough experimental analysis including not only much large
BMC problems, but also a wider variety of leading SAT solvers.

References

1. Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic reachability analy-
sis based on SAT-solvers. In S. Graf and M. Schwartzbach, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 6th International Con-
ference, TACAS’00, volume 1785 of Lecture Notes in Computer Science, pages
411–425. Springer-Verlag, March 2000.

2. Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardi-
nality constraints. In Principles and Practice of Constraint Programming — 9th
International Conference, CP 2003, Lecture Notes in Computer Science, 2003.

3. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In W.R. Cleaveland, editor, Tools and Algo-
rithms for the Construction and Analysis of Systems. 5th International Conference,
TACAS’99, volume 1579 of Lecture Notes in Computer Science, pages 193–207.
Springer-Verlag, July 1999.

4. Thierry Boy de la Tour. An optimality result for clause form translation. Journal
of Symbolic Computation, 14:283–301, 1992.

5. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings of the Eleventh
Conference on Computer-Aided Verification (CAV’99), number 1633 in Lecture
Notes in Computer Science, pages 495–499, Trento, Italy, July 1999. Springer-
Verlag.

6. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 39th Design Automation Conference, pages 530–535,
Las Vegas, June 2001.

7. Alexander Nadel. Backtrack search algorithms for propositional logic satisfiability:
Review and innovations. Master’s thesis, Tel-Aviv University, November 2002.

8. Andreas Nonnengart, Georg Rock, and Christoph Weidenbach. On generating
small clause normal forms. In Claude Kirchner and Hélène Kirchner, editors, Fif-
teenth International Conference on Automated Deduction, volume 1421 of Lecture
Notes in Artificial Intelligence, pages 397–411. Springer-Verlag, 1998.

9. David A. Plaisted and Steven Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304, September 1986.

10. M. N. Velev. Efficient translation of Boolean formulas to CNF in formal verification
of microprocessors. In Asia and South Pacific Design Automation Convference
(ASP-DAC ’04), January 2004.

	Introduction
	Notation Conventions

	Boolean Circuits
	CNF Conversions on Linear Trees
	Clause Form Conversions with Renaming
	The Conversion Due to Boy de la Tour

	The Compact Conversion
	Optimality of the Compact Conversion for Linear Trees
	Positive Polarity
	Negative Polarity

	Extension to RBCs
	Implementation and Evaluation
	Conclusions and Future Work

