
Efficient Circuit to CNF Conversion

Panagiotis Manolios and Daron Vroon

College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
http://www.cc.gatech.edu/home/{manolios,vroon}

Abstract. Modern SAT solvers are proficient at solving Boolean satis-
fiability problems in Conjunctive Normal Form (CNF). However, these
problems mostly arise from general Boolean circuits that are then trans-
lated to CNF. We outline a simple and expressive data structure for
describing arbitrary circuits, as well as an algorithm for converting cir-
cuits to CNF. Our experimental results over a large benchmark suite
show that the CNF problems we generate are consistently smaller and
more quickly solved by modern SAT solvers than the CNF problems
generated by current CNF generation methods.

1 Introduction

The recent drastic improvements to SAT solving technology have led to its wide
applicability in domains ranging from hardware and software verification to com-
putational biology to AI planning. While the actively developed SAT solvers
overwhelmingly require input to be in CNF, most of the applications that use
SAT technology have problems that are more naturally expressed as Boolean
combinational circuits. In order to use current SAT solvers, users are therefore
required to generate CNF and they tend to do this using variants of the Tseitin
algorithm, e.g., this is the case with Barcelogic Tools [8] and Yices [2].

In this paper we introduce NICE dags, a new data structure for representing
circuits. We also introduce a new algorithm for translating from NICE dags
to CNF. We have compared our algorithm to both the Tseitin algorithm and
to Jackson and Sheridan’s state-of-the-art algorithm, using a benchmark suite
containing over 8,000 problems from various domains. Our extensive evaluations
show that the translation from circuits to CNF can significantly impact overall
SAT solving time and that our algorithm leads to significant time savings over
the other two approaches. In fact, for numerous problems that our approach can
easily handle, both algorithms generate CNF on which SAT solvers time out.

The work reported in this paper is implemented in the publicly available Bit-
level Analysis Tool (BAT) [7]. BAT provides a high-level, feature-rich, type-safe
language that includes user-defined functions, arbitrary sized bit vectors and
operations on them, existential arrays, etc. With the results reported in this
paper, we are able to provide potential users of SAT technology a much higher-
level interface than current CNF-based SAT solvers. This makes it much easier
to experiment with, use, and deploy SAT technology, while still being able to
take advantage of improvements to the actively developed SAT solvers, which
are mostly CNF-based.

J. Marques-Silva and K.A. Sakallah (Eds.): SAT 2007, LNCS 4501, pp. 4–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Circuit to CNF Conversion 5

�������	∧
�����

��
�

���
��

��
�

��
����↔
�� ���

��
��

�
��
����↔
����

��
��

��
�������	x �������	y �������	z

�������	¬
��
��������ite

test

����
��

��
then

��

else �� �������	¬
��

�������	x �������	z �������	y

Fig. 1. Two examples of NICE dags

2 Related Work

Most modern CNF conversion algorithms are variations of the one originally
discovered by Tseitin [9]. This algorithm converts dags composed of internal
vertices labeled with ∧, ∨, and ¬, as well as external vertices labeled with variable
names. The algorithm introduces a new variable, x, for each internal node, v that
is a child of a ∨ node, and adds the constraint x ↔ v to the original SAT problem.
This is a linear algorithm.

The Jackson-Sheridan algorithm for conversion to CNF was introduced in
2004 [5]. It takes a Reduced Boolean Circuit (RBC) as input, and is built around
a heuristic that is used to decide when to introduce variables for internal vertices.
The aim is to minimize the number of clauses in the resulting CNF. However,
↔ vertices are rewritten into conjunctions of disjunctions before conversion into
CNF, which results in the loss of information that can lead to the generation of
fewer intermediate variables. The algorithm is quadratic.

Brummayer and Biere have recently introduced an algorithm for translating
from AIGs (And-Inverter Graphs) to CNF [1]. The techniques used are mostly
orthogonal to ours, and, for future work, it would be interesting to explore the
incorporation of some of their ideas into our algorithm.

Another CNF translation that deals directly with ite vertices is presented
by Velev in [10]. Our algorithm subsumes this algorithm, e.g., we merge nested
ite vertices in all the ways that Velev’s algorithm does and more. Also, unlike
Velev’s algorithm, we constrain intermediate variables with implications rather
than equivalences, which significantly reduces the number of clauses created
when a new variable is introduced.

3 NICE Dags

The circuit representation that our CNF translation algorithm takes as input is
the Negation, Ite, Conjuction, and Equivalence dag (NICE dag), which contains
external variable nodes, and as the name suggests, internal nodes labeled with
¬, ↔, ∧, and ite. The three outgoing edges of an ite are labeled with test, then,
or else, as appropriate. As with RBCs, NICE dags are further constrained to
maximize sharing. For example, no two nodes in the dag are allowed to have the
same label and children, and no ite node can have a test or then child labeled
with ¬. Two example NICE dags are given in Figure 1.

6 P. Manolios and D. Vroon

cnf ((V, E))

pseudo-expand ((V, E))
count-shares ((V, E))
CL := ∅
for all v ∈ V do

clauses+ (v) := null
clauses- (v) := null

C := cnf+ (source((V, E)))
return C ∪ CL

Fig. 2. Main CNF conversion function

4 CNF Conversion

In order to understand our CNF conversion algorithm, it is important to under-
stand the following terminology. The number of shares of a node is the number
of incoming edges the node has. A path is a sequence of vertices, v1, v2, . . . , vn

such that v1 is the root of the dag and each consecutive pair of vertices forms an
edge. The path polarity of a given path is negative if it contains an odd number
of ¬ nodes, and positive otherwise. The number of negative (positive) shares for
a node is the number of predecessors of the node that are the last vertex in a
path of negative (positive) polarity. Note that a predecessor vertex can appear
in a path of negative polarity and a path of positive polarity, so the the number
of negative and positive shares can add up to more than the total number of
shares.

Our central CNF conversion algorithm is given in Figure 2. It takes a NICE
dag as input and returns a set of clauses that are equisatisfiable to the input.
The algorithm begins with the pseudo-expansion of the the ite and ↔ nodes of
the NICE dag. We will return to this function momentarily.

The next function, count-shares, marks each node with its number of neg-
ative and positive shares. This is followed by initialization. A global variable,
CL, is initialized to ∅. CL will contain the clauses constraining the variables
introduced for internal vertices. All of the vertices, v ∈ V are marked with a
clauses+ and clauses- value of null . These will eventually contain the clauses
generated for v and ¬v, respectively.

The core of the algorithm, which is too long to give here, consists of two
functions, cnf+ and cnf-, which take a vertex, v, and compute clauses+(v)
and clauses-(v) respectively. These functions recursively visit the children of
v to compute their clause representations, and then combine the resulting clause
sets in the appropriate way. For example, when applied to a ∧ node, u, cnf+
calls cnf+ on all the children of u and then unions their clause lists together to
form the clause list for u. A ¬ node, w, is processed by cnf+ (cnf-) by applying
cnf- (cnf+) to its child. Another way to see this is that cnf+ and cnf- process
the NICE dag using depth-first search, keeping track of the polarity of the path
that led to the current node, and post-processing the node accordingly. The cnf+
and cnf- algorithms have the following key features:

Efficient Circuit to CNF Conversion 7

– The decision to introduce variables is made separately for a vertex and its
negation, and the variable is constrained with an implication rather than an
equivalence if it only represents a vertex or its negation, and not both. For
example, if a variable, x is introduced for v, then the constraint x → v is
added to CL. If we later decide that a variable is needed for ¬v, we add the
constraint ¬x → ¬v.

– When forming disjunctions, we use a similar heuristic to Jackson-Sheridan
for deciding when to introduce new variables [5].

– A variable is always introduced for v (¬v) if the number of positive (negative)
shares for v is more than 1 and |clauses+(v)| > 1 (|clauses-(v)| > 1).

– ite and ↔ are interpreted as conjunctions of disjunctions regardless of their
polarity. For example, cnf+(if u then v else w) is computed by comput-
ing cnf+((¬u∨ v)∧ (u∨w)) and cnf-(if u then v else w) is computed
by computing cnf+((¬u ∨ ¬v) ∧ (u ∨ ¬w)). This leads to a smaller CNF
translation.

Note that this last case introduces some extra complexity to the algorithm. On
the one hand, we want to translate ite and ↔ nodes, as well as their negations,
as conjunctions of disjunctions. This means that the translations of these nodes
and their negations are no longer syntactic negations of each other. That is, the
negation of an ite node, does not simply translate to a ¬ node whose child is the
positive translation of the ite, since this would be a disjunction of conjunctions.
That is why we do not expand ite and ↔ nodes before the translation. This way,
we can keep track of the fact that these translations are negations of each other
by maintaining clauses+ and clauses- for the original ite or ↔ node.

On the other hand, in the example above, what if u ∨ w appears elsewhere
in the dag? In this case, we will lose some sharing information if we do not
expand the ite node before CNF conversion, since we will have another instance
of u∨w when we do expand it. This is why we have the pseudo-expand function
that starts our CNF translation algorithm. This function will mark the example
above with new “pseudo-arguments” called args+ and args-. The args+ mark
is set to the pair of vertices representing (¬u ∨ v), (u ∨ w). The args- mark is
set to the pair of vertices representing (¬u∨¬v), (u∨¬w). Then, when counting
shares, we count the shares of the “pseudo-arguments” of ite and ↔ formulas
rather than the actual arguments. This allows us to capture the appropriate
sharing information without losing the negation information for ite and ↔ and
nodes.

In general, cnf ((V, E)) has a running time of O(|V |2). However, as we will see
in our experimental results, our algorithm runs faster than Tseitin’s algorithm,
which is linear, showing that our algorithm is linear is practice, at least for the
benchmarks tested.

5 Experimental Evaluation

We implemented Tseitin’s algorithm [9], Jackson and Sheridan’s algorithm [5],
and our algorithm in the Bit-level Analysis Tool (BAT). BAT is a tool for solving

8 P. Manolios and D. Vroon

 0.1

 1

 10

 100

 0.1 1 10 100

T
se

iti
n

Our Algorithm

Benchmarks

 1

 10

 100

 1 10 100

Ja
ck

so
n-

S
he

rid
an

Our Algorithm

Benchmarks

Fig. 3. Scatter plots comparing our algorithm to Tseitin and Jackson-Sheridan

formulas over the theory of bit vectors and existential arrays [7,6]. After process-
ing arrays, BAT converts the resulting circuit into a NICE dag, which it uses to
perform further simplifications. Finally, it converts the NICE dag to CNF.

We ran all three algorithms over a suite composed of 8,284 benchmarks. These
include refinement theorems for two, three, and five stage pipeline machines, a
correctness theorem for the Instruction Cache RAM unit from the Sun PicoJava
II microprocessor, a theorem involving the out-of-order retirement of instruc-
tions, and benchmarks from the 2006 SMT competition for the quantifier-free
theory of uninterpreted functions over 32-bit bit-vectors. We used the latest
version of MiniSat2 with simplification enabled to solve the resulting CNF prob-
lems [4]. The BAT time never exceeded 25 seconds for any benchmark, and
MiniSat2 was given a timeout of 10 minutes. Experiments were run on an 2.4
GHz Intel Pentium 4 machine with a 512K cache and 1 GB of memory.

Scatter plots comparing our algorithm to the Tseitin and Jackson-Sheridan
algorithms are given in Figure 3. Times reported are the total time taken for BAT
and MiniSat2. Represented here are all benchmarks that took at least 0.1 second
for Tseitin or Jackson-Sheridan to complete. Those taking less than a 0.1 second
had comparable running times for all algorithms. Points above the diagonal
indicate that our algorithm resulted in a faster overall solving time. Points along
the top edge indicate time-outs for the competing algorithm. Based on these
numbers, our algorithm clearly out-performs Tseitin and Jackson-Sheridan on
almost all problems, often by orders of magnitude. Since this improvement is
observed in the presence of CNF preprocessing (as performed by Minisat2), our
view is that preprocessing techniques are not a satisfactory alternative to CNF
translation [3]; rather these two approaches can be complementary.

Also, as noted earlier, despite the fact that our CNF translation is quadratic
in the worst case, in practice it is faster that the linear-time Tseitin translation.
The total time spent translating the benchmarks to CNF was 3,725 seconds for
Tseitin and 3,409 seconds for our algorithm.

Efficient Circuit to CNF Conversion 9

6 Conclusions

We presented the notion of NICE dags, a data structure that can be used to
represent arbitrary circuits and outlined an algorithm that converts NICE dags
to CNF. As our extensive experiments on over 8,000 benchmark problems show,
our algorithm leads to very large efficiency gains in total SAT times over both
an efficient variant of the widely used Tseitin translation algorithm and the
Jackson-Sheridan algorithm, even in the presence of CNF preprocessing.

References

1. R. Brummayer and A. Biere. Local two-level and-inverter graph minimization
without blowup. In Proc. 2nd Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science (MEMICS ’06), October 2006.

2. B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In
T. Ball and R. B. Jones, editors, Computer Aided Verification, CAV 2006, volume
4144 of LNCS, pages 81–94, 2006.

3. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In F. Bacchus and T. Walsh, editors, Theory and Applications of Sat-
isfiability Testing, 8th International Conference, SAT 2005, volume 3569 of LNCS,
pages 61–75. Springer, 2005.

4. N. Eén and N. Sörensson. MiniSat - a SAT solver with conflict-clause minimization.
In F. Bacchus and T. Walsh, editors, Posters of the 8th international Conference
on Theory and Applications of Satisfiability Testing, 2005.

5. P. Jackson and D. Sheridan. Clause form conversions for Boolean circuits. In
H. H. Hoos and D. G. Mitchell, editors, Theory and Applications of Satisfiability
Testing, 7th International Conference, SAT 2004, volume 3542 of LNCS, pages
183–198. Springer, 2004.

6. P. Manolios, S. K. Srinivasan, and D. Vroon. Automatic memory reductions for
RTL-level verification. In ICCAD 2006, ACM-IEEE International Conference on
Computer Aided Design. ACM, 2006.

7. P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The Bit-level Analysis Tool.
2006. Available from http://www.cc.gatech.edu/∼manolios/bat/.

8. R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization
Problems. In A. Biere and C. P. Gomes, editors, 9th International Conference on
Theory and Applications of Satisfiability Testing, SAT’06, volume 4121 of LNCS,
pages 156–169. Springer, 2006.

9. G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic,
Part2, pages 115–125. Consultants Bureau, New York-London, 1962.

10. M. N. Velev. Efficient translation of boolean formulas to cnf in formal verification
of microprocessors. In ASP-DAC ’04: Proceedings of the 2004 conference on Asia
South Pacific design automation, pages 310–315, 2004. IEEE Press.

	Introduction
	Related Work
	NICE Dags
	CNF Conversion
	Experimental Evaluation
	Conclusions

