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Abstract

Relational logic is an attractive candidate for a software description language, be-
cause both the design and implementation of software often involve reasoning about
relational structures: organizational hierarchies in the problem domain, architectural
configurations in the high level design, or graphs and linked lists in low level code. Un-
til recently, however, frameworks for solving relational constraints have had limited
applicability. Designed to analyze small, hand-crafted models of software systems,
current frameworks perform poorly on specifications that are large or that have par-
tially known solutions.

This thesis presents an efficient constraint solver for relational logic, with recent
applications to design analysis, code checking, test-case generation, and declarative
configuration. The solver provides analyses for both satisfiable and unsatisfiable
specifications—a finite model finder for the former and a minimal unsatisfiable core
extractor for the latter. It works by translating a relational problem to a boolean
satisfiability problem; applying an off-the-shelf SAT solver to the resulting formula;
and converting the SAT solver’s output back to the relational domain.

The idea of solving relational problems by reduction to SAT is not new. The core
contributions of this work, instead, are new techniques for expanding the capacity
and applicability of SAT-based engines. They include: a new interface to SAT that
extends relational logic with a mechanism for specifying partial solutions; a new
translation algorithm based on sparse matrices and auto-compacting circuits; a new
symmetry detection technique that works in the presence of partial solutions; and a
new core extraction algorithm that recycles inferences made at the boolean level to
speed up core minimization at the specification level.
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Chapter 1

Introduction

Puzzles with simple rules can be surprisingly hard to solve, even when a part of the
solution is already known. Take Sudoku, for example. It is a logic game played on a
partially completed 9×9 grid, like the one in Fig. 1-1. The goal is simply to fill in the
blanks so that the numbers 1 through 9 appear exactly once in every row, column,
and heavily boxed region of the grid. Each puzzle has a unique solution, and many
are easily solved. Yet some are ‘very hard.’ Target completion time for the puzzle in
Fig. 1-1, for example, is 30 minutes [58].

6 2 5

1 8 6 2

3 4

6 7 8

4 2 5

9 8

5 4 9 3

2 1 4

3 5 7

Figure 1-1: A hard Sudoku puzzle [58].

Software engineering is full of problems like Sudoku—where the rules are easy
to describe, parts of the solution are known, but the task of filling in the blanks is
computationally intractable. Examples include, most notably, declarative configura-
tion problems such as network configuration [99], installation management [133], and
scheduling [149]. The configuration task usually involves extending a valid config-
uration with one or more new components so that certain validity constraints are
preserved. To install a new package on a Linux machine, for example, an installa-
tion manager needs to find a subset of packages in the Linux distribution, including
the desired package, which can be added to the installation so that all package de-
pendencies are met. Also related are the problems of declarative analysis: software
design analysis [69], bounded code verification against rich structural specifications
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[31, 34, 126, 138], and declarative test-case generation [77, 114, 134].
Automatic solutions to problems like Sudoku and declarative configuration usually

come in two flavors: a special-purpose solver or a special-purpose translator to some
logic, used either with an off-the-shelf SAT solver or, since recently, an SMT solver
[38, 53, 9, 29] that can also reason about linear integer and bitvector arithmetic.
An expertly implemented special-purpose solver is likely to perform better than a
translation-based alternative, simply because a custom solver can be guided with
domain-specific knowledge that may be hard (or impossible) to use effectively in a
translation. But crafting an efficient search algorithm is tricky, and with the advances
in SAT solving technology, the performance benefits of implementing a custom solver
tend to be negligible [53]. Even for a problem as simple as Sudoku, with many known
special-purpose inference rules, SAT-based approaches [86, 144] are competitive with
hand-crafted solvers (e.g. [141]).

Reducing a high-level problem description to SAT is not easy, however, since a
boolean encoding has to contain just the right amount and kind of information to
elicit the best performance from the SAT solver. If the encoding includes too many
redundant formulas, the solver will slow down significantly [119, 139, 41]. At the
same time, introducing certain kinds of redundancy into the encoding, in the form
of symmetry breaking [27, 116] or reconvergence [150] clauses, can yield dramatic
improvements in solving times.

The challenges of using SAT for declarative configuration and analysis are not
limited to finding the most effective encoding. When a SAT solver fails to find a
satisfying assignment for the translation of a problem, many applications need to
know what caused the failure and correct it. For example, if a software package
cannot be installed because it conflicts with one or more existing packages, a SAT-
based installation manager such as OPIUM [133] needs to identify (and remove) the
conflicting packages. It does this by analyzing the proof of unsatisfiability produced
by the SAT solver to find an unsatisfiable subset of the translation clauses known
as an unsatisfiable core. Once extracted from the proof, the boolean core needs to
mapped back to the conflicting constraints in the problem domain. The problem
domain core, in turn, has to be minimized before corrective action is taken because
it may contain constraints which do not contribute to its unsatisfiability.

This thesis presents a framework that facilitates easy and efficient use of SAT for
declarative configuration and analysis. The user of the framework provides just a
high-level description of the problem—in a logic that underlies many software design
languages [2, 143, 123, 69]—and a partial solution, if one is available. The framework
then does the rest: efficient translation to SAT, interpretation of the SAT instance in
terms of problem-domain concepts, and, in the case of unsatisfiability, interpretation
and minimization of the unsatisfiable core. The key algorithms used for SAT encoding
[131] and core minimization [129] are the main technical contributions of this work;
the main methodological contribution is the idea of separating the description of the
problem from the description of its partial solution [130]. The embodiment of these
contributions, called Kodkod, has so far been used in a variety of applications for
declarative configuration [100, 149], design analysis [21], bounded code verification
[31, 34, 126], and automated test-case generation [114, 134].
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1.1 Bounded relational logic

Kodkod is based on the “relational logic” of Alloy [69], consisting essentially of a
first-order logic augmented with the operators of the relational calculus [127]. The
inclusion of transitive closure extends the expressiveness beyond standard first-order
logics, and allows the encoding of common reachability constraints that otherwise
could not be expressed. In contrast to specification languages (such as Z [123], B
[2], and OCL [143]) that are based on set-theoretic logics, Alloy’s relational logic was
designed to have a stronger connection to data modeling languages (such as ER [22]
and SDM [62]), a more uniform syntax, and a simpler semantics. Alloy’s logic treats
everything as a relation: sets as relations of arity one and scalars as singleton sets.
Function application is modeled as relational join, and an out-of-domain application
results in the empty set, dispensing with the need for special notions of undefinedness.
The use of multi-arity relations (in contrast to functions over sets) is a critical factor
in Alloy being first order and amenable to automatic analysis. The choice of this logic
for Kodkod was thus based not only on its simplicity but also on its analyzability.

Kodkod extends the logic of Alloy with the notion of relational bounds. A bounded
relational specification is a collection of constraints on relational variables of any arity
that are bound above and below by relational constants (i.e. sets of tuples). All
bounding constants consist of tuples that are drawn from the same finite universe of
uninterpreted elements. The upper bound specifies the tuples that a relation may
contain; the lower bound specifies the tuples that it must contain.

Figure 1-2a shows a snippet of bounded relational logic1 that describes the Sudoku
puzzle from Fig. 1-1. It consists of three parts: the universe of discourse (line 1); the
bounds on free variables that encode the assertional knowledge about the problem
(lines 2-7), such as the initial state of the grid; and the constraints on the bounded
variables that encode definitional knowledge about the problem (lines 10-21), i.e. the
rules of the game.

The bounds specification is straightforward. The unary relation num (line 2)
provides a handle on the set of numbers used in the game. As this set is constant, the
relation has the same lower and upper bound. The relations r1, r2 and r3 (lines 4-6)
partition the numbers into three consecutive, equally-sized intervals. The ternary
relation grid (line 7) models the Sudoku grid as a mapping from cells, defined by their
row and column coordinates, to numbers. The set {〈1, 1, 6〉, 〈1, 4, 2〉, . . . , 〈9, 9,
7〉} specifies the lower bound on the grid relation; these are the mappings of cells to
numbers that are given in Fig. 1-1.2 The upper bound on its value is the lower bound
augmented with the bindings from the coordinates of the empty cells, such as the cell
in the first row and second column, to the numbers 1 through 9.

The rest of the problem description defines the rules of Sudoku: each cell on the
grid contains some value (line 10), and that value is unique with respect to other
values in the same row, column, and 3×3 region of grid (lines 11-21). Relational join

1Because Kodkod is designed as a Java API, the users communicate with it by constructing
formulas, relations and bounds via API calls. The syntax shown here is just an illustrative rendering
of Kodkod’s abstract syntax graph, defined formally in Chapter 2.

2The ‘. . . ’ symbol is not a part of the syntax. It is used in Fig. 1-1 and in text to mean ‘etc’.
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1 {1, 2, 3, 4, 5, 6, 7, 8, 9}

2 num :1 [{〈1〉,〈2〉,〈3〉,〈4〉,〈5〉,〈6〉,〈7〉,〈8〉,〈9〉},
3 {〈1〉,〈2〉,〈3〉,〈4〉,〈5〉,〈6〉,〈7〉,〈8〉,〈9〉}]
4 r1 :1 [{〈1〉,〈2〉,〈3〉}, {〈1〉,〈2〉,〈3〉}]
5 r2 :1 [{〈4〉,〈5〉,〈6〉}, {〈4〉,〈5〉,〈6〉}]
6 r3 :1 [{〈7〉,〈8〉,〈9〉}, {〈7〉,〈8〉,〈9〉}]
7 grid :3 [{〈1, 1, 6〉,〈1, 4, 2〉, . . . , 〈9, 9, 7〉},
8 {〈1, 1, 6〉,〈1, 2, 1〉,〈1, 2, 2〉, . . . , 〈1, 3, 9〉,
9 〈1, 4, 2〉,〈1, 5, 1〉, . . . , 〈9, 9, 7〉}]

10 ∀ x, y: num | some grid[x][y]
11 ∀ x, y: num | no (grid[x][y] ∩ grid[x][num\y])
12 ∀ x, y: num | no (grid[x][y] ∩ grid[num\x][y])
13 ∀ x: r1, y: r1 | no (grid[x][y] ∩ grid[r1\x][r1\y])
14 ∀ x: r1, y: r2 | no (grid[x][y] ∩ grid[r1\x][r2\y])
15 ∀ x: r1, y: r3 | no (grid[x][y] ∩ grid[r1\x][r3\y])
16 ∀ x: r2, y: r1 | no (grid[x][y] ∩ grid[r2\x][r1\y])
17 ∀ x: r2, y: r2 | no (grid[x][y] ∩ grid[r2\x][r2\y])
18 ∀ x: r2, y: r3 | no (grid[x][y] ∩ grid[r2\x][r3\y])
19 ∀ x: r3, y: r1 | no (grid[x][y] ∩ grid[r3\x][r1\y])
20 ∀ x: r3, y: r2 | no (grid[x][y] ∩ grid[r3\x][r2\y])
21 ∀ x: r3, y: r3 | no (grid[x][y] ∩ grid[r3\x][r3\y])

(a) Sudoku in bounded relational logic

1 abstract sig Num {grid: Num->Num}
2 abstract sig R1, R2, R3 extends Num {}
3 one sig N1, N2, N3 extends R1 {}
4 one sig N4, N5, N6 extends R2 {}
5 one sig N7, N8, N9 extends R3 {}

6 fact rules {
7 all x, y: Num | some grid[x][y]
8 all x, y: Num | no grid[x][y]& grid[x][Num-y]
9 all x, y: Num | no grid[x][y]& grid[Num-x][y]

10 all x: R1, y: R1 | no grid[x][y]& grid[R1-x][R1-y]
11 all x: R1, y: R2 | no grid[x][y]& grid[R1-x][R2-y]
12 all x: R1, y: R3 | no grid[x][y]& grid[R1-x][R3-y]
13 all x: R2, y: R1 | no grid[x][y]& grid[R2-x][R1-y]
14 all x: R2, y: R2 | no grid[x][y]& grid[R2-x][R2-y]
15 all x: R2, y: R3 | no grid[x][y]& grid[R2-x][R3-y]
16 all x: R3, y: R1 | no grid[x][y]& grid[R3-x][R1-y]
17 all x: R3, y: R2 | no grid[x][y]& grid[R3-x][R2-y]
18 all x: R3, y: R3 | no grid[x][y]& grid[R3-x][R3-y]
19 }

20 fact puzzle {
21 N1->N1->N6 + N1->N4->N2 + . . . +
22 N9->N9->N7 in grid }

(b) Sudoku in Alloy

1 fof(at most one in each row, axiom,
2 (! [X, Y1, Y2] :
3 ((grid(X, Y1) = grid(X, Y2)) => Y1 = Y2))).

4 fof(at most one in each column, axiom,
5 (! [X1,X2,Y] :
6 ((grid(X1,Y) = grid(X2,Y)) => X1 = X2))).

7 fof(region reflexive, axiom, (! [X] : region(X,X))).
8 fof(region symmetric, axiom,
9 (! [X,Y] : (region(X,Y) => region(Y,X)))).

10 fof(region transitive, axiom,
11 (! [X,Y,Z] :
12 ((region(X,Y) & region(Y,Z)) => region(X,Z)))).
13 fof(regions, axiom,
14 (region(1,2) & region(2,3) & region(4,5) &
15 region(5,6) & region(7,8) & region(8,9) &
16 r̃egion(1,4) & r̃egion(4,7) & r̃egion(1,7) )).
17 fof(all different, axiom,
18 (1 != 2 & 1 != 3 & 2 != 3 & 4 != 5 & 4 != 6 &
19 5 != 6 & 7 != 8 & 7 != 9 & 8 != 9 )).
20 fof(at most one in each region, axiom,
21 (! [X1, Y1, X2, Y2] :
22 ((region(X1,X2) & region(Y1,Y2) &
23 grid(X1,Y1) = grid(X2,Y2)) =>
24 (X1 = X2 & Y1 = Y2)))).

25 fof(puzzle, axiom,
26 ( grid(1,1) = 6 & grid(1,4) = 2 & . . . &
27 grid(9,9) = 7 )).

(c) Sudoku in FOL (TPTP [124] syntax)

1 Given:
2 type int Num
3 Given(Num,Num,Num)
4 Find:
5 Grid(Num,Num) : Num
6 Satisfying:
7 ! r c n : Given(r,c,n) => Grid(r,c) = n.
8 ! r c1 c2: Num(r) & Num(c1) & Num(c2) &
9 Grid(r,c1) = Grid(r,c2) => c1 = c2.

10 ! c r1 r2: Num(r1) & Num(r2) & Num(c) &
11 Grid(r1,c) = Grid(r2,c) => r1 = r2.

12 declare { Same(Num,Num)
13 Region(Num,Num,Num,Num) }

14 ! r1 r2 c1 c2: (Grid(r1,c1) = Grid(r2,c2) &
15 Region(r1,r2,c1,c2)) => (r1 = r2 & c1 = c2).
16 { Same(n,n). Same(n1,n2) <− Same(n2,n1).
17 Same(1,2). Same(1,3). Same(2,3). Same(4,5).
18 Same(4,6). Same(5,6). Same(7,8). Same(7,9).
19 Same(8,9). }
20 { Region(r1,r2,c1,c2) <−
21 Same(r1,r2) & Same(c1,c2). }

22 Data:
23 Num = {1..9}
24 Given = { 1,1,6; 1,4,2; . . . ; 9,9,7; }

(d) Sudoku in FOL/ID (IDP [88] syntax)

Figure 1-2: Sudoku in bounded relational logic, Alloy, FOL, and FOL/ID.
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is used to navigate the grid structure: the expression ‘grid[x][num\y]’, for example,
evaluates to the contents of the cells that are in the row x and in all columns except
y. The relational join operator is freely applied to quantified variables since the logic
treats them as singleton unary relations rather than scalars.

Having a mechanism for specifying precise bounds on free variables is not necessary
for expressing problems like Sudoku and declarative configuration. Knowledge about
partial solutions can always be encoded using additional constraints (e.g. the ‘puzzle’
formulas in Figs. 1-2b and 1-2c), and the domains of free variables can be specified
using types (Fig. 1-2b), membership predicates (Fig. 1-2c), or both (Fig. 1-2d). But
there are two important advantages to expressing assertional knowledge with explicit
bounds. The first is methodological: bounds cleanly separate what is known to be
true from what is defined to be true. The second is practical: explicit bounds enable
faster model finding.

1.2 Finite model finding

A model of a specification, expressed as a collection of declarative constraints, is a
binding of its free variables to values that makes the specification true. The bounded
relational specification in Fig. 1-2a, for example, has a single model (Fig. 1-3) which
maps the grid relation to the solution of the sample Sudoku problem. An engine that
searches for models of a specification in a finite universe is called a finite model finder,
or simply a model finder.

6 4 7 2 1 3 9 5 8

9 1 8 5 6 4 7 2 3

2 5 3 8 7 9 4 6 1

1 9 5 6 4 7 8 3 2

4 8 2 3 5 1 6 7 9

7 3 6 9 2 8 1 4 5

5 7 4 1 9 2 3 8 6

8 2 9 7 3 6 5 1 4

3 6 1 4 8 5 2 9 7

(a) Solution

num 7→ {〈1〉,〈2〉,〈3〉,〈4〉,〈5〉,〈6〉,〈7〉,〈8〉,〈9〉}
r1 7→ {〈1〉,〈2〉,〈3〉}
r2 7→ {〈4〉,〈5〉,〈6〉}
r3 7→ {〈7〉,〈8〉,〈9〉}
grid 7→ {〈1,1,6〉,〈1,2,4〉,〈1,3,7〉,〈1,4,2〉,〈1,5,1〉,〈1,6,3〉,〈1,7,9〉,〈1,8,5〉,〈1,9,8〉,

〈2,1,9〉,〈2,2,1〉,〈2,3,8〉,〈2,4,5〉,〈2,5,6〉,〈2,6,4〉,〈2,7,7〉,〈2,8,2〉,〈2,9,3〉,
〈3,1,2〉,〈3,2,5〉,〈3,3,3〉,〈3,4,8〉,〈3,5,7〉,〈3,6,9〉,〈3,7,4〉,〈3,8,6〉,〈3,9,1〉,
〈4,1,1〉,〈4,2,9〉,〈4,3,5〉,〈4,4,6〉,〈4,5,4〉,〈4,6,7〉,〈4,7,8〉,〈4,8,3〉,〈4,9,2〉,
〈5,1,4〉,〈5,2,8〉,〈5,3,2〉,〈5,4,3〉,〈5,5,5〉,〈5,6,1〉,〈5,7,6〉,〈5,8,7〉,〈5,9,9〉,
〈6,1,7〉,〈6,2,3〉,〈6,3,6〉,〈6,4,9〉,〈6,5,2〉,〈6,6,8〉,〈6,7,1〉,〈6,8,4〉,〈6,9,5〉,
〈7,1,5〉,〈7,2,7〉,〈7,3,4〉,〈7,4,1〉,〈7,5,9〉,〈7,6,2〉,〈7,7,3〉,〈7,8,8〉,〈7,9,6〉,
〈8,1,8〉,〈8,2,2〉,〈8,3,9〉,〈8,4,7〉,〈8,5,3〉,〈8,6,6〉,〈8,7,5〉,〈8,8,1〉,〈8,9,4〉,
〈9,1,3〉,〈9,2,6〉,〈9,3,1〉,〈9,4,4〉,〈9,5,8〉,〈9,6,5〉,〈9,7,2〉,〈9,8,9〉,〈9,9,7〉}

(b) Kodkod model

Figure 1-3: Solution for the sample Sudoku puzzle.

Traditional model finders [13, 25, 51, 68, 70, 91, 93, 117, 122, 151, 152] have
no dedicated mechanism for accepting and exploiting partial information about a
problem’s solution. They take as inputs the specification to be analyzed and an
integer bound on the size of the universe of discourse. The universe itself is implicit;
the user cannot name its elements and use them to explicitly pin down known parts
of the model. If the specification does have a partial model—i.e. a partial binding
of variables to values—which the model finder should extend, it can only be encoded
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in the form of additional constraints. Some ad hoc techniques can be used to infer
partial bindings from these constraints. For example, Alloy3 [117] infers that the
relations N1 through N9 can be bound to distinct elements in the implicit universe
because they are constrained to be disjoint singletons (Fig. 1-2b, lines 3-5). In
general, however, partial models increase the difficulty of the problem to be solved,
resulting in performance degradation.

In contrast to traditional model finders, model extenders [96], such as IDP1.3 [88]
and Kodkod, allow the user to name the elements in the universe of discourse and to
use them to pin down parts of the solution. IDP1.3 allows only complete bindings of
relations to values to be specified (e.g. Fig. 1-2d, lines 23-24). Partial bindings for
relations such as Grid must still be specified implicitly, using additional constraints
(line 7). Kodkod, on the other hand, allows the specification of precise lower and
upper bounds on the value of each relation. These are exploited with new techniques
(Chapters 2-3) for translating relational logic to SAT so that model finding difficulty
varies inversely with the size of the available partial model.

The impact of partial models on various model finders is observable even on small
problems, like Sudoku. Figure 1-4, for example, shows the behavior of four state-
of-the-art3 SAT-based model finders on a progression of 6600 Sudoku puzzles with
different numbers of givens, or clues. The puzzle progression was constructed itera-
tively from 100 original puzzles which were randomly selected from a public database
of 17-clue Sudokus [110]. Each original puzzle was expanded into 66 variants, with
each consecutive variant differing from its predecessor by an additional, randomly
chosen clue. Using the formulations in Fig. 1-2 as templates, the puzzles were speci-
fied in the input languages of Paradox2.3 (first order logic), IDP1.3 (first order logic
with inductive definitions), Alloy3 (relational logic), and Kodkod (bounded relational
logic). The data points on the plots in Fig. 1-4 represent the CPU time, in millisec-
onds, taken by the model finders to discover the models of these specifications. All
experiments were performed on a 2 × 3 GHz Dual-Core Intel Xeon with 2 GB of
RAM. Alloy3, Paradox2.3, and Kodkod were configured with MiniSat [43] as their
SAT solver, while IDP1.3 uses MiniSatID [89], an extension of MiniSat for proposi-
tional logic with inductive definitions.

The performance of the traditional model finders, Alloy3 (Fig. 1-4b) and Para-
dox2.3 (Fig. 1-4c), degrades steadily as the number of clues for each puzzle increases.
On average, Alloy3 is 25% slower on a puzzle with a fully specified grid than on a
puzzle with 17 clues, whereaes Paradox2.3 is twice as slow on a full grid. The per-
formance of the model extenders (Figs. 1-4a and 1-4d), on the other hand, improves
with the increasing number of clues. The average improvement of Kodkod is 14 times
on a full grid, while that of IDP1.3 is about 1.5 times.

The trends in Fig. 1-4 present a fair picture of the relative performance of Kodkod
and other SAT-based tools on a wide range of problems. Due to the new translation
techniques described in Chapters 2-3, Kodkod is roughly an order of magnitude faster
than Alloy3 with and without partial models. It is also faster than IDP1.3 and Para-

3With the exception of Alloy3, which has been superseded by a new version based on Kodkod,
all model finders compared to Kodkod throughout this thesis represent the current state-of-the-art.
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Figure 1-4: Effect of partial models on the performance of SAT-based model finders, when
applied to a progression of 6600 Sudoku puzzles. The x-axis of each graph shows the
number of clues in a puzzle, and the y-axis shows the time, in milliseconds, taken by a given
model finder to solve a puzzle with the specified number of clues. Note that Paradox2.3,
IDP1.3 and Kodkod solved many of the puzzles with the same number of clues in the same
amount of time (or within a few milliseconds of one another), so many of the points on their
performance graphs overlap.
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Figure 1-5: Effect of partial models on the performance of a dedicated Sudoku solver, when
applied to a progression of 6600 Sudoku puzzles.

dox2.3 on the problems that this thesis targets—that is, specifications with partial
models and intricate constraints over relational structures.4 For a potential user of
these tools, however, the interesting question is not necessarily how they compare to
one another. Rather, the interesting practical question is how they might compare to
a custom translation to SAT.

This question is hard to answer in general, but a comparison with existing cus-
tom translations is promising. Figure 1-5, for example, shows the performance of a
dedicated, SAT-based Sudoku solver on the same 6600 puzzles solved with Kodkod
and the three other model finders. The solver consists of 150 lines of Java code that
generate Lynce and Ouaknine’s optimized SAT encoding [86] of a given Sudoku puz-
zle, followed by an invocation of MiniSat on the generated file. The program took
a few hours to write and debug, as the description of the encoding [86] contained
several errors and ambiguities that had to be resolved during implementation. The
Kodkod-based solver, in contrast, consists of about 50 lines of Java API calls that
directly correspond to the text in Fig. 1-2a; it took an hour to implement.

The performance of the two solvers, as Figs. 1-4a and 1-5 show, is comparable.
The dedicated solver is slightly faster on 17-clue Sudokus, and the Kodkod solver
is faster on full grids. The custom solver’s performance remains constant as the
number of clues in each puzzle increases because it handles the additional clues by
feeding extra unit clauses to the SAT solver: adding these clauses takes negligible
time, and, given that the translation time heavily dominates the SAT solving time,
their positive effect on MiniSat’s performance is unobservable. Both implementations
were also applied to 16× 16 and 25× 25 puzzles, with similar outcomes.5 The solvers
based on other model finders were unable to solve Sudokus larger than 16× 16.

4Problems that are better suited to other tools than to Kodkod are discussed in Chapter 5.
5The bounded relational encoding of Sudoku used in these experiments (Fig. 1-2a) is the easiest

to understand, but it does not produce the most optimal SAT formulas. An alternative encoding,
where the multiplicity some on line 10 is replaced by one and each constraint of the form ‘∀ x: ri,
y: rj | no (grid[x][y] ∩ grid[ri\x][rj\y])’ is loosened to ‘num ⊆ grid[ri][rj ],’ actually produces a SAT
encoding that is more efficient than the custom translation across the board. For example, MiniSat
solves the SAT formula corresponding to the alternative encoding of a 64 × 64 Sudoku ten times
faster than the custom SAT encoding of the same puzzle.
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1.3 Minimal unsatisfiable core extraction

When a specification has no models in a given universe, most model finders [25, 51,
68, 70, 88, 91, 122, 151, 152] simply report that it is unsatisfiable in that universe
and offer no further feedback. But many applications need to know the cause of a
specification’s unsatisfiability, either to take corrective action (in the case of declar-
ative configuration [133]) or to check that no models exist for the right reasons (in
the case of bounded verification [31, 21]). A bounded verifier [31, 21], for example,
checks a system description s1 ∧ . . . ∧ sn against a property p in some finite universe
by looking for models of the formula s1∧ . . .∧ sn∧¬p in that universe. If found, such
a model, or a counterexample, represents a behavior of the system that violates p. A
lack of models, however, does not necessarily mean that the analysis was successful.
If no models exist because the system description is overconstrained, or because the
property is a tautology, the analysis is considered to have failed due to a vacuity error.

A cause of unsatisfiability of a given specification, expressed as a subset of the
specification’s constraints that is itself unsatisfiable, is called an unsatisfiable core.
Every unsatisfiable core includes one or more critical constraints that cannot be re-
moved without making the remainder of the core satisfiable. Non-critical constraints,
if any, are irrelevant to unsatisfiability and generally decrease a core’s utility both
for diagnosing faulty configurations [133] and for checking the results of a bounded
analysis [129]. Cores that include only critical constraints are said to be minimal.

3 8

2 4 1 9 6

1 8 9 3 5

6 9 1

3 9 7

3 5 8

1 9

8 9 4 5 6

3 5 6 4 2

(a) An unsatisfiable Sudoku puzzle

1 {1, 2, 3, 4, 5, 6, 7, 8, 9}

2 num :1 [{〈1〉,〈2〉,〈3〉,〈4〉,〈5〉,〈6〉,〈7〉,〈8〉,〈9〉},
3 {〈1〉,〈2〉,〈3〉,〈4〉,〈5〉,〈6〉,〈7〉,〈8〉,〈9〉}]
4 r1 :1 [{〈1〉,〈2〉,〈3〉}, {〈1〉,〈2〉,〈3〉}]
5 r2 :1 [{〈4〉,〈5〉,〈6〉}, {〈4〉,〈5〉,〈6〉}]
6 r3 :1 [{〈7〉,〈8〉,〈9〉}, {〈7〉,〈8〉,〈9〉}]
7 grid :3 [{〈1, 6, 3〉,〈1, 9, 8〉, . . . , 〈9, 9, 2〉},
8 {〈1, 1, 1〉, . . . , 〈1, 5, 9〉, 〈1, 6, 3〉,
9 〈1, 7, 1〉,〈1, 7, 2〉, . . . , 〈9, 9, 2〉}]

10 ∀ x, y: num | some grid[x][y]
11 ∀ x, y: num | no (grid[x][y] ∩ grid[x][num\y])
12 ∀ x, y: num | no (grid[x][y] ∩ grid[num\x][y])
13 ∀ x: r1, y: r1 | no (grid[x][y] ∩ grid[r1\x][r1\y])
14 ∀ x: r1, y: r3 | no (grid[x][y] ∩ grid[r1\x][r3\y])
15 ∀ x: r1, y: r2 | no (grid[x][y] ∩ grid[r1\x][r2\y])
16 ∀ x: r2, y: r1 | no (grid[x][y] ∩ grid[r2\x][r1\y])
17 ∀ x: r2, y: r2 | no (grid[x][y] ∩ grid[r2\x][r2\y])
18 ∀ x: r2, y: r3 | no (grid[x][y] ∩ grid[r2\x][r3\y])
19 ∀ x: r3, y: r1 | no (grid[x][y] ∩ grid[r3\x][r1\y])
20 ∀ x: r3, y: r2 | no (grid[x][y] ∩ grid[r3\x][r2\y])
21 ∀ x: r3, y: r3 | no (grid[x][y] ∩ grid[r3\x][r3\y])

(b) Core of the puzzle (highlighted)

Figure 1-6: An unsatisfiable Sudoku puzzle and its core.

Figure 1-6 shows an example of using a minimal core to diagnose a faulty Sudoku
configuration. The highlighted parts of Fig. 1-6b comprise a set of critical constraints
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that cannot be satisfied by the puzzle in Fig. 1-6a. The row (line 11) and column (line
12) constraints rule out ‘9’ as a valid value for any of the blank cells in the bottom
right region. The values ‘2’, ‘4’, and ‘6’ are also ruled out (line 21), leaving five unique
numbers and six empty cells. By the pigeonhole principle, these cells cannot be filled
(as required by line 10) without repeating some value (which is disallowed by line
21). Removing ‘2’ from the highlighted cell fixes the puzzle.

The problem of unsatisfiable core extraction has been studied extensively in the
SAT community, and there are many efficient algorithms for finding small or minimal
cores of propositional formulas [32, 60, 61, 59, 79, 85, 97, 102, 153]. A simple facility
for leveraging these algorithms in the context of SAT-based model finding has been
implemented as a feature of Alloy3. The underlying mechanism [118] involves trans-
lating a specification to a SAT problem; finding a core of the translation using an
existing SAT-level algorithm [153]; and mapping the clauses from the boolean core
back to the specification constraints from which they were generated. The resulting
specification-level core is guaranteed to be sound (i.e. unsatisfiable) [118], but it is
not guaranteed to be minimal or even small.

Recycling core extraction (RCE) is a new SAT-based algorithm for finding cores
of declarative specifications that are both sound and minimal. It has two key ideas
(Chapter 4). The first idea is to lift the minimization process from the boolean level
to the specification level. Instead of attempting to minimize the boolean core, RCE
maps it back and then minimizes the resulting specification-level core, by removing
candidate constraints and testing the remainder for satisfiability. The second idea is
to use the proof of unsatisfiability returned by the SAT solver, and the mapping be-
tween the specification constraints and the translation clauses, to identify the boolean
clauses that were inferred by the solver and that still hold when a specification-level
constraint is removed. By adding these clauses to the translation of a candidate core,
RCE allows the solver to reuse previously made inferences.

Both ideas employed by RCE are straightforward and relatively easy to imple-
ment, but have dramatic consequences on the quality of the results obtained and the
performance of the analysis. Compared to NCE and SCE [129], two variants of RCE
that lack some of its optimizations, RCE is roughly 20 to 30 times faster on hard
problems and 10 to 60 percent faster on easier problems (Chapter 4). It is much
slower than Alloy3’s core extractor, OCE [118], which does not guarantee minimal-
ity. Most cores produced by OCE, however, include large proportions of irrelevant
constraints, making them hard to use in practice.

Figure 1-7, for example, compares RCE with OCE, NCE and SCE on a set of
100 unsatisfiable Sudokus. The puzzles were constructed from 100 randomly selected
16 × 16 Sudokus [63], each of which was augmented with a randomly chosen, faulty
clue. Figure 1-7a shows the number of puzzles on which RCE is faster (or slower)
than each competing algorithm by a factor that falls within the given range. Figure
1-7b shows the number of puzzles whose RCE cores are smaller (or larger) than those
of the competing algorithms by a factor that falls within the given range. All four
extractors were implemented in Kodkod, configured with MiniSat, and all experiments
were performed on a 2× 3 GHz Dual-Core Intel Xeon with 2 GB of RAM.

Because SCE is essentially RCE without the clause recycling optimization, they
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Figure 1-7: Comparison of SAT-based core extractors on 100 unsatisfiable Sudokus. Figure
(a) shows the number of puzzles on which RCE is faster, or slower, than each competing
algorithm by a factor that falls within the given range. Figure (b) shows the number of
puzzles whose RCE cores are smaller, or larger, than those of the competing algorithms
by a factor that falls within the given range. Both histograms are shown on a logarithmic
scale. The number above each column specifies its height, and the middle number is the
average extraction time (or core size) ratio for the puzzles in the given category.
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usually end up finding the same minimal core. Of the 100 cores extracted by each
algorithm, 92 were the same (Fig. 1-7b). RCE was faster than SCE on 85 of the
problems (Fig. 1-7a). Since Sudoku cores are easy to find6, the average speed up of
RCE over SCE is about 37%. NCE is the most naive of the three approaches and does
not exploit the boolean-level cores in any way. It found a different minimal core than
RCE for 31 of the puzzles. For 26 of those, the NCE core was larger than the RCE
core, and indeed, easier to find, as shown in Fig. 1-7a. Nonetheless, RCE was, on
average, 77% faster than NCE. OCE outperformed all three minimality-guaranteeing
algorithms by large margins. However, only four OCE cores were minimal, and more
than half the constraints in 75 of its cores were irrelevant.

1.4 Summary of contributions

This thesis contributes a collection of techniques (Fig. 1-8) that enable easy and
efficient use of SAT for declarative problem solving. They include:

1. A new problem-description language that extends the relational logic of Al-
loy [69] with a mechanism for specifying precise bounds on the values of free
variables (Chapter 2); the bounds enable efficient encoding and exploitation of
partial models.

2. A new translation to SAT that uses sparse-matrices and auto-compacting cir-
cuits (Chapter 2); the resulting boolean encoding is significantly smaller, faster
to produce, and easier to solve than the encodings obtained with previously
published techniques [40, 119].

3. A new algorithm for identifying symmetries that works in the presence of arbi-
trary bounds on free variables (Chapter 3); the algorithm employs a fast greedy
technique that is both effective in practice and scales better than a complete
method based on graph automorphism detection.

4. A new algorithm for finding minimal unsatisfiable cores that recycles infer-
ences made at the boolean level to speed up core extraction at the specification
level (Chapter 4); the algorithm is much faster on hard problems than related
approaches [129], and its cores are much smaller than those obtained with non-
minimal extractors [118].

These techniques have been prototyped in Kodkod, a new engine for finding mod-
els and cores of large relational specifications. The engine significantly outperforms
existing model finders [13, 25, 88, 93, 117, 152] on problems with partial models,
rich type hierarchies, and low-arity relations. As such problems arise in a wide
range of declarative configuration and analysis settings, Kodkod has been used in
several configuration [149, 101], test-case generation [114, 135] and bounded verifi-
cation [21, 137, 31, 126, 34] tools (Table 1.1). These applications have served as a

6Chapter 4 describes a metric for approximating the difficulty of a given problem for a particular
core extraction algorithm.
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Figure 1-8: Summary of contributions. The contributions of this thesis are highlighted
with gray shading; the remaining parts of the framework are implemented using standard
techniques. Filled arrows represent data and control flow between components. Clear arrows
represent usage relationships between components.

comprehensive testbed for Kodkod, revealing both its strengths and limitations. The
latter open up a number of promising directions for future work (Chapter 5).
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Alloy4 [21] analyzer for the Alloy language. Alloy4 uses Kodkod for simulation and checking
of software designs expressed in the Alloy modeling language. It is 2 to 10 times faster than
Alloy3 and provides a precise debugger for overconstrained specifications that is based on
Kodkod’s core extraction facility. Like its predecessor, Alloy4 has been used for modeling
and analysis in a variety of contexts, e.g. filesystems [75], security [81], and requirements
engineering [113].

Kato [136, 137] slicer for declarative specifications. Kato uses Kodkod to slice and solve Al-
loy specifications of complex data structures, such as red-black trees and doubly-linked lists.
The tool splits a given specification into base and derived constraints using a heuristically
selected slicing criterion. The resulting slices are then fed to Kodkod separately so that a
model of the base slice becomes a partial model for the derived slice. The final model, if any,
satisfies the entire specification. Because the subproblems are usually easier to solve than
the entire specification, Kato scales better than Alloy4 on specifications that are amenable
to slicing.

Forge [30, 31], Karun [126], and Minatur [34] bounded code verifiers. These tools use
Kodkod to check the methods of a Java class against rich structural properties. The basic
analysis [138] involves encoding the behavior of a given method, within a bounded heap, as
a set of relational constraints that are conjoined with the negation of the property being
checked. A model of the resulting specification, if one exists, represents a concrete trace of
the method that violates the property. All three tools have been used to find previously
unknown bugs in open source systems, including a heavily tested job scheduler [126] and an
electronic vote tallying system that had been already checked with a theorem prover [30].
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Kesit [134, 135] test-case generator for software product lines. Kesit uses Kodkod to in-
crementally generate tests for products in a software product line. Given a product that is
composed of a base and a set of features, Kesit first generates a test suite for the base by
feeding a specification of its functionality to Kodkod. The tests from the resulting test-suite
(derived from the models of the specification) are then used as partial models for the speci-
fication of the features. Because the product is specified by the conjunction of the base and
feature constraints, the final set of models is a valid test-suite for the product as a whole.
Kesit’s approach to test-case generation has been shown to scale over 60 times better than
previous approaches to specification-based testing [76, 77].

Whispec [114] test-case generator for white-box testing. Whispec uses Kodkod to generate
white-box tests for methods that manipulate structurally complex data. To test a method,
Whispec first obtains a model of the constraints that specify the method’s preconditions.
The model is then converted to a test input, which is fed to the method. A path condition
of the resulting execution is recorded, and new path conditions (for unexplored paths) are
constructed by negating the branch predicates in the recorded path. Next, Kodkod is applied
to the conjunction of the pre-condition and one of the new path conditions to obtain a new
test input. This process is repeated until the desired level of code coverage is reached.
Whispec has been shown to generate significantly smaller test suites, with better coverage,
than previous approaches.
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on ConfigAssure [100, 101] system for network configuration. ConfigAssure uses Kodkod for
synthesis, diagnosis and repair of network configurations. Given a partially configured net-
work and set of configuration requirements, ConfigAssure generates a relational satisfiability
problem that is fed to Kodkod. If a model is found, it is translated back to a set of configura-
tion assignments: nodes to subnets, IP addresses to nodes, etc. Otherwise, the tool obtains
an unsatisfiable core of the configuration formula and repairs the input configuration by
removing the configuration assignments that are in the core. ConfigAssure has been shown
to scale to realistic networks with hundreds of nodes and subnets.

A declarative course scheduler [148, 149]. The scheduler uses Kodkod to plan a student’s
schedule based on the overall requirements and prerequisite dependencies of a degree pro-
gram; courses taken so far; and the schedule according to which particular courses are offered.
The scheduler is offered as a free, web-based service to MIT students. Its performance is
competitive with that of conventional planners.

Table 1.1: Recent applications of Kodkod.
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Chapter 2

From Relational to Boolean Logic

The relational logic of Alloy [69] combines the quantifiers of first order logic with
the operators of relational algebra. The logic and the language were designed for
modeling software abstractions, their properties and invariants. But unlike the logics
of traditional modeling languages [123, 143], Alloy makes no distinction between
relations, sets and scalars: sets are relations with one column, and scalars are singleton
sets. Treating everything as a relation makes the logic more uniform and, in some
ways, easier to use than traditional modeling languages. Applying a partial function
outside of its domain, for example, simply yields the empty set, eliminating the need
for special undefined values.

The generality and versatility of Alloy’s logic have prompted several attempts to
use its model finder, Alloy3 [117], as a generic constraint solving engine for declarative
configuration [99] and analysis [76, 138]. These efforts, however, were hampered by
two key limitations of the Alloy system. First, Alloy has no notion of a partial model.
If a partial solution, or a model, is available for a set of Alloy constraints, it can
only be provided to the solver in the form of additional constraints. Because the
solver is essentially forced to rediscover the partial model from the constraints, this
strategy does not scale well in practice. Second, Alloy3 was designed for small-scope
analysis [69] of hand-crafted specifications of software systems, so it performs poorly
on problems with large universes or large, automatically generated specifications.

Kodkod is a new tool that is designed for use as a generic relational engine.
Its model finder, like Alloy3, works by translating relational to boolean logic and
applying an off-the-shelf SAT solver to the resulting boolean formula. Unlike Alloy3,
however, Kodkod scales in the presence of partial models, and it can handle large
universes and specifications. This chapter describes the elements of Kodkod’s logic
and model finder that are key to its ability to produce compact SAT formulas, with
and without partial models. Next chapter describes a technique that is used for
making the produced formulas slightly larger but easier to solve.
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2.1 Bounded relational logic

A specification in the relational logic of Alloy is a collection of constraints on a set of
relational variables. A model of an Alloy specification is a binding of its free variables
to relational constants that makes the specification true. These constants are sets
of tuples, drawn from a common universe of uninterpreted elements, or atoms. The
universe itself is implicit, in the sense that its elements cannot be named or referenced
through any syntactic construct of the logic. As a result, there is no direct way to
specify relational constants in Alloy. If a partial binding of relations to constants—
i.e. a partial model—is available for a specification, it must be encoded indirectly,
with constraints that use additional variables (e.g. N1 through N9 in Fig. 1-2b) as
implicit handles to distinct atoms. While sound, this encoding of partial models is
impractical because the additional variables and constraints make the resulting model
finding problem larger rather than smaller.

The bounded relational logic of Kodkod (Fig. 2-1) extends Alloy in two ways:
the universe of atoms for a specification is made explicit, and the value of each free
variable is explicitly bound, above and below, by relational constants. A problem
description in Kodkod’s logic consists of an Alloy specification, augmented with a
universe declaration and a set of bound declarations. The universe declaration specifies
the set of atoms from which a model of the specification is to be drawn. The bound
declarations bound the value of each relation with two relational constants drawn from
the declared universe: an upper bound, which contains the tuples that the relation
may include, and a lower bound, which contains the tuples that the relation must
include. Collectively, the lower bounds define a partial model, and the upper bounds
limit the pool of values available for completing that partial model.

Figure 2-2a demonstrates the key features of Kodkod’s logic on a toy specification
of a filesystem. The specification (lines 6-9) has four free variables: the binary relation
contents and the unary relations File, Dir, and Root. File and Dir represent the files and
directories that make up the filesystem. The contents relation is an acyclic mapping
of directories to their contents, which may be files or directories (line 6-7). Root

represents the root of the filesystem: it is a directory (line 8) from which all files and
directories are reachable by following the contents relation zero or more times (line 9).

The filesystem universe consists of five atoms (line 1). These are used to construct
lower and upper bounds on the free variables (lines 2-5). The upper bounds on File

and Dir partition the universe into atoms that represent directories (d0 and d1) and
those that represent files (f0, f1, and f2); their lower bounds are empty. The Root

relation has the same lower and upper bound, which ensures that all filesystem models
found by Kodkod are rooted at d0. The bounds on the contents relation specify that it
must contain the tuple 〈d0, d1〉 and that its remaining tuples, if any, must be drawn
from the cross product of the directory atoms with the entire universe.

A model of the toy filesystem is shown in Fig. 2-2b. Root is mapped to {〈d0〉},
as required by its bounds. The contents relation includes the sole tuple from its lower
bound and two additional tuples from its upper bound. File and Dir consist of the
file and directory atoms that are related by contents, as required by the specification
(Fig. 2-2a, lines 6, 8 and 9).
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problem := universe relBound∗ formula∗

universe := { atom[, atom]∗ }
relBound := var :arity [[constant, constant]]
constant := {tuple[, tuple]∗} | {}[×{}]∗
tuple := 〈atom[, atom]∗〉

atom, var := identifier
arity := positive integer

formula :=
no expr empty
| lone expr at most one
| one expr exactly one
| some expr non-empty
| expr ⊆ expr subset
| expr = expr equal
| ¬ formula negation
| formula ∧ formula conjunction
| formula ∨ formula disjunction
| formula ⇒ formula implication
| formula ⇔ formula equivalence

| ∀ varDecls || formula universal

| ∃ varDecls || formula existential

expr :=
var variable
| ẽxpr transpose
| êxpr closure

| ∗expr reflex. closure
| expr ∪ expr union
| expr ∩ expr intersection
| expr \ expr difference
| expr . expr join

| expr → expr product

| formula ? expr : expr if-then-else

| {varDecls || formula} comprehension

varDecls := var : expr[, var : expr]∗

(a) Abstract syntax

P : problem → binding → boolean
R : relBound → binding → boolean
F : formula → binding → boolean
E : expr → binding → constant
binding : var → constant

PJ{a1, . . . , an} r1 . . . rj f1 . . . fmKb :=
RJr1Kb ∧ . . .∧ RJrjKb ∧ FJf1Kb ∧ . . .∧ FJfmKb

RJv :k [l, u]Kb := l ⊆ b(v) ⊆ u

FJno pKb := |EJpKb| = 0
FJlone pKb := |EJpKb| ≤ 1
FJone pKb := |EJpKb| = 1
FJsome pKb := |EJpKb| > 0
FJp ⊆ qKb := EJpKb ⊆ EJqKb
FJp = qKb := EJpKb = EJqKb
FJ¬fKb := ¬FJfKb
FJf ∧ gKb := FJfKb ∧ FJgKb
FJf ∨ gKb := FJfKb ∨ FJgKb
FJf ⇒ gKb := FJfKb⇒ FJgKb
FJf ⇔ gKb := FJfKb⇔ FJgKb

FJ∀ v1 : e1, ..., vn : en || fKb :=V
s∈EJe1Kb(FJ∀ v2 : e2, ..., vn : en || fK(b⊕ v1 7→{〈s〉})

FJ∃ v1 : e1, ..., vn : en || fKb :=W
s∈EJe1Kb(FJ∃ v2 : e2, ..., vn : en || fK(b⊕ v1 7→{〈s〉})

EJvKb := b(v)
EJ̃ pKb := {〈p2, p1〉 | 〈p1, p2〉 ∈ EJpKb}
EĴ pKb := {〈p1, pn〉 | ∃ p2, ..., pn−1 |

〈p1, p2〉, ..., 〈pn−1, pn〉 ∈ EJpKb}
EJ∗pKb := EĴ pKb ∪ {〈p1, p1〉 | true}
EJp ∪ qKb := EJpKb ∪ EJqKb
EJp ∩ qKb := EJpKb ∩ EJqKb
EJp \ qKb := EJpKb \ EJqKb
EJp . qKb := {〈p1, ..., pn−1, q2, ..., qm〉 | 〈p1, ..., pn〉

∈ EJpKb ∧ 〈q1, ..., qm〉 ∈ EJqKb }
EJp→qKb := {〈p1, ..., pn, q1, ..., qm〉 | 〈p1, ..., pn〉

∈ EJpKb ∧ 〈q1, ..., qm〉 ∈ EJqKb }
EJf ? p : qKb := if FJfKb then EJpKb else EJqKb

EJ{v1 : e1, ..., vn : en || f}Kb :=
{〈s1, ..., sn〉 | s1∈EJe1Kb ∧ s2∈EJe2K(b⊕ v1 7→{〈s1〉})
∧ . . . ∧ sn∈EJenK(b⊕

Sn−1
i=1 vi 7→{〈si〉})

∧FJfK(b⊕
Sn

i=1 vi 7→{〈si〉})}

(b) Semantics

Figure 2-1: Syntax and semantics of bounded relational logic. Because Kodkod is designed
as a Java API, the users communicate with it by constructing universes, bounds, and
formulas via API calls. The syntax presented here is for illustrative purposes only. Mixed
and zero arity expressions are not allowed. The arity of a relation is the same as the arity of
its bounding constants. There is exactly one bound declaration v :k [l, u] for each relation
v that appears in a problem description. The empty set {} has arity 1. The empty set of
arity k is represented by taking the cross product of the empty set with itself k times, i.e.
{} × . . .× {}.
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1 {d0, d1, f0, f1, f2}

2 File :1 [{}, {〈f0〉,〈f1〉,〈f2〉}]
3 Dir :1 [{}, {〈d0〉,〈d1〉}]
4 Root :1 [{〈d0〉}, {〈d0〉}]
5 contents :2 [{〈d0, d1〉},

{〈d0, d0〉, 〈d0, d1〉, 〈d0, f0〉, 〈d0, f1〉, 〈d0, f2〉,
〈d1, d0〉, 〈d1, d1〉, 〈d1, f0〉, 〈d1, f1〉, 〈d1, f2〉}]

6 contents ⊆ Dir → (Dir ∪ File)
7 ∀ d: Dir || ¬(d ⊆ d.̂ contents)
8 Root ⊆ Dir
9 (File ∪ Dir) ⊆ Root.∗contents

(a) Problem description

File 7→ {〈f0〉,〈f1〉}
Dir 7→ {〈d0〉,〈d1〉}
Root 7→ {〈d0〉}
contents 7→ {〈d0, d1〉, 〈d0, f0〉, 〈d1, f1〉}

d0

d1f0

f1

contentscontents

contents

Root

Dir

File

(b) A sample model

Figure 2-2: A toy filesystem.

2.2 Translating bounded relational logic to SAT

Using SAT to find a model of a relational problem involves several steps (Fig. 1-8):
translation to boolean logic, symmetry breaking, transformation of the boolean for-
mula to conjunctive normal form, and conversion of a boolean model, if one is found,
to a model of the original problem. The last two steps implement standard transfor-
mations [44, 68], but the first two use novel techniques which are discussed in this
section and the next chapter.

2.2.1 Translation algorithm

Kodkod’s translation algorithm is based on the simple idea [68] that a relation over
a finite universe can be represented as a matrix of boolean values. For example, a
binary relation drawn from the universe {a0, . . . , an−1} can be encoded with an n×n
bit matrix that contains a 1 at the index [i, j] when the relation includes the tuple
〈ai, aj〉. More generally, given a universe of n atoms, the collection of possible values
for a relational variable v :k [l, u] corresponds to a k-dimensional matrix m with

m[i1, . . . , ik] =


1 if 〈ai1 , . . . , aik〉 ∈ l,
V(v, 〈ai1 , . . . , aik〉) if 〈ai1 , . . . , aik〉 ∈ u \ l,
0 otherwise,

where i1, . . . , ik ∈ [0 . . n) and V maps its inputs to unique boolean variables. These
matrices can then be used in a bottom-up, compositional translation of the entire
specification (Fig. 2-3): relational expressions are translated using matrix operations,
and relational constraints are translated as boolean constraints over matrix entries.

Figure 2-4 illustrates the translation process on the constraint contents ⊆ Dir →
(Dir ∪ File) from the filesystem specification (Fig. 2-2a, line 6). The constraint and
its subexpressions are translated in an environment that binds each free variable to
a matrix that represents its value. The bounds on a variable are used to populate its
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TP : problem → bool

TR : relBound → universe → matrix

TF : formula → env → bool
TE : expr → env → matrix

env : var → matrix

bool := 0 | 1 | boolVar | ¬ bool | bool ∧ bool | bool ∨ bool | bool ? bool : bool
boolVar := identifier

idx := 〈int[, int]∗〉

V : var → 〈atom[, atom]∗〉 → boolVar boolean variable for a given tuple in a relation
L M : matrix → {idx[, idx]∗} set of all indices in a matrix

J K : matrix → intint size of a matrix, (size of a dimension)number of dimensions

[ ] : matrix → idx → bool matrix value at a given index

M : intint → (idx → bool) → matrix
M(sd, f) := new m ∈ matrix where JmK = sd ∧ ∀ ~x ∈ {0, ..., s− 1}d, m[~x] = f(~x)

M : intint → idx → matrix
M(sd, ~x) := M(sd, λ~y. if ~y = ~x then 1 else 0)

TP[{a1, . . . , an} v1 :k1[l1, u1] . . . vj :kj
[lj , uj ] f1 . . . fm] := TF[

Vm
i=1 fi](∪j

i=1vi 7→ TR[vi :ki
[li, ui], {a1, . . . , an}])

TR[v :k [l, u], {a1, . . . , an}] := M(nk, λ〈i1, ...ik〉. if 〈ai1 , . . . , aik
〉 ∈ l then 1

else if 〈ai1 , . . . , aik
〉 ∈ u \ l then V(v, 〈ai1 , . . . , aik

〉)
else 0)

TF[no p]e := ¬TF[some p]e

TF[lone p]e := TF[no p]e ∨ TF[one p]e

TF[one p]e := let m← TE[p]e in
W

~x∈LmM m[~x] ∧ (
V

~y∈LmM\{~x} ¬m[~y])

TF[some p]e := let m← TE[p]e in
W

~x∈LmM m[~x]

TF[p ⊆ q]e := let m← (¬TE[p]e ∨ TE[q]e) in
V

~x∈LmM m[~x]

TF[p = q]e := TF[p ⊆ q]e ∧ TF[q ⊆ p]e

TF[not f ]e := ¬TF[f ]e

TF[f ∧ g]e := TF[f ]e ∧ TF[g]e
TF[f ∨ g]e := TF[f ]e ∨ TF[g]e

TF[f ⇒ g]e := ¬TF[f ]e ∨ TF[g]e

TF[f ⇔ g]e := (TF[f ]e ∧ TF[g]e) ∨ (¬TF[f ]e ∧ ¬TF[g]e)

TF[∀ v1 : e1, ..., vn : en || f ]e := let m← TE[e1]e in
V

~x∈LmM(¬m[~x]∨TF[∀ v2 : e2, ..., vn : en || f ](e⊕v1 7→ M(JmK, ~x)))

TF[∃ v1 : e1, ..., vn : en || f ]e := let m← TE[e1]e in
W

~x∈LmM(m[~x] ∧ TF[∀ v2 : e2, ..., vn : en || f ](e⊕ v1 7→ M(JmK, ~x)))

TE[v]e := e(v)
TE [̃ p]e := (TE[p]e)T

TE [̂ p]e := let m← TE[p]e, sd ← JmK, sq← (λx.i. if i=s then x else let y←sq(x, i ∗ 2) in y ∨ y · y) in sq(m, 1)

TE[∗p]e := let m← TE [̂ p]e, sd ← JmK in m ∨M(sd, λ〈i1, . . . , id〉. if i1 = i2 ∧ . . . ∧ i1 = ik then 1 else 0)

TE[p ∪ q]e := TE[p]e ∨ TE[q]e
TE[p ∩ q]e := TE[p]e ∧ TE[q]e
TE[p \ q]e := TE[p]e ∧ ¬TE[q]e
TE[p . q]e := TE[p]e · TE[q]e
TE[p→q]e := TE[p]e× TE[q]e

TE[f ? p : q]e := let mp ← TE[p]e, mp ← TE[q]e inM(JmpK, λ~x. TF[f ]e ? mp[~x] : mq [~x])

TE[{v1 : e1, ..., vn : en || f}]e := let m1 ← TE[e1]e, sd ← Jm1K in

M(sn, λ〈i1, . . . , in〉. let m2 ← TE[e2](e⊕ v1 7→ M(s, 〈i1〉)), . . . ,
mn ← TE[en](e⊕ v1 7→ M(s, 〈i1〉)⊕ . . .⊕ vn−1 7→ M(s, 〈in−1〉)) in
m1[i1] ∧ . . . ∧mn[in] ∧ TF[f ](e⊕ v1 7→ M(s, 〈i1〉)⊕ . . .⊕ vn 7→ M(s, 〈in〉)))

Figure 2-3: Translation rules for bounded relational logic.
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representation matrix as follows: lower bound tuples are represented with 1s in the
corresponding matrix entries; tuples that are in the upper but not the lower bound
are represented with fresh boolean variables; and tuples outside the upper bound are
represented with 0s. Translation of the remaining expressions is straightforward. The
union of Dir and File is translated as the disjunction of their translations so that a tuple
is in Dir ∪ File if it is in Dir or File; relational cross product becomes the generalized
cross product of matrices, with conjunction used instead of multiplication; and the
subset constraint forces each boolean variable representing a tuple in Dir→ (Dir∪File)
to evaluate to 1 whenever the boolean representation of the corresponding tuple in
the contents relation evaluates to the same.

2.2.2 Sparse-matrix representation of relations

Many problems suitable for solving with a relational engine are typed: their uni-
verses are partitioned into sets of atoms according to a type hierarchy, and their
expressions are bounded above by relations over these sets [39]. The toy filesys-
tem, for example, is defined over a universe that consists of two types of atoms:
the atoms that represent directories and those that represent files. Each expres-
sion in the filesystem specification (Fig. 2-2a) is bounded above by a relation over
the types Tdir = {d0, d1} and Tfile = {f0, f1, f2}. The upper bound on contents,
for example, relates the directory type to both the directory and file types, i.e.
dcontentse = {〈Tdir, Tdir〉, 〈Tdir, Tfile〉} = {d0, d1} × {d0, d1} ∪ {d0, d1} × {f0, f1, f2}.

Previous relational engines (§2.3.1) employed a type checker [39, 128], a source-to-
source transformation [40], and a typed translation [68, 117], in an effort to reduce the
number of boolean variables used to encode typed problems. Kodkod’s translation,
on the other hand, is designed to exploit types, provided as upper bounds on free
variables, transparently: each relational variable is represented as an untyped matrix
whose dimensions correspond to the entire universe, but the entries outside the vari-
able’s upper bound are zeroed out. The zeros are then propagated up the translation
chain, ensuring that no boolean variables are wasted on tuples guaranteed to be out-
side an expression’s valuation. The upper bound on the expression Dir→ (Dir∪ File),
for example, is {〈Tdir, Tdir〉, 〈Tdir, Tfile〉}, and the regions of its translation matrix (Fig.
2-4) that correspond to the tuples outside of its ‘type’ are zeroed out.

This simple scheme for exploiting both types and partial models is enabled by
a new multidimensional sparse-matrix data structure for representing relations. As
noted in previous work [40], an untyped translation algorithm cannot scale if based on
the standard encoding of matrices as multi-dimensional arrays, because the number
of zeros in a k-dimensional matrix over a universe of n atoms grows proportionally
to nk. Kodkod therefore encodes translation matrices as balanced trees that store
only non-zero values. In particular, each tree node corresponds to a non-zero cell (or
a range of cells) in the full nk matrix. The cell at the index [i1, . . . , ik] that stores
the value v becomes a node with

∑k
j=1 ijn

k−j as its key and v as its value, where
the index-to-key conversion yields the decimal representation of the n-ary number
i1 . . . ik. Nodes with consecutive keys that store a 1 are merged into a single node
with a range of keys, enabling compact representation of lower bounds.
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e =

8>>><>>>: File 7→

26664
0
0
f0

f1

f2

37775, Dir 7→

26664
d0

d1

0
0
0

37775, Root 7→

26664
1
0
0
0
0

37775, contents 7→

26664
c0 1 c2 c3 c4
c5 c6 c7 c8 c9
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
9>>>=>>>;.

TE[Dir]e = e(Dir)=

26664
d0

d1

0
0
0

37775, TE[File]e = e(File)=

26664
0
0
f0

f1

f2

37775, TE[contents]e = e(contents)=

26664
c0 1 c2 c3 c4
c5 c6 c7 c8 c9
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775.

TE[Dir ∪ File]e = TE[Dir]e ∨ TE[File]e =

26664
d0

d1

0
0
0

37775 ∨
26664

0
0
f0

f1

f2

37775 =

26664
d0

d1

f0

f1

f2

37775.

TE[Dir→ (Dir ∪ File)]e = TE[Dir]e× TE[Dir ∪ File]e =
ˆ

d0 d1 0 0 0
˜
×

26664
d0

d1

f0

f1

f2

37775

=

26664
d0 ∧ d0 d0 ∧ d1 d0 ∧ f0 d0 ∧ f1 d0 ∧ f2

d1 ∧ d0 d1 ∧ d1 d1 ∧ f0 d1 ∧ f1 d1 ∧ f2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775.

TF[contents ⊆ Dir→(Dir ∪ File)]e =
V

(¬TE[contents]e ∨ TE[Dir→ (Dir ∪ File)]e)

=
V

0BBB@¬
26664

c0 1 c2 c3 c4
c5 c6 c7 c8 c9
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775 ∨
26664

d0 ∧ d0 d0 ∧ d1 d0 ∧ f0 d0 ∧ f1 d0 ∧ f2

d1 ∧ d0 d1 ∧ d1 d1 ∧ f0 d1 ∧ f1 d1 ∧ f2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
1CCCA

=
V

26664
¬c0∨(d0∧d0) ¬1∨(d0∧d1) ¬c2∨(d0∧f0) ¬c3∨(d0∧f1) ¬c4∨(d0∧f2)
¬c5∨(d1∧d0) ¬c6∨(d1∧d1) ¬c7∨(d1∧f0) ¬c8∨(d1∧f1) ¬c9∨(d1∧f2)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

37775
= (¬c0∨(d0∧d0))∧(¬1∨(d0∧d1 ))∧(¬c2∨(d0∧f0))∧(¬c3∨(d0∧f1))∧(¬c4∨(d0∧f2))∧

(¬c5∨(d1∧d0 ))∧(¬c6∨(d1∧d1))∧(¬c7∨(d1∧f0))∧(¬c8∨(d1∧f1))∧(¬c9∨(d1∧f2)).

Figure 2-4: A sample translation. The shading highlights the redundancies in the boolean
encoding.
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0
0
f0

f1

f2

 =

3
f1

4
f2

2
f0

(a) TE[File]e


c0 1 c2 c3 c4

c5 c6 c7 c8 c9

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 =

2
c2

3
c3

1
1

0
c0

4
c4

7
c7

8
c8

6
c6

5
c5

9
c9

(b) TE[contents]e

Figure 2-5: Sparse representation of the translation matrices TE[File]e and TE[contents]e
from Fig. 2-4. The upper half of each tree node holds its key, and the lower half holds its
value. Matrices are indexed starting at 0.

Figure 2-5 shows the sparse representation of the translation matrices TE[File]e
and TE[contents]e from Fig. 2-4. The File tree contains three nodes, with keys that
correspond directly to the indices of the non-zero entries in the matrix. The contents

tree consists of ten nodes, each of which corresponds to a non-empty entry [i, j] in
the contents matrix, with i∗5+j as its key and the contents of [i, j] as its value. Both
of the trees contain only nodes that represent exactly one cell in the corresponding
matrix. It is easy to see, however, that the nodes 1 through 3 in the contents tree,
for example, could be collapsed into a single node with [1 . . 3] as its key and 1 as its
value if the entries [0, 2] and [0, 3] of the matrix were replaced with 1s.

Operations on the sparse matrices are implemented in a straightforward way, so
that the cost of each operation depends on the number of non-zero entries in the ma-
trix and the tree insertion, deletion, and lookup times. For instance, the disjunction
of two matrices with m1 and m2 non-zero entries takes O((m1 + m2) log(m1 + m2))
time. It is computed simply by creating an empty matrix with the same dimensions as
the operands; iterating over the operands’ nodes in the increasing order of keys; com-
puting the disjunction of the values with matching keys; and storing the result, under
the same key, in the newly created matrix. A value with an unmatched key is inserted
directly into the output matrix (under its key), since the absence of a key from one of
the operands is interpreted as its mapping that key to zero. Implementation of other
operations follows the same basic idea.

2.2.3 Sharing detection at the boolean level

Relational specifications are typically built out of expressions and constraints whose
boolean encodings contain many equivalent subcomponents. The expression Dir →
(Dir∪ File), for example, translates to a matrix that contains two entries with equiva-
lent but syntactically distinct formulas: d0∧d1 at index [0, 1] and d1∧d0 at index [1, 0]
(Fig. 2-4). The two formulas are propagated up to the translation of the enclosing
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reach(op : binary operator, v : vertex, k : integer)
1 if op = op(v) ∧ sizeOf(v) = 2 ∧ k > 1 then
2 L← reach(op, left(v), k − 1)
3 R← reach(op,right(v), k − |L|)
4 return L ∪R
5 else
6 return {v}

Figure 2-6: Computing the d-reachable descendants of a CBC node. The functions op and
sizeOf return the operator and the number of children of a given vertex. The functions
left and right return the left and right children of a binary vertex. The d-reachable
descendants of a vertex v are given by reach(op(v), v, 2d).

constraint and, eventually, the entire specification, bloating the final SAT encoding
and creating unnecessary work for the SAT solver. Detecting and eliminating struc-
tural redundancies is therefore crucial for scalable model finding.

Prior work (§2.3.2) on redundancy detection for relational model finding produced
a scheme that captures a class of redundancies detectable at the problem level. This
class is relatively small and does not include the kind of low-level redundancy high-
lighted in Fig. 2-4. Kodkod uses a different approach and exploits redundancies at
the boolean level, with a new circuit data structure called Compact Boolean Circuits
(CBCs). CBCs are related to several other data structures (§2.3.4) which were devel-
oped for use with model checking tools (e.g. [49]) and so do not work as well with a
relational translator (§2.4).

A Compact Boolean Circuit is a partially canonical, directed, acyclic graph (V, E, d).
The set V is partitioned into operator vertices Vop =Vand∪Vor∪Vnot∪Vite and leaves
Vleaf =Vvar ∪ {T, F}. The and and or vertices have two or more children, which are
ordered according to a total ordering on vertices <v; an if-then-else (ite) vertex has
three children; and a not vertex has one child. Canonicity at the level of children is
enforced for all operator vertices. That is, two distinct vertices of the same type must
differ by at least one child, and no vertex can be simplified to another by applying
an equivalence law from Table 2.1 to its children. Beyond this, partial canonicity
is enforced based on the circuit’s binary compaction depth d ≥ 1. In particular, no
binary vertex v ∈ V can be transformed into another vertex w ∈ V by applying the
law of associativity to the d-reachable descendants of v, computed as shown in Fig.
2-6.

An example of a non-compact boolean circuit and its CBC equivalents is shown
in Fig. 2-7. Part (a) displays the formula (x ∧ y ∧ z) ⇔ (v ∧ w) encoded as (¬(x ∧
y ∧ z)∨ (v ∧w))∧ (¬(w ∧ v)∨ (x∧ (y ∧ z))). Part (b) shows an equivalent CBC with
the binary compaction depth of d = 1, which enforces partial canonicity at the level
of inner nodes’ children. That is, the depth of d = 1 offers only the basic canonicity
guarantee, forcing the subformula (v ∧ w) to be shared. Part (c) shows the original
circuit represented as a CBC with the compaction depth of d = 2, which enforces
partial canonicity at the level of nodes’ grandchildren. The law of associativity applies
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Rule Condition

n
o
t ¬¬a→ a

it
e

i ? t : e→ t i = 1 ∨ t = e
i ? t : e→ e i = 0
i ? t : e→ i ∨ e t = 1 ∨ i = t
i ? t : e→ ¬i ∧ e t = 0 ∨ ¬i = t
i ? t : e→ ¬i ∨ t e = 1 ∨ ¬i = e
i ? t : e→ i ∧ t e = 0 ∨ i = e

a
n
d

V
i∈[1..n] ai →

V
i∈[1..i)∪(i..n] ai ∃i ∈ [1 . . n], ai = 1V

i∈[1..n] ai →
V

i∈[1..i)∪(i..n] ai ∃i, j ∈ [1 . . n], i 6= j ∧ ai = ajV
i∈[1..n] ai → 0 ∃i ∈ [1 . . n], ai = 0V
i∈[1..n] ai → 0 ∃i, j ∈ [1 . . n], ai = ¬aj

(
V

i∈[1..n] ai) ∧ b→ 0 n ≤ 2d ∧ ∃i ∈ [1 . . n], ai = ¬b ∨ b = ¬ai

¬(
W

i∈[1..n] ai) ∧ b→ ¬(
W

i∈[1..n] ai) n ≤ 2d ∧ ∃i ∈ [1 . . n], ai = ¬b ∨ b = ¬ai

¬(
W

i∈[1..n] ai) ∧ b→ 0 n ≤ 2d ∧ ∃i ∈ [1 . . n], ai = b

(
V

i∈[1..n] ai) ∧ b→ (
V

i∈[1..n] ai) n ≤ 2d ∧ ∃i ∈ [1 . . n], ai = b

(
W

i∈[1..n] ai) ∧ b→ b n ≤ 2d ∧ ∃i ∈ [1 . . n], ai = b

(
V

i∈[1..n] ai) ∧ (
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j∈[1..m] bj)→ (
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i∈[1..n] ai) n ≤ 2d ∧m ≤ 2d ∧ ∀j ∈ [1 . . m], ∃i ∈ [1 . . n], ai = bj
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i∈[1..n] ai) ∧ (
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j∈[1..m] bj)→ (
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i∈[1..m] bj) n ≤ 2d ∧m ≤ 2d ∧ ∀j ∈ [1 . . m], ∃i ∈ [1 . . n], ai = bj

(
V
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j∈[1..m] bj)→ (
V

i∈[1..n] ai) n ≤ 2d ∧m ≤ 2d ∧ ∃j ∈ [1 . . m], ∃i ∈ [1 . . n], ai = bj

o
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i∈[1..n] ai →

W
i∈[1..i)∪(i..n] ai ∃i ∈ [1 . . n], ai = 0W

i∈[1..n] ai →
W

i∈[1..i)∪(i..n] ai ∃i, j ∈ [1 . . n], i 6= j ∧ ai = ajW
i∈[1..n] ai → 1 ∃i ∈ [1 . . n], ai = 1W
i∈[1..n] ai → 1 ∃i, j ∈ [1 . . n], ai = ¬aj

(
W

i∈[1..n] ai) ∨ b→ 1 n ≤ 2d ∧ ∃i ∈ [1 . . n], ai = ¬b ∨ b = ¬ai

¬(
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i∈[1..n] ai) ∨ b→ ¬(
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i∈[1..n] ai) n ≤ 2d ∧ ∃i ∈ [1 . . n], ai = ¬b ∨ b = ¬ai
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(
W

i∈[1..n] ai) ∨ (
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Table 2.1: Simplification rules for a CBC with depth d. The rules that depend on d are
tested for applicability under two conditions. If the relevant operand is a (negated) binary
conjunction or a disjunction, then the rule is tested for applicability to its d-reachable
descendants. If the operand is a (negated) nary conjunction or a disjunction with up to 2d

children, then the rule is tested for applicability to those children. The rule is not tested
for applicability otherwise, which ensures that all rules that depend on d are applicable in
constant O(2d) time.
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to the subformulas (x ∧ y ∧ z) and (x ∧ (y ∧ z)), forcing (x ∧ y ∧ z) to be shared.

∨

z

∧

x y

∧

v w

∧

w v

∧ x

∧

∧

zy

∨

¬ ¬

(a) Original circuit

∨ ∨

∧

∧

y zx

∧

¬

∧

¬

v w

∧

(b) CBC, d = 1

∨ ∨

∧

¬
¬

v w

∧

z

∧

x y
(c) CBC, d = 2

Figure 2-7: A non-compact boolean circuit and its compact equivalents.

Partial canonicity of CBCs is maintained by a factory data structure that syn-
thesizes and caches all CBCs that are a part of the same graph (V, E, d). Given an
operator and o operands with at most c children each, the factory sorts the operands
and performs the applicable simplifications from Table 2.1. This takes O(o log o)
time, since the multi-operand rules can be applied in O(o) time, and the two-operand
rules, which are only applied to operands with at most 2d children (or d-reachable
descendants), take constant 2d time. If the simplification yields a boolean constant
or one of the operands, that result is returned. Otherwise, the operands are hashed,
and made into a new circuit only if the factory’s cache does not already contain a
circuit with the same inputs (or d-reachable descendants). Assuming collision resis-
tant hashing, checking the cache hits for (d-reachable) equality to the operands takes
O(max(2d, o)) = O(o) time, since d is a small fixed constant.

2.3 Related work

The body of research on SAT-based model finding for relational logic spans nearly
two decades. The first half of this section provides an overview of that work, with a
focus on prior techniques for exploiting types (§2.3.1) and for sharing subformulas in
the boolean encoding (§2.3.2). The second half covers the work that is not specific
to model finding but that is nonetheless closely related to the techniques employed
in Kodkod, namely other sparse-matrix (§2.3.3) and auto-compacting circuit (§2.3.4)
representations.

2.3.1 Type-based representation of relations

Early versions of the Alloy language [67, 68, 71] employed a simple type system
in which the universe of atoms was partitioned into a set of top-level types, and
the type of each expression was given as a product of these types. The language
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was translated to SAT using rules [68, 71] that mirror those of Kodkod, but that are
applied to rectangular matrices with typed dimensions instead of square matrices with
dimensions that range over the entire universe. Under this scheme, a k-ary relation
of type T1 → . . . → Tk is translated to a matrix with dimensions |T1| × . . . × |Tk|.
For example, the Dir relation from the filesystem problem corresponds to a vector of
length 2, containing the boolean variables d0 and d1, and the File relation corresponds
to a vector of length 3, containing the variables f0 through f2.

The typed approach has the advantage of producing dense matrices that can
be represented simply as multidimensional arrays. But the disadvantage of using
irregularly-shaped matrices is that they restrict the kind of operations that can be
performed on expressions of different types. For example, the relations Dir and File

cannot be added together because the matrix disjunction operator that is used for
translating unions requires its arguments to have identical dimensions.

In the early versions of Alloy [68, 71], the dimension mismatch problem was ad-
dressed by merging some of the types into a single supertype. To make the expression
Dir ∪ File legally typed and translatable, the types Tdir and Tfile are merged (manu-
ally, by changing the specification) into a new type, Tobject, that contains all files and
directories in the universe. The relations Dir and File are then both declared to have
Tobject as their type, resulting in two equally-sized translation vectors that can be
combined with the disjunction operator. The downside of this process, however, is
that it expands the upper bound on both Dir and File to the entire universe, doubling
the number of boolean variables needed to encode their values.

Alloy3 [117] addressed the dimension mismatch problem with two new features: a
type system [39, 128] that supports subtypes and union types, and a source-to-source
transformation [40] for taking advantage of the resulting type information without
changing the underlying translation (i.e. [68, 71]). These features are implemented
as two additional steps that happen before the translation. First, the typechecker
partitions the universe into a set of base types, and checks that the type of each
expression can be expressed as a relation over these base types. Next, the expression
types are used to atomize the specification into a set of equivalent constraints involving
expressions that range strictly over the base types. Finally, the new constraints, being
well-typed according to the old type system, are reduced to SAT as before [68, 71].

For example, suppose that the filesystem specification consists of a single con-
straint, namely contents ⊆ Dir → (Dir ∪ File). To translate this specification to SAT,
Alloy3 first partitions the filesystem universe into two base types, Tdir and Tfile, to
produce the following binding of expressions to types: Dir 7→ {〈Tdir〉}, File 7→ {〈Tfile〉},
Dir ∪ File 7→ {〈Tdir〉, 〈Tfile〉}, contents 7→ {〈Tdir, Tdir〉, 〈Tdir, Tfile〉}, and Dir → (Dir ∪
File) 7→ {〈Tdir, Tdir〉, 〈Tdir, Tfile〉}. It then atomizes the contents variable into two new
variables, contents = contentsd ∪ contentsf , that range over the types {〈Tdir, Tdir〉} and
{〈Tdir, Tfile〉}. In the next and final stage, the specification contents ⊆ Dir→ (Dir∪File)
is expanded to (contentsd ∪ contentsf ) ⊆ (Dir → Dir) ∪ (Dir → File), which is logically
equivalent to contentsd ⊆ (Dir→ Dir) ∧ contentsf ⊆ (Dir→ File). Each expression that
appears in this new specification ranges over the base types, and the specification as
a whole can be translated with the type-based translator using the same number of
boolean variables as the translation shown in Fig. 2-4.
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The atomization approach, however, does not work well for specifications with
transitive closure. Because there is no efficient way to atomize transitive closure
expressions [40] such as ĉontents in the toy filesystem, Alloy3 handles problems with
closure by merging the domain and range types of each closure expression into a single
base type. In the case of the filesystem problem, this leads to the merging of file and
directory types into a single type and, consequently, to the doubling in the number
of boolean variables needed to represent each relation.

2.3.2 Sharing detection at the problem level

Formal specifications of software systems often make use of quantified formulas whose
ground form contains many identical subcomponents. For example, the specification
of a filesystem that disallows sharing of contents among directories (e.g. via hard
links) may include the constraint ∀ p, d: Dir | ¬p=d ⇒ no (p.contents ∩ d.contents),
which grounds out to

(¬{〈d0〉}={〈d0〉}⇒ no ({〈d0〉}.contents ∩ {〈d0〉}.contents)) ∧
(¬{〈d0〉}={〈d1〉}⇒ no ({〈d0〉}.contents ∩ {〈d1〉}.contents)) ∧
(¬{〈d1〉}={〈d0〉}⇒ no ({〈d1〉}.contents ∩ {〈d0〉}.contents)) ∧
(¬{〈d1〉}={〈d1〉}⇒ no ({〈d1〉}.contents ∩ {〈d1〉}.contents))

in a two-directory universe. Alloy3’s sharing detection mechanism [117, 119] focuses
on ensuring that all occurrences of a given ground component, such as {〈d0〉}.contents,
share the same boolean encoding in memory.

The scheme works in two stages: a detection phase, in which the AST of a spec-
ification is traversed and each node is annotated with a syntactic template, and a
translation phase, in which the template annotations are used to ensure sharing. For
the above example, the first phase produces a set of template annotations that in-
cludes ¬p=d 7→ “¬? = ?”, p.contents 7→ “?.contents”, and d.contents 7→ “?.contents”.1

In the next phase, the translator keeps a cache for each template, which stores the
translations of all ground forms that instantiate the template. A ground form for
a node is then translated only if its translation is missing from the cache of the
node’s template. For example, when visiting d.contents in the environment {p7→{〈d0〉},
d7→{〈d0〉}}, the translator will find that the cache of “?.contents” contains a translation
for {〈d0〉}.contents, because p.contents, which is translated first, has the same ground
form in the given environment. The end result is that each occurrence of the ground
expression {〈d0〉}.contents (and, similarly, {〈d1〉}.contents) translates to the same ma-
trix in memory.

Unlike the template approach, Kodkod’s CBC approach ensures not only that the
translations for syntactically equivalent ground expressions are shared, but also that
¬{〈d0〉}= {〈d1〉} and ¬{〈d1〉}={〈d0〉} are translated to the same circuit. The template
scheme misses the latter opportunity for sharing because the two instantiations of the
template ¬?=? are syntactically distinct. In general, the set of redundancies detected

1Alloy3 creates a unique ID for each template rather than a syntactic representation such as
“?.contents”; the syntactic representation is used in the text for presentational clarity.
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Figure 2-8: GCRS and ECRS representations for multidimensional sparse matrices. GCRS
is the compressed row storage representation of a multidimensional matrix stored using the
canonical data layout. ECRS is the compressed row storage representation of a multidi-
mensional matrix stored using the extended Karnaugh map layout.

by CBCs is a superset of those detectable with templates. Even if the templates
incorporated semantic information to detect that ¬{〈d0〉}={〈d1〉} and ¬{〈d1〉}={〈d0〉}
are equivalent, the scheme would still miss the lower-level redundancies captured by
CBCs, such as the formulas highlighted in Fig. 2-4.

2.3.3 Multidimensional sparse matrices

Many representations have been developed for two-dimensional sparse matrices, in-
cluding the Coordinate (COO), Compressed Row/Column Storage (CRS/CCS), Jag-
ged Diagonal (JAD), Symmetric Sparse Skyline (SSS), and Java Sparse Array (JSA)
formats [12, 84]. The problem of representing multidimensional sparse matrices, on
the other hand, has received relatively little attention. Existing high-performance ap-
proaches for representing k-dimensional sparse data include the generalized CRS/CCS
(GCRS/GCCS) format and the extended Karnaugh map CRS/CCS (ECRS/ECCS)
format [82].

Figure 2-8 illustrates the key ideas behind the GCRS and ECRS representations on
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a sample three dimensional matrix. The GCRS format is based on the canonical data
layout for multidimensional arrays [24], in which an nk matrix is represented using
n one-dimensional arrays of size nk−1, with the matrix index [i1, . . . , ik] mapping to
the index

∑k
j=2 ijn

j−2 of the ith1 array (Fig. 2-8b). The ECRS format is based on
the extended Karnaugh map layout [83] which represents multidimensional arrays
with collections of two-dimensional matrices. An n × n × n matrix, for example, is
represented with n matrices of size n × n, where the 3-dimensional index [i1, i2, i3]
maps to the index [i1, i3] of the ith2 matrix. The three matrices are laid out in memory
with n arrays of length n2, with the index [i1, i2, i3] mapping to the index i2n + i3 of
the ith1 array (Fig. 2-8c).

Once a multidimensional sparse matrix is laid out in memory, it can be compressed
using a variation on the standard CRS format for 2-dimensional arrays. Given an
nk matrix m, GCRS encodes its canonical data representation CDL(m) with arrays
C1, . . . , Ck and V (Fig. 2-8d). The V array stores the non-zero values of the
matrix, obtained by scanning the rows of CDL(m) from left to right. The C1 array
stores the locations in V that start a row. In particular, if V [l] = m[i1, . . . , ik] then
C1[i1] ≤ l < C1[i1 + i]. By convention, C1 has n+1 elements with C1[n] = |V |, where
|V | is the length of V . Arrays C2, . . . , Ck store the non-row indices of the elements
in V ; i.e., if V [l] = m[i1, i2, . . . , ik], then C2[l] = i2, . . . , Ck[l] = ik. ECRS (for three-
dimensional matrices) encodes EKM(m), the extended Karnaugh map representation
of m, with three arrays: R, C, and V (Fig. 2-8e). The R and V arrays are defined
in the same way as the C1 and V arrays produced by GCRS. The C array stores the
column indices of the non-zero elements in EKM(m); that is, V [l] = m[i1, i2, i3] then
C[l] = i2n + i3.

Compared to Kodkod’s sparse matrices, GCRS and ECRS provide better average
access time for a given index.2 For an nk matrix with an average of d non-zeroes
per row, the value at a given index can be retrieved in O(log d) time for both GCRS
and ECRS; the Kodkod representation requires O(log nd) time. The Kodkod rep-
resentation, however, has several features that make it more suitable for use with
a relational translator than GCRS or ECRS. First, Kodkod matrices are mutable,
which is crucial for the translation of expressions (e.g. set comprehensions) whose
matrices must be filled incrementally. Neither GCRS nor ECRS support mutation.
Second, the representation of a Kodkod matrix shrinks as the number of consecutive
1s in its cells increases, which is important for efficient translation of problems that
have large partial models or that use built-in constants such as the universal relation.
GCRS and ECRS, for example, need O(nk) space to represent the universal relation
of arity k over an n-atom universe; Kodkod needs just one node. Finally, disjunction,
multiplication and other operations are straightforward to implement for Kodkod
matrices. Corresponding operations on GCRS and ECRS matrices, in contrast, are
much trickier to design: the published addition and multiplication algorithms for
these matrices work only when one of the operands is represented sparsely and the
other fully [82].

2Worst case access time for all three encodings is logarithmic in the number of non-zero elements.
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2.3.4 Auto-compacting circuits

The choice of circuit representation in a model checker affects the efficiency of the
overall tool in two ways [18]. First, a compact representation saves memory, en-
abling faster processing of larger problems. Second, it eliminates redundancies in
the boolean encoding, which is particularly important for SAT-based tools. These
concerns have been addressed in the literature with three different circuit representa-
tions, designed to work with different model checking backends: Boolean Expression
Diagrams (BEDs) [6], which are designed for use with BDD-based model checkers
[95]; Reduced Boolean Circuits (RBCs) [1]; and And-Inverter Graphs (AIGs) [19, 78],
which are used in SAT-based tools for bounded model checking [49, 73].

BEDs, RBCs and AIGs are similar to CBCs in that they define a graph over oper-
ator and leaf vertices which satisfies a set of partial canonicity invariants. Of the four,
BEDs support the largest number of operators (with every 2-input boolean function
represented by its own BED vertex), and AIGs support the fewest operators (allowing
only conjunctions and negations). RBCs support three operators: conjunction, nega-
tion, and equivalence. CBCs are the only representation that supports multi-input
and and or gates, which is crucial for efficient translation of quantified formulas.
In particular, a quantified formula such as ∀x1, . . . , xk : X | F (x1, . . . , xk) is trans-
lated as a conjunction of |X|k circuits that encode the ground forms of F (x1, . . . , xk).
CBCs represent this conjunction using a single gate with |X|k inputs. The other three
representations use |X|k − 1 binary gates.

In addition to supporting multi-input gates, CBCs also use different simplification
rules than BEDs, AIGs, and RBCs. Both BEDs and AIGs employ two-level rewrite
rules (i.e. rules that take into account operands’ children), which have been shown to
inhibit rather than promote subformula sharing [18]. Figure 2-9 displays an example
of such a rule, and how it interferes with sharing. A recent implementation of AIGs
[19] limited its use of two-level rules to those that do not interfere with sharing. These
are a superset of the rules employed by CBCs (Table 2.1). RBCs do not perform
any two-level simplifications. Rather, the two-level redundancies missed during the
construction of RBCs can be caught with an optional post-construction step [18],
which reduces the number of gates in an RBC by up to 10%.

Of the four circuit representations, RBCs are fastest to construct, since their
simplification rules take constant time to apply. The construction of a given CBC
is also constant, if only binary gates are used. The use of n-ary gates slows the
construction of a specific circuit down to O(max(i log i, c)) time, where i is the number
of inputs to the circuit and c is the number of those inputs’ children. This, however,
is not a bottleneck in practice (§2.4). The complexity of BED and AIG construction
is not known [18], because the two-level rules used by BED and AIGs can trigger an
unknown number of recursive calls to the circuit creation procedure. The only CBC
rules that may trigger a recursive call are the last four ite rules in Table 2.1, but
the resulting recursion bottoms out immediately since the only rules applicable in the
recursive call are the and and or rules, which are implemented without calling the
factory.3

3Note that each and and or rule, when applicable, simply eliminates some or all of the inputs.
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(c) Using CBC rules

Figure 2-9: An example of a non-optimal two-level rewrite rule. An expression of the form
(x∧ z)∧ y is re-written to (x∧ y)∧ z when y < z according to the vertex ordering <. When
the rule is applied to the circuit of the form ((a ∧ c) ∧ b) ∧ ((a ∧ c) ∧ d), the sharing of the
subexpression (a ∧ c) is destroyed because ((a ∧ c) ∧ b) is rewritten to ((a ∧ b) ∧ c).

2.4 Experimental results

This section concludes the chapter with an empirical evaluation of the presented
techniques against related work. The techniques are compared on a collection of 30
problems, analyzed in universes of 4 to 120 atoms (Table 2.2). Twelve of the prob-
lems are Alloy benchmarks, ranging from toy specifications of linked lists and trees
to complete specifications of the Mondex transfer protocol [106], Dijkstra’s mutual
exclusion algorithm [33], a ring leader selection algorithm [20], and a hotel locking
scheme [69]. All but two of the Alloy benchmarks (FileSystem and Handshake) are
unsatisfiable. The remaining eighteen problems are drawn from the TPTP library
[124] of benchmarks for automated theorem provers and model finders. Most of these
are rated as “hard” to solve; two (ALG195 and NUM378) have large partial instances;
and all of them are unsatisfiable.

The “Kodkod” columns of Table 2.2 show the performance of Kodkod, configured
to use CBCs with the sharing detection parameter d set to 3. The performance is
measured in terms of the translation and SAT solving times, both given in seconds,
and the size of the boolean encoding, given as the number of variables and clauses
fed to the SAT solver. The middle region of the table shows the changes in Kodkod’s
performance when it is configured to use a different circuit representation instead of
CBCs with d = 3. The “RBC” columns of the SET948 row, for example, show that
the use of RBCs on this problem decreases the translation time by a factor of 1.3;
increases the size of the boolean encoding by 258,528 variables and 324,666 clauses;
and increases the SAT solving time by a factor of 36.69. The last region of the table
compares the performance of Alloy3 to that of Kodkod (as given in the “Kodkod”
column). The notation “t/o” means that a process did not complete within 5 minutes,
and “m/o” means that it ran out of memory. All experiments were performed using
MiniSat on a 2× 3 GHz Dual-Core Intel Xeon with 2 GB of RAM.

The results in Table 2.2 demonstrate three things. First, CBCs detect more
sharing when d is greater than 1, with a negligible slowdown in the translation time
and a significant speed up in the SAT solving time. Most of the sharing detected by
CBCs with d = 3 that is missed by CBCs with d = 1 is undetectable by other circuit
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representations, since they perform equivalence checking exclusively at the level of
children (i.e. at d = 1). Second, while the construction of CBCs takes slightly more
time than that of RBCs, a CBC-based translation is faster in practice because fewer
gates need to be constructed. The CBC circuits are also solved, on average, 5.63 times
faster than the corresponding RBCs (not counting the two RBCs on which the SAT
solver timed out). Third, the comparison between Alloy3 and Kodkod shows that a
translation based on boolean-level sharing detection and sparse matrices is roughly an
order of magnitude more effective than a translation that uses problem-level sharing
detection and typed matrices. Alloy3 either timed out or ran out of memory on 11
out of 30 problems. It translated the remaining ones 24.94 times slower than Kodkod,
producing significantly larger boolean formulas that, in turn, took 8.78 times longer
to solve.
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Chapter 3

Detecting Symmetries

Many problems exhibit symmetries. A symmetry is a permutation of atoms in a
problem’s universe that takes models of the problem to other models and non-models
to other non-models. The toy filesystem (Fig. 2-2), for example, has six symmetries,
each of which permutes the file atoms and maps the directory atoms to themselves.
Figures 3-1 and 3-2 show the action of these symmetries on two sets of bindings
from filesystem variables to constants: all bindings in Fig. 3-1 satisfy the filesystem
constraints and all bindings in Fig. 3-2 violate them. Because symmetries partition
a problem’s state space into classes of equivalent bindings, a model, if one exists, can
be found by examining a single representative of each equivalence class. For problems
with large state spaces but few classes of equivalent bindings, exploiting, or breaking,
symmetries can lead to exponential gains in model finding efficiency.

Model finders exploit symmetries in two ways. Dynamic techniques explore the
state space of a problem directly, with a dedicated algorithm that employs symmetry-
based heuristics to guide the search [70, 93, 151, 152]. Static approaches use a black-
box search engine, such as a SAT solver, on a problem that has been augmented with
symmetry breaking predicates [27, 55, 116]. These predicates consist of constraints that
are true of at least one binding in each equivalence class (but not all); adding them to
the translation of a problem blocks a backtracking solver from exploring regions of the
search space that contain no representative bindings. Kodkod, like other SAT-based
model finders [117, 25], takes the static approach to symmetry breaking.

To use either approach, however, a model finder must first find a set of symmetries
to break. In the case of logics accepted by traditional model finders, symmetry
detection is straightforward. Given a universe of typed atoms, every permutation
that maps atoms of the same type to one another is a symmetry of any problem
defined over that universe [70]. Atoms of the same type can be freely interchanged
because traditional logics provide no means of referring to individual atoms. But
logics accepted by model extenders such as Kodkod and IDP1.3 do, which makes
interchangeable atoms, and therefore symmetries, hard to identify. This chapter
presents a new greedy technique for finding a useful subset of the available symmetries
in the context of model extension. The technique is shown to be correct, locally
optimal, effective in practice, and more scalable than a complete symmetry discovery
method based on graph automorphism detection.
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Figure 3-1: Isomorphisms of the filesystem model. Atom permutations are shown in the
cycle notation for permutations [7], where each element in a pair of parenthesis is mapped
to the one following it. The last element is mapped to the first, and the excluded elements
are mapped to themselves.
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Figure 3-2: Isomorphisms of an invalid binding for the toy filesystem. The bindings shown
here are invalid because the contents relation maps d1 to itself, violating the acyclicity
constraint. Atom permutations are shown in cycle notation.
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3.1 Symmetries in model extension

When configured or analyzed declaratively, systems with interchangeable components
give rise to model finding (or extension) problems with sets of symmetric atoms.
These symmetries, in turn, induce equivalences or isomorphisms among bindings in
the problem’s state space. More precisely, a symmetry is a permutation of atoms in
a problem’s universe that acts on a model of the problem to produce a model and on
a non-model to produce a non-model. The action of a symmetry on a binding from
variables to relational constants is defined as follows: a symmetry acts on a binding
by acting on each of its constants; on a constant by acting on each of its tuples;
and on a tuple by acting on each of its atoms. Two bindings that are related by a
symmetry are said to be isomorphic.

The set of symmetries of a problem P , denoted by Sym(P ), defines an equivalence
relation on the bindings that comprise the state space of P . Two bindings b and b′ are
equivalent if b′ = l(b) for some l ∈ Sym(P ). Because equivalent bindings all satisfy
or all violate P , it suffices to test one binding in each equivalence class induced
by Sym(P ) to find a model of P . Many practical problems, especially in bounded
verification, have an exponentially large state space but only a polynomial number
of equivalence classes [117]. Exploitation of symmetries, or symmetry breaking, is
crucial for making such problems tractable [27, 111].

Until recently, much of the work on symmetries in model finding has focused on
the design of better symmetry breaking methods [70, 93, 151, 152, 116]. Symmetry
detection has received less attention because discovering symmetries of a traditional
model finding problem is straightforward. If a problem P is specified in an unsorted
logic, then Sym(P ) contains every permutation of atoms in the universe of P ; if the
logic is typed, then Sym(P ) consists of all permutations that map atoms of the same
type to one another [70]. These results, however, no longer hold when a standard
logic is extended to support partial models. If P is specified as a model extension
problem that references individual atoms, as it may be in bounded relational logic,
finding Sym(P ) becomes intractable.

Consider, for example, the toy filesystem from the previous chapter and two
candidate symmetries, l1 = (f0 f2) and l2 = (d0 d1).1 Both permutations respect
the intrinsic “types” in the filesystem universe, mapping directories to directories
and files to files. When the two are applied to the model in Fig. 2-2b, however,
only l1 yields a model (Fig. 3-1f). The permutation l2 yields the following bind-
ing, which satisfies the filesystem specification but violates the bound constraints
on the contents and Root relations: {File 7→ {〈f0〉, 〈f1〉}, Dir 7→ {〈d1〉, 〈d0〉}, Root 7→
{〈d1〉}, contents 7→{〈d1,d0〉,〈d1,f0〉,〈d0,f1〉}}.

This example reveals two important properties of untyped model extension prob-
lems.2 First, any permutation is a symmetry of a specification, by the result from

1The cycle notation for permutations is explained in Fig. 3-1.
2All results from this chapter apply to other model extension logics, such as IDP, which restrict

the use of constants to type or partial model constraints (i.e. v = c, v ⊆ c, and c ⊆ v where v is a
variable and c is a constant). If constants can be used freely, then Thm. 3.1 describes a subset of
Sym(P ) rather than all of it; that is, only the ⇐ direction of the theorem holds.
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traditional model finding (Lemma 3.1). The permutation l2, for example, is a sym-
metry of the filesystem specification even though it is not a symmetry of the entire
problem. Second, a permutation is a symmetry of a set of bound constraints only if it
maps each constant within those bounds to itself (Lemma 3.2). The permutation l1 is
a symmetry of the filesystem bounds and of the entire problem. As a result, Sym(P )
for a Kodkod problem P is the set of all permutations that map each constant in P ’s
bounds to itself (Thm. 3.1). This, however, means that finding Sym(P ) is as hard
as graph automorphism detection (Thm. 3.2), which has no known polynomial time
solution [8].

Lemma 3.1 (Symmetries of specifications). If S is a bounded relational specification
over a (finite) universe U , then every permutation l : U → U is a symmetry of S.

Proof. Since S is a specification in a standard untyped logic (i.e. it contains no
constants), the symmetry result from traditional model finding applies [70].

Lemma 3.2 (Symmetries of bounds). Let U be a finite universe and let B be a set of
bounds of the form v :k [cL, cU ], where v is a variable of arity k and cL, cU ∈ 2Uk

. A
permutation l : U → U is a symmetry of B if and only if l(c) = c for each relational
constant c that occurs in B.

Proof. (⇐, by contradiction). Suppose that l(c) = c for all c in B and that l is not
a symmetry of B. Then, there must be some binding b from variables in B to sets of
tuples that satisfies B, written as b |= B, but l(b) 6|= B. For this to be true, there must
also be some v :k [cL, cU ] in B such that cL 6⊆ l(b(v)) or l(b(v)) 6⊆ cU . Since b |= B,
cL ⊆ b(v) ⊆ cU . Let x be the difference between b(v) and cL, i.e. x = b(v) \ cL. This
leads to l(b(v)) = l(cL ∪x) = l(cL)∪ l(x) = cL ∪ l(x), which implies that cL ⊆ l(b(v)).
So it must be the case that l(b(v)) 6⊆ cU . But this cannot be true, because the fact
that b(v) ⊆ cU and that l(cU) = cU together imply that l(b(v)) ⊆ l(cU) ⊆ cU .

(⇒, by contradiction). Suppose that B is a set of bounds and that l is a symmetry
of B with l(c) 6= c for some constant c in B. Then, there must be some v :k [cL, cU ]
in B such that cL = c or cU = c. Let b be the binding that maps v to c and every
other variable in B to its lower bound. By construction, b is a model of B, written
as b |= B. Because l(c) 6= c and l is a permutation, it must be the case that l(c) 6⊆ c
and c 6⊆ l(c). If c = cU , then b(v) = c implies that l(b(v)) = l(c) = l(cU) 6⊆ cU . This
means that l(b) 6|= v :k [cL, cU ] and therefore l(b) 6|= B, contradicting the assumption
that l is a symmetry of B. Similarly, if c = cL, then cL 6⊆ l(cL) = l(b(v)), which, once
again, means that l(b) 6|= v :k [cL, cU ], l(b) 6|= B, and l is not a symmetry of B.

Theorem 3.1 (Symmetries of problems). Let P be a bounded relational problem over
a (finite) universe U . A permutation l : U → U is a symmetry of P if and only if
l(c) = c for all constants c that occur in the bounds of P .

Proof. (⇔). Suppose that P and l are a problem and a permutation with the stated
properties. Let b be a binding that maps the free variables in P to constants drawn
from U . By the semantics of the logic, JP Kb = JBKb ∧ JSKb, where B are the bound
constraints and S is the specification of P . By Lemmas 3.1 and 3.2, JSKb = JSKl(b)
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and JBKb = JBKl(b). Hence, JP Kb = JP Kl(b). Because a symmetry of P has to be
a symmetry of all its constraints, and by Lemma 3.2, only permutations that fix
constants are symmetries of bound constraints, all symmetries of P fix the constants
that occur in B.

Theorem 3.2 (Hardness of symmetry detection for model extension). Let P be a
bounded relational problem over a (finite) universe U . Finding Sym(P ) is as hard as
graph automorphism detection.

Proof. (by reduction) Let G = (V, E) be some graph; U a universe consisting of the
nodes in V ; and c a binary relation that contains the tuple 〈vi, vj〉 (and the tuple
〈vj, vi〉, if G is undirected) whenever E contains an edge from vi to vj. By Thm. 3.1,
the symmetries of the problem P = g :2 [c, c] are the automorphisms of G.

3.2 Complete and greedy symmetry detection

Many graphs that arise in practice are amenable to efficient symmetry detection with
tools like Nauty [94], Saucy [28] and Bliss [72]. Relational bounds for small to medium-
sized problems, for example, correspond to graphs with easily detectable symmetries.
Bounds for large problems, however, are much harder for graph automorphism tools;
the cost of exact symmetry detection for a large problem generally rivals the cost of
finding its model with a SAT solver (§3.3).

This section therefore presents two new symmetry detection algorithms for model
extension problems. One is a complete method based on graph automorphism detec-
tion, which works for smaller problems. The other is a greedy approach that scales
to large problems. Unlike the complete method, which is guaranteed to find all sym-
metries for all problems, the greedy algorithm finds all symmetries for some problems
and a subset of the symmetries for others. This, as the next section shows, is not an
issue in practice because the problems that are most likely to benefit from symmetry
breaking are those on which the greedy algorithm is most effective.

3.2.1 Symmetries via graph automorphism detection

Figure 3-3a shows the pseudocode for a complete symmetry discovery method based
on graph automorphism detection. The intuition behind the algorithm is that a
relational constant of arity k can be represented as a set of linked lists of length k,
each of which encodes a tuple in the obvious way. A set of n relational constants that
make up the bounds of a problem P can then be converted into a directed colored
graph G = (V, E) as follows (Fig. 3-3b). The vertices of the graph are partitioned
into n + 1 sets, V0, . . . , Vn. All vertices in the same partition have the same color,
which differs from the colors of all other partitions. The set V0 consists of the atoms
that make up the universe of P . The set Vi (i > 0) consists of the buckets of the lists
that comprise the ith constant. The set E encodes the list pointers as graph edges.
There is an edge between v and v′ in Vi (i > 0) only if the bucket v points to the
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sym-complete(U : universe, C : set of constants drawn from U)
1 V ← color-fresh(U)
2 E ← {}
3 for all c ∈ C do
4 Vc ← {}
5 for all 〈a0, a1, . . . , ak−1〉 ∈ c do
6 t← array of k fresh vertices
7 for all 0 ≤ i < k do
8 Vc ← Vc ∪ {t[i]}
9 E ← E ∪ {〈t[i], ai〉}

10 for all 0 ≤ i < k − 1 do
11 E ← E ∪ {〈t[i], t[i + 1]〉}
12 color-fresh(Vc)
13 V ← V ∪ Vc

14 return automorphisms(V,E)

(a) Pseudocode for the detection algorithm. The procedure color-fresh colors all vertices in a given
set with the same color, which has not been used before. The procedure automorphisms calls an
automorphism detection tool such as Nauty on the given colored graph.

2
3

4 5 6d0 d1 f0 f1 f2
8

9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28

1

7

universe, {d0, d1, f0, f1, f2}
File upper bound, {〈f0〉,〈f1〉,〈f2〉}
Dir upper bound, {〈d0〉,〈d1〉}
Root bound, {〈d0〉}
contents upper bound, {d0, d1}×{d0, d1, f0, f1, f2}
contents lower bound, {〈d0, d1〉}

(b) Graph representation of the filesystem bounds. For clarity, vertex shape is used in place of color
to partition the vertices.

(f0 f1)(4 5)(13 15)(14 16)(23 25)(24 26)
(f1 f2)(5 6)(15 17)(16 18)(25 27)(26 28)
(f0 f2)(4 6)(13 17)(14 18)(23 27)(24 28)
(f0 f1 f2)(4 5 6)(13 15 17)(14 16 18)(23 25 27)(24 26 28)
(f0 f2 f1)(4 6 5)(13 17 15)(14 18 16)(23 27 25)(24 28 26)

(c) Automorphisms of the filesystem graph. The identity permutation is not shown.

Figure 3-3: Complete symmetry detection via graph automorphism.
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bucket v′ in the list representation of a given tuple. Similarly, E contains an edge
between v ∈ Vi (i > 0) and v′ ∈ V0 only if the bucket v contains the atom v′.

When the graph G is fed to Nauty [94], the result is a set of permutations that
map G to itself and that map vertices of the same color to one another. Because there
is a one-to-one correspondence between the constants in P and the (colored) vertices
and edges of G, the set of all automorphisms of G, denoted as Aut(G), is exactly the
set of symmetries of P when the action of each symmetry on the buckets is omitted
(Thm. 3.3). Figure 3-3c shows the automorphisms of the graph that represents the
filesystem bounds (Fig. 3-3b), as given by Nauty.

Theorem 3.3 (Soundness and completeness). Let U be a finite universe and C a
collection of relational constants drawn from U . Applying sym-complete to U and
C yields a colored graph G = (V, E) such that the set of all automorphisms of G,
denoted as Aut(G), is exactly Sym(C) when the action of each symmetry in Aut(G)
on V \ U is ignored.

Proof. Let Aut(G)U denote the set of all permutations obtained by ignoring the action
of each symmetry in Aut(G) on V \ U . By the construction of G = (V, E), there is
an exact correspondence between the constants in C and the nodes and edges in G.
In particular, G is the representation of each c ∈ C as a set of lists, where each list
encodes a tuple t ∈ c in the obvious way. Let l ∈ Aut(G) be a symmetry of G.
By the definition of a symmetry and the construction of G, l maps the set-of-lists
representation of each c ∈ C to itself. Consequently, when the action of l is restricted
to the vertices in U (by ignoring its action on other vertices in V ), the resulting
permutation is a symmetry of each c ∈ C. In other words, Aut(G)U ⊆ Sym(C). It
follows trivially from the construction of G that Sym(C) ⊆ Aut(G)U .

3.2.2 Symmetries via greedy base partitioning

While sym-complete works for small and medium-sized problems, it performs rel-
atively poorly on large relational problems that this thesis targets. Kodkod therefore
uses a greedy algorithm, called Greedy Base Partitioning (GBP), to find a subset of
the available symmetries that can be detected in polynomial time. This subset is com-
plete (i.e. includes all symmetries) for pure model finding problems, in which the use
of constants is limited to the encoding of type information. The algorithm is incom-
plete for problems with partial models or arbitrary upper bounds on free variables.
Generally, the larger the partial model, the fewer symmetries are discovered.

This approach is practical for two reasons. First, the problems that are most
likely to benefit from symmetry breaking are unsatisfiable and have large state spaces
with few isomorphism classes. Pure model finding problems, which typically encode
bounded verification tasks, tend to have both of these properties. Second, for any
problem to benefit from symmetry breaking, relatively few symmetries need to be
broken. Problems with partial models, which typically encode declarative configura-
tion tasks, already have many of their symmetries implicitly broken by the partial
model. If the toy filesystem, for example, were re-written to have no partial model
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1 {d0, d1, f0, f1, f2}

2 File :1 [{}, {〈f0〉,〈f1〉,〈f2〉}]
3 Dir :1 [{}, {〈d0〉,〈d1〉}]
4 Root :1 [{}, {〈d0〉,〈d1〉}]
5 contents :2 [{}, {〈d0, d0〉, 〈d0, d1〉, 〈d0, f0〉, 〈d0, f1〉, 〈d0, f2〉,

〈d1, d0〉, 〈d1, d1〉, 〈d1, f0〉, 〈d1, f1〉, 〈d1, f2〉}]

6 one Root
7 Root ⊆ Dir
8 contents ⊆ Dir → (Dir ∪ File)
9 ∀ d: Dir || ¬(d ⊆ d.̂ contents)

10 (File ∪ Dir) ⊆ Root.∗contents

(a) Problem description

(f0 f1)
(f1 f2)
(f0 f2)
(f0 f1 f2)
(f0 f2 f1)
(d0 d1)
(d0 d1)(f0 f1)
(d0 d1)(f1 f2)
(d0 d1)(f0 f2)
(d0 d1)(f0 f1 f2)
(d0 d1)(f0 f2 f1)

(b) Symmetries of the new filesystem

Figure 3-4: A toy filesystem with no partial model. This formulation differs from the
original (Fig. 2-2) in that there are no lower bounds; the upper bound on Root is extended
to range over all directories; and Root is explicitly constrained to be a singleton. The effect
is a doubling in the number of symmetries. (The identity symmetry is not shown.)

(Fig. 3-4a), it would have 12 symmetries (Fig. 3-4b). The presence of the partial
model, however, cuts that number in half.

GBP (Fig. 3-5a) is essentially a type inference algorithm. It works by partitioning
the universe of a problem P into sets of atoms such that each constant in P can be
expressed as a union of products of those sets (Def. 3.1). This is called a base par-
titioning (Def. 3.2), and every permutation that maps base partitions to themselves
is a symmetry of P (Thm. 3.4). Since large partitions have more permutations than
small partitions, GBP produces the coarsest base partitioning for P (Thms. 3.5-3.6).
For a pure model finding problem, these partitions correspond to the types that com-
prise the problem’s universe and hence capture all available symmetries. The coarsest
base partitioning for the filesystem formulation in Fig. 3-4a, for example, is {{d0,
d1}, {f0, f1, f2}}, which defines all 12 symmetries of the problem. When a partial
model is present, the partitions found by GBP are guaranteed to capture a subset of
Sym(P ); they may capture all of Sym(P ) if the partial model is fairly simple, as is
the case for the original toy filesystem (Fig. 3-5b).

Definition 3.1 (Flat product). Let c and c′ be relational constants. The flat product
of c and c′, denoted by c ⊗ c′, is defined as {〈a1, . . . , ak, b1, . . . , bk′〉 | 〈a1, . . . , ak〉 ∈
c ∧ 〈b1, . . . , bk′〉 ∈ c′}. The flat product is also applicable to sets, which are treated as
unary relations. That is, every set s is lifted to the unary relation {〈a〉 | a ∈ s} before
the flat product is applied to it.

Definition 3.2 (Base partitioning). Let U be a finite universe, c a non-empty rela-
tional constant drawn from U , and S = {s1, . . . , sn} a set of sets that partition U .
The set S is a base partitioning of U with respect to c if c =

⋃n
i=1 si1 ⊗ . . .⊗ sik for

some s11, . . . , snk ∈ S. Base partitionings of U with respect to c, denoted by βU(c),
are partially ordered by the refinement relation v, which relates two partitionings R
and S, written as R v S, if every partition in S is a union of partitions in R.
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gbp(U : universe, C: set of constants drawn from U)
1 S ← {U}
2 for all c ∈ C do
3 S ← part(c, S)
4 return S

part(c: constant, S: set of universe partitions)
1 k ← arity(c)
2 cfirst ← {a1 | 〈a1, . . . , ak〉 ∈ c}
3 for all s ∈ S such that s 6⊆ cfirst ∧ s ∩ cfirst 6= ∅ do
4 S ← (S \ s) ∪ {s ∩ cfirst} ∪ {s \ cfirst}
5 if k > 1 then
6 C ← {}
7 for all s ∈ S such that s ∩ cfirst 6= ∅ do
8 S ← S \ s
9 while s 6= ∅ do

10 x← chooseElementFrom(s)
11 xrest ← {〈a2, . . . , ak〉 | 〈x, a2, . . . , ak〉 ∈ c}
12 xpart ← {a ∈ s | {〈a2, . . . , ak〉|〈a, a2, . . . , ak〉 ∈ c} = xrest}
13 s← s \ xpart

14 S ← S ∪ {xpart}
15 C ← C ∪ {xrest}
16 for all c′ ∈ C do
17 S ← part(c′, S)
18 return S

(a) Pseudocode for greedy base partitioning. Variables whose names begin with a capital letter point
to values whose type is a set of sets. Variable whose names begin with a lower case letter point to
scalars or sets (of tuples or atoms).

line description S

1 initialize S to {{d0, d1, f0, f1, f2}} {{d0, d1, f0, f1, f2}}
3 part(S, {〈f0〉, 〈f1〉, 〈f2〉}) {{d0, d1}, {f0, f1, f2}}
3 part(S, {〈d0〉, 〈d1〉}) {{d0, d1}, {f0, f1, f2}}
3 part(S, {〈d0〉}) {{d0}, {d1}, {f0, f1, f2}}
3 part(S, {〈d0, d1〉}) {{d0}, {d1}, {f0, f1, f2}}

part(S, {〈d1〉}) {{d0}, {d1}, {f0, f1, f2}}
3 part(S, {d0, d1} × {d0, d1, f0, f1, f2}) {{d0}, {d1}, {f0, f1, f2}}

part(S, {〈d0〉, 〈d1〉, 〈f0〉, 〈f1〉, 〈f2〉}) {{d0}, {d1}, {f0, f1, f2}}
4 return {{d0}, {d1}, {f0, f1, f2}}

(b) Applying GBP to the toy filesystem. The figure shows a condensed representation of the trace
produced by gbp on the toy filesystem. The first two columns give the line number and a description
of the executed gbp statement. The last column shows the effect of the given statement on the value
of S from the preceding row. Recursive calls to part are indented.

Figure 3-5: Symmetry detection via greedy base partitioning.
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Theorem 3.4 (Soundness). Let U be a finite universe, P a problem over U , and
S = {s1, . . . , sn} a base partitioning of U with respect to the constants that occur in
P . If a permutation l : U → U maps each s ∈ S to itself, then l ∈ Sym(P ).

Proof. Let c be a constant that occurs in P . Because l maps each partition in S to
itself, and c is a union of products of some partitions in S, l(c) = c. This, by Thm.
3.1, implies that l ∈ Sym(P ).

Theorem 3.5 (Local optimality of gbp). Let U be a finite universe and C a collection
of relational constants drawn from U . Applying gbp to U and C yields the coarsest
base partitioning of U with respect to C.

Proof. (by induction on the size of C). If C is empty, lines 2-3 of gbp never execute, so
the algorithm returns {U}. Suppose that C is non-empty, and let ci and Si designate
the values of the variables c and S at the end of the ith loop iteration. Since S
is initialized to {U}, S1 is, by Thm. 3.6, the coarsest base partitioning of U with
respect to c1. Suppose that Sn−1 is the coarsest base partitioning of U with respect
to c1, . . . , cn−1. It follows from Def. 3.2 and the coarseness of Sn−1 that any base
partitioning of U with respect to c1, . . . , cn−1 must be a refinement of Sn−1. By Thm.
3.6, Sn is the coarsest refinement of Sn−1 such that Sn ∈ βU(cn). Hence, Sn must be
the coarsest base partitioning of U with respect to c1, . . . , cn−1, cn.

Theorem 3.6 (Local optimality of part). Let U be a finite universe, c a relational
constant drawn from U , and S a set of sets that partition U . Applying part to c and
S yields the coarsest refinement of S that is a base partitioning of U with respect to
c.

Proof. (by induction on the arity of c). Suppose that arity(c) = 1. Let S0 denote the
value of S that is passed to the procedure, and let Sm denote the value of S after
the first loop (lines 3-4) has terminated. Since an iteration of the loop simply splits
a partition s ∈ S0 into two partitions that add up to s, Sm v S0. The loop condition
ensures that all partitions in Sm are either contained in c or do not intersect with it,
so Sm ∈ βU(c). Finally, Sm is the coarsest refinement of S0 that is a base partitioning
with respect to c since none of the partitions created by the loop can be merged
without taking away one of the partitions that makes up c.

For the inductive case, suppose that the theorem holds for all constants of arity
k − 1, and suppose that arity(c) = k. Let Sy denote the value of S after the second
loop (lines 7-15) has terminated; and let Sz be the value of S after the third loop
(lines 16-17) has terminated. The first loop refines S0 into Sm, which is the coarsest
base partitioning of U with respect to the first column of c. The second loop splits
each s ∈ Sm that intersects with cfirst into the smallest number of subpartitions such
that c maps all atoms in a subpartition, denoted by xpart , to the same constant of
arity k − 1, denoted by xrest . This ensures that Sy is the coarsest refinement of S0

such that c is a union of products of each xpart ∈ Sy \ Sm with its corresponding
xrest ∈ C. By the inductive hypothesis, Sz is the coarsest refinement of Sy that is a
base partitioning of U with respect to each xrest ∈ C. Hence, by Lemma 3.3, Sz is
the coarsest refinement of S0 that is a base partitioning of U with respect to c.
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Lemma 3.3 (Partitioning invariant). Let U be a finite universe, c a constant of arity
k > 1 drawn from U , and S a set of sets that partitions U . Let R be the coarsest
refinement of S such that c =

⋃n
i=1 pi ⊗ ci for some distinct partitions p1, . . . , pn ∈ R

and some distinct constants c1, . . . , cn of arity k − 1. If Q is a refinement of S that
is a base partitioning with respect to c, then Q is a refinement of R that is a base
partitioning of U with respect to c1, . . . , cn.

Proof. The proof follows directly from Def. 3.2 and the definition of R.

3.3 Experimental results

Table 3.1 shows the results of applying gbp and symm-complete to a collection of 40
benchmarks. Thirty are the Alloy and TPTP benchmarks introduced in the previous
chapter. The remaining ten are drawn from a public database of graph coloring
problems [132]. The graphs to be colored are encoded as (large) partial models, and
the k-colorability problem for each graph is encoded as a relational formula over a
universe with k color atoms. All ten problems are unsatisfiable. The benchmarks in
the “mulsol” and “zeroin” families represent register allocation problems for variables
in real code; the “school” benchmarks are class scheduling problems.

The first two columns of Table 3.1 display the name of each benchmark and the
size of its partial model, given as the number of known tuples. The third column
shows the size of each problem’s state space, given as the number of bits needed
to encode all possible bindings that extend the problem’s partial model (if any).
The state space of AWD.A241, for example, consists of 22512 distinct bindings. The
“GBP” and “Symm-Complete” columns display the time, in milliseconds, taken by
the corresponding algorithm to find the given number of symmetries, expressed in bits.
The last two columns hold the SAT solving time for each problem, in milliseconds,
with and without symmetry breaking. The notation “t/o” indicates that a given
process failed to produce a result within 5 minutes (300,000 ms).

All experiments were performed on a 2 × 3 GHz Dual-Core Intel Xeon with 2
GB of RAM, using Kodkod’s translation algorithm to reduce the benchmarks to SAT
and MiniSat to solve the resulting boolean formulas. gbp is implemented as a part of
Kodkod and works on the tool’s internal representation of relational constants as sets
of integers. The symm-complete implementation converts each Kodkod constant
to a graph and uses Nauty [94] for automorphism detection.3 Each benchmark was
solved twice, once without any symmetry breaking and once with a predicate based
on gbp’s output.

The resulting data illustrate the key points of this chapter: (1) many model find-
ing and extension problems are infeasible without symmetry breaking; (2) complete
symmetry detection is impractical for large problems; and (3) the subset of symme-
tries detected by greedy base partitioning is sufficient for effective symmetry breaking.
symm-complete timed out on 35% of the problems, and it was, on average, 8125
times slower than gbp on the remaining ones. gbp found all symmetries for Alloy

3The more recent graph automorphism detection tools [28, 72] work only on undirected graphs.
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GBP Symm-Complete SAT time (ms)

problem
partial 

model

state 

space

time 

(ms)

symmetries 

(log base 2)

time 

(ms)

symmetries 

(log base 2)

with      

a SBP

without 

a SBP

AWD.A241 2 2512 8 105.63 246286 105.63 131331 t/o

AWD.Op_total 2 2492 7 105.63 247628 105.63 0 0

AWD.Ignore 2 2501 8 105.63 250810 105.63 18803 t/o

AWD.Transfer 2 1370 7 73.50 20205 73.50 108280 t/o

Dijkstra 0 16040 8 183.23 t/o t/o 18070 182834

FileSystem 1 3810 6 318.22 281662 318.22 2197 76

Handshake 12 200 5 15.30 26 15.30 496 20

Lists.Empties 0 14640 9 544.27 t/o t/o 13803 t/o

Lists.Reflexive 0 854 5 72.69 848 72.69 11824 22729

Lists.Symmetric 0 288 4 30.60 46 30.60 23406 t/o

RingElection 0 640 5 30.60 1911 30.60 23185 23281

Trees 0 56 3 12.30 7 12.30 55645 t/o

ALG195 37 1052 3 0.00 128 0.00 43 42

ALG197 37 1064 3 0.00 137 0.00 24 35

ALG212 0 2436 7 12.30 107828 12.30 55879 t/o

COM008 11 397 4 25.25 91 25.25 5753 t/o

GEO091 0 2470 6 43.58 102381 43.58 74334 248153

GEO092 0 1344 6 30.60 5893 30.60 6379 5363

GEO115 0 8415 9 36.94 t/o t/o 104182 59454

GEO158 0 1312 5 30.60 6321 30.60 13231 7404

GEO159 0 5408 7 30.60 t/o t/o 48082 18090

LAT258 0 792 8 9.49 948 9.49 15863 t/o

MED007 0 1890 8 132.92 9510 132.92 41145 48853

MED009 0 1890 7 132.92 9500 132.92 44604 53226

NUM374 0 415 5 6.91 156 6.91 35016 t/o

NUM378 462 2024 5 0.00 366 0.00 0 0

SET943 0 511 5 12.30 278 12.30 11312 t/o

SET948 0 6314 8 36.34 t/o t/o 2931 t/o

SET967 0 400 6 4.58 127 4.58 89 118

TOP020 0 3620 8 21.79 140462 21.79 49346 55902

mulsol.i.1 8074 5319 20 395.11 t/o t/o 5380 t/o

mulsol.i.2 7985 5076 24 178.30 t/o t/o 18078 t/o

mulsol.i.3 8043 4968 24 159.84 t/o t/o 19654 t/o

mulsol.i.4 8104 4995 23 159.84 t/o t/o 10236 t/o

mulsol.i.5 8159 5022 23 161.84 t/o t/o 27772 t/o

school1_nsh 29589 4576 79 33.54 t/o t/o 11269 t/o

school1 38588 5005 98 33.54 t/o t/o 215 t/o

zeroin.i.1 8438 5697 20 535.59 t/o t/o 9444 t/o

zeroin.i.2 7321 5908 21 373.65 t/o t/o 32945 t/o

zeroin.i.3 7313 5562 20 343.51 t/o t/o 3510 t/o
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Table 3.1: Evaluation of symmetry detection algorithms. Partial model size is given as the
number of known tuples. The size of a problem’s state space is measured in the number of
bits needed to encode all possible bindings that extend its partial model. The number of
symmetries is also expressed in bits. All times are given in milliseconds; “t/o” means that
the given process failed to complete within 5 minutes.
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and TPTP benchmarks, which are either pure model finding problems or have small
partial models. It produced only a subset of the available symmetries4 for the graph
coloring benchmarks. Each of these subsets, however, captured enough symmetries
to enable MiniSat to solve the corresponding problem within the time limit.

3.4 Related work

Symmetry breaking has been extensively studied in both traditional model finding
and in constraint programming. Most of the work on symmetries in traditional model
finding has focused on the design of better symmetry breaking heuristics, dynamic and
static. Detection of symmetries is performed implicitly by type inference algorithms.
The first half of this section summarizes that work. The second half covers the
work on symmetry breaking and detection in constraint programming. The latter is
of particular interest since detecting symmetries of constraint programs is, in many
ways, harder than detecting symmetries of both model finding and model extension
problems.

3.4.1 Symmetries in traditional model finding

Most search-based model finders [70, 93, 122, 151, 152] use a variant of the Least
Number Heuristic (LNH) [151] to reduce the number of isomorphic bindings that are
examined during search. The basic idea behind LNH is simple. At a given point
in the search, a type T is partitioned into elements {e1, . . . , ei} that appear in the
current partial assignment from variables to values and the elements {ei+1, . . . , en}
that do not. The unconstrained elements, {ei+1, . . . , en}, are symmetric, so only one of
them (e.g. ei+1) needs to be considered in the subsequent assignments. In particular,
suppose that C is a set of (ground) first order clauses, A is a partial assignment
of variables constrained by C to values, and v is an unassigned variable of type T .
To find a model of C in this scenario, it is sufficient to test only the bindings that
extend A with an assignment from v to an element in {e1, . . . , ei+1}. In practice, LNH
improves search times by orders of magnitude for many problems [152].

Unlike search-based model finders, SAT-based tools [25, 117] cannot exploit sym-
metries dynamically. Instead, they employ a static symmetry breaking technique
that involves augmenting the SAT encoding of a given problem with symmetry
breaking predicates. These are constraints that hold for at least one binding in
each isomorphism class in the problem’s state space. The lex-leader predicate [27],
for example, is true only of the lexicographically smallest binding in an equiva-
lence class. It has the form V ≤ l(V ), where l is a symmetry and V is an or-
dering of the bits that make up the state space of a given problem. The formula
d0d1f0f1f2c0c2c3c4c5c6c7c8c9 ≤ d0d1f1f0f2c0c3c2c4c5c6c8c7c9, for instance, is a lex-
leader predicate for the symmetry (f0 f1) of the toy filesystem (Fig. 2-5). Most
SAT-based model finders [25, 117] employ some variant of the lex-leader predicate.

4All ten graphs are undirected and have symmetries detectable with Bliss [72] that are not
detected by gbp.
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Alloy3 and Kodkod use it in addition to predicates [116] that break symmetries on
relations with specific properties, such as acyclicity.

Model finders that accept typed formulas [69, 152, 117] use the provided sorts or
types to identify symmetries. Those that accept untyped formulas take one of two
approaches to symmetry detection. Mace4 [93] works on untyped problems directly,
taking their symmetries to be all permutations of the universe of interpretation. Para-
dox2.3 [25], on the other hand, first employs a sort inference algorithm to transform
an untyped input problem into an equisatisfiable typed problem. It then solves the
new problem, taking its symmetries to be all permutations that respect the inferred
types. The inference algorithm works as follows. First, it assigns unrelated sorts to all
predicate and function symbols that appear in a given set of unsorted clauses. Next,
it forces all occurrences of a variable within a clause to have the same sort. Finally,
it forces each pair of functions related by the ‘=’ symbol to have the same sort. The
result is a sound typing (as defined in [70]) that can be applied to the input problem
without affecting its satisfiability.

The process of typing unsorted problems, and then breaking symmetries on the
resulting types, can lead to dramatic improvements in model finding performance.
To see why, consider the problem P specified by the clause “∀x, f(x) 6= g(x),” where
f and g are uninterpreted functions with the universal typing f, g : U → U . In a
two atom universe {a0, a1}, P has 28 possible bindings since four bits are needed to
represent f and four to represent g. These bindings are partitioned into equivalence
classes by two symmetries: (a0 a1) and the identity. Now consider the problem P ′

specified by the same clause as P but using the typing f : A → B and g : A →
B inferred by Paradox2.3. In the universe {a0, a1, b0, b1} where each of the types
has 2 atoms, P ′ has 28 bindings, like P , and it has a model only if P does. The
key difference between the two is that P ′ has twice as many symmetries as P , i.e.
(a0 a1), (b0 b1), (a0 a1)(b0 b1), and the identity. Since more symmetries lead to fewer
isomorphism classes, a model finder needs to examine half as many (representative)
bindings to solve P ′ as it does to solve P .

3.4.2 Symmetries in constraint programming

As in traditional model finding, symmetry breaking methods used in constraint pro-
gramming fall into two categories: static and dynamic. Static approaches include a
number of predicates based on the lex-leader method (e.g. [47, 50, 104]). Dynamic
approaches include Symmetry Breaking During Search [10, 11], Symmetry Breaking
via Dominance Detection [45, 48], and Symmetry Breaking Using Stabilizers [103].
Gent et al. [55] provide a detailed overview of these techniques, both static and
dynamic.

The research on the identification of symmetries in constraint solving problems
(CSPs) has focused mostly on methods [54, 64] for enabling the user to specify com-
monly occurring symmetries directly, such as “all rows of the matrix m can be inter-
changed.” Detecting the symmetries of a CSP automatically is tricky for two reasons.
First, there are nearly a dozen different definitions of a symmetry for a CSP [26, 55].
Of these, the most liberal definition is that of a solution symmetry [26], defined as a
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Fig. 6. Some symmetry graphs

If the number of variables is equal to the number of values, then the constraint
can be stated by

∀j
∑

i

yij = 1 (5)

Then, depending on the case the vertices and edges for equation (4) or (5) are
added.

Example 12. Let us consider the global cardinality constraint gcc(X, C, V )
where X is a vector of variables < x1, . . . , xn >, C another vector of variables
< c1, . . . , cm >, and V a vector of values < v1, . . . , vm >. Let yij be the variables
corresponding to the values of the xi variables, and let zkl be the variables
corresponding to the values of the ck variables. Then the gcc constraint can be
expressed by:

∀j
∑

i

yij =
∑

l

l × zjl (6)

Indeed, we have that
∑

i yij = cj and that ck =
∑

l l×zkl. Therefore, the vertices
an edges corresponding to (6) are added.

5.3 Handling Expressions

The treatment of expressions is more complex. Indeed, one needs to be able to
express the relationship between value vertices of x op y and the value vertices of
x and y. A generic way is to replace expressions by constraints. For instance, an
expression x op y where op is a binary operator can be replaced by a new variable z
and a ternary constraint op(z, x, y). Then this ternary constraint can be described
in extension. This approach is correct: any symmetry of the resulting graph is a
symmetry of the CSP. However, it may lead to extremely large graphs.

We have decided to only handle some simple expressions when detecting all
symmetries. We handle expressions f(x) involving only one occurrence of one
variable x. Let yj be the vertices representing x = j. Then the only possible

Figure 3-6: Microstructure of a CSP, as given by Puget [105].

permutation of 〈variable, value〉 pairs that preserves the set of solutions. The sym-
metries of model finding and extension problems, in contrast, are defined strictly as
permutations of values. Second, there is no practical criterion for identifying the full
symmetry group of a large CSP with non-binary constraints [26, 55].

There are, however, two automatic techniques [105, 107] for capturing a subset of
the solution symmetries of a CSP. Both are closely related and work by applying a
graph automorphism detector to the microstructure graph [26] of each constraint in
a CSP. For example, consider the CSP “x = y,” where x and y are integers in the
range [1 . . 3]. The microstructure graph of this problem is given in Fig. 3-6. The
nodes A1 through A3 represent all possible assignments of the values 1 through 3 to
the variables x and y that satisfy the constraint x = y. The graph has 48 symmetries,
which capture all permutations of assignments from variables to values that preserve
the set of solutions; e.g. (x=2 x=3)(y=2 y=3). A potential bottleneck [55] for these
approaches is their reliance on graph automorphism detection, since the size of a
microstructure graph grows quickly in the presence of non-binary constraints.
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Chapter 4

Finding Minimal Cores

A specification that has no models in a given universe is said to be unsatisfiable in that
universe. Most model finders offer no feedback on unsatisfiable specifications apart
from reporting that no models were found. But many applications need to know
the cause of a specification’s unsatisfiability, either to take corrective action (in the
case of declarative configuration [133]) or to check that no models exist for the right
reasons (in the case of bounded verification [31, 21]). In bounded verification [31, 21],
for example, unsatisfiability is a necessary but insufficient indicator of success. If the
verification formula s1 ∧ . . .∧ sn ∧¬p has a model, such a model is a witness that the
system described by s1 ∧ . . .∧ sn violates the property p. But a lack of models is not
a guarantee of success. If the formula is unsatisfiable because the system description
s1 ∧ . . . ∧ sn is overconstrained, or because p is a tautology, then the analysis is
considered to have failed due to a ‘vacuity’ error.

A cause of unsatisfiability of a given specification is called an unsatisfiable core.
It is expressed as a subset of the specification’s constraints that is itself unsatisfiable.
Every such subset includes one or more critical constraints that cannot be removed
without making the remainder of the core satisfiable. Non-critical constraints, if any,
are irrelevant to unsatisfiability and generally decrease a core’s utility both for diag-
nosing faulty configurations [133] and for checking the results of a bounded analysis
[129]. Cores that include only critical constraints are said to be minimal.

This chapter presents a new technique for extracting minimal unsatisfiable cores,
called recycling core extraction (RCE). The technique was developed in the context of
SAT-based model finding and relies on the ability of modern SAT solvers to produce
checkable proofs of unsatisfiability. It is, however, more generally applicable. The
rest of this chapter therefore describes RCE in broader terms, as a technique for
extracting minimal cores of specifications that are translatable to the input logic of
some resolution engine (e.g. a SAT solver or a resolution-based theorem prover). The
technique is shown to be sound, minimal, and effective in practice. Its effectiveness is
evaluated on a set of benchmarks of varying difficulties, where the difficulty of finding
a minimal core is given as a function of its size, the size of the overall problem, and the
time taken (by a resolution engine) to prove that the overall problem is unsatisfiable.
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4.1 A small example

The first chapter demonstrated the use of minimal cores for diagnosis and repair of a
faulty Sudoku configuration. This section shows how they can be used to expose three
kinds of coverage errors that commonly arise in bounded verification: overconstraining
the system description, so that legitimate behaviors are excluded; checking the system
against a weak property, so that bad behaviors are accepted; and setting the analysis
bounds too small, so that the model finder does not examine a sufficiently large space
of possibilities. The last problem is specific to bounded verification and is not suffered
by analyses based on theorem provers. These analyses are not immune to the first
two problems, however, so the techniques presented here will work for them too.

4.1.1 A toy list specification

As an example, consider the toy formalization of LISP-style lists given in Fig. 4-1.
There are two distinct kinds of lists (lines 10-11): cons cells and nil lists. Nil lists do
not have any structure. A cons cell, on the other hand, is defined by two functions,
car and cdr. The car function maps each cons cell to the thing stored in that cell (lines
12-13). The cdr function maps it to the rest of the list (lines 14-15). Every list ends
with a Nil list (line 16).

The equivTo (line 17) and prefixes (line 19) relations define what it means for two
lists to be equivalent to each other and what it means for one list to be a prefix of
another. The equivalence definition is simple. Two lists are equivalent only if they
store the same thing and have equivalent tails (line 18). The prefix definition consists
of three constraints. First, a nil list is a prefix of every list (line 20); second, a cons
cell is never a prefix of a nil list (line 21); and third, one cons cell is a prefix of another
only if the two store the same thing and the tail of the first cell is a prefix of the tail
of the second cell (line 22).

The universe in which the toy list specification is analyzed generally depends on
the property being checked. The universe and bounds declarations in Fig. 4-1 show
a sample analysis set-up involving three lists and three things. All relations have
empty lower bounds, and their upper bounds reflect their types. List, Nil and Cons

all range over the list atoms (lines 2-4). The upper bound on Thing consists of the
“thing” atoms (line 5). The binary relation car is bound above by the cross product
of lists and things (line 6). The remaining relations all range over the cross product
of list atoms with themselves (line 7-9).

4.1.2 Sample analyses

Bounded verification of a system against a given property involves checking that the
conjunction of the system constraints and the negation of the property is unsatisfiable.
The check is performed within a user-provided finite scope, i.e. a finite universe and
a corresponding set of bounds on free variables. If the property is invalid in the
given scope, a model finder will produce a counterexample. This is a model of the
verification formula, and, as such, it represents a behavior of the system that violates
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1 {l0, l1, l2, t0, t1, t2}

2 List :1 [{}, {〈l0〉,〈l1〉,〈l2〉}]
3 Nil :1 [{}, {〈l0〉,〈l1〉,〈l2〉}]
4 Cons :1 [{}, {〈l0〉,〈l1〉,〈l2〉}]
5 Thing :1 [{}, {〈t0〉,〈t1〉,〈t2〉}]
6 car :2 [{}, {〈l0, t0〉, 〈l0, t1〉, 〈l0, t2〉, 〈l1, t0〉, 〈l1, t1〉, 〈l1, t2〉, 〈l2, t0〉, 〈l2, t1〉, 〈l2, t2〉}]
7 cdr :2 [{}, {〈l0, l0〉, 〈l0, l1〉, 〈l0, l2〉, 〈l1, l0〉, 〈l1, l1〉, 〈l1, l2〉, 〈l2, l0〉, 〈l2, l1〉, 〈l2, l2〉}]
8 equivTo :2 [{}, {〈l0, l0〉, 〈l0, l1〉, 〈l0, l2〉, 〈l1, l0〉, 〈l1, l1〉, 〈l1, l2〉, 〈l2, l0〉, 〈l2, l1〉, 〈l2, l2〉}]
9 prefixes :2 [{}, {〈l0, l0〉, 〈l0, l1〉, 〈l0, l2〉, 〈l1, l0〉, 〈l1, l1〉, 〈l1, l2〉, 〈l2, l0〉, 〈l2, l1〉, 〈l2, l2〉}]

10 List = Cons ∪ Nil
11 no Cons ∩ Nil

12 car ⊆ Cons→Thing
13 ∀ a: Cons | one a.car

14 cdr ⊆ Cons→List
15 ∀ a: Cons | one a.cdr
16 ∀ a: List | ∃ e: Nil | e ⊆ a.̂ cdr

17 equivTo ⊆ List→List
18 ∀ a, b: List | (a ⊆ b.equivTo) ⇔ (a.car = b.car ∧ a.cdr.equivTo = b.cdr.equivTo)

19 prefixes ⊆ List→List
20 ∀ e: Nil, a: List | e ⊆ a.prefixes
21 ∀ e: Nil, a: Cons | ¬ (a ⊆ e.prefixes)
22 ∀ a, b: Cons | (a ⊆ b.prefixes) ⇔ (a.car = b.car ∧ a.cdr in b.cdr.prefixes)

Figure 4-1: A toy list specification, adapted from a sample distributed with Alloy4 [21].

the property. The absence of counterexamples, on the other hand, can indicate any
of the following:

1. the system satisfies the property in the way that the user intended;

2. the property holds vacuously;

3. the property holds but it is weaker than what was intended; and, finally,

4. the system satisfies the property in the given scope but the scope is too small
to reveal a counterexample, if one exists.

In practice, each of these cases leads to an identifiable pattern of minimal cores,
described below.

Example 1: A vacuity error

A vacuity error happens when the property being checked is a tautology or when a
part of the system description is overconstrained, admitting either no solutions or
just the uninteresting ones. The toy list specification in Fig. 4-1, for example, is
overconstrained. The problem is revealed by checking, in the universe with 3 atoms
per type, that two lists are equivalent only if they have identical prefixes:

∀ a, b: List | (a ⊆ b.prefixes ∧ b ⊆ a.prefixes) ⇔ a ⊆ b.equivTo
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Kodkod confirms that the property has no counterexamples in the given scope,
and produces the following minimal core:

11 no Cons ∩ Nil
14 cdr ⊆ Cons→List
16 ∀ a: List | ∃ e: Nil | e ⊆ a.̂ cdr
23 ¬(∀ a, b: List | (a ⊆ b.prefixes ∧ b ⊆ a.prefixes) ⇔ a ⊆ b.equivTo)

Increasing the analysis scope to a universe and bounds with 5, 10 or 20 atoms of
each type yields the same result. Neither the definition of prefixes nor equivalence is
needed to prove the property. Why?

Examining the core more closely reveals that the constraint on line 16 is too
strong. It says that, for every list, traversing the cdr pointer one or more times leads
to some nil list. But nil lists have no tails (lines 11 and 14). Consequently, there are
no lists, nil or otherwise, that satisfy the toy list description. That is, the specification
is consistent, but it only admits trivial models in which the List relation is empty. A
revised definition of what it means for a list to be nil-terminated is given below:

16 ∀ a: List | ∃ e: Nil | e ⊆ a.∗cdr

It states that, for every list, traversing the cdr pointer zero or more times leads to
some nil list.

Example 2: A successful analysis

Checking a valid system description against a strong property results in minimal cores
that include the negation of the property and most of the system constraints. When
the revised toy list is checked against the previous assertion, Kodkod, once again,
finds no counterexamples in the scope of 3 atoms per type. But the extracted core
now includes the negation of the property and the constraints on lines 12, 14, 16,
18, and 20-22. When the scope is increased to 5 atoms per type, this core grows to
include the constraint on line 17. Further increases in scope (e.g. up to 9 atoms per
type) have no effect on the contents of the extracted core, suggesting that the toy list
satisfies the property as intended.

Example 3: A weak property

A valid assertion that exercises only a small portion of a system is said to be weak.
By themselves, weak assertions are not harmful, but they can be misleading. If the
system analyst believes that a weak assertion covers all or most of the system, he can
miss real errors in the parts of the system that are not exercised. For example, the
following property is supposed to exercise both equivalence and prefix definitions. It
states that a list which is equivalent to all of its prefixes has a nil tail:

∀ a: List | (a.prefixes = a.equivTo) ⇒ a.cdr ⊆ Nil

Kodkod verifies the property against the revised specification in the scope of 3
atoms per type, producing the following minimal core:
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11 no Cons ∩ Nil
14 cdr ⊆ Cons→List
16 ∀ a: List | ∃ e: Nil | e ⊆ a.∗cdr
18 ∀ a, b: List | (a ⊆ b.equivTo) ⇔ (a.car = b.car ∧ a.cdr.equivTo = b.cdr.equivTo)
20 ∀ e: Nil, a: List | e ⊆ a.prefixes
23 ¬(∀ a: List | (a.prefixes = a.equivTo) ⇒ a.cdr ⊆ Nil)

The tool’s output remains the same as the scope is increased to 5, 10 and 20 atoms
per type. This is problematic because it shows that the property exercises only one
constraint in the prefix definition, when the intention was to exercise the definition
in its entirety. In other words, the property was intended to fail if any part of the
prefix definition was wrong, but it will, in fact, hold even if the constraints on lines
21 and 22 are replaced with the constant “true.”

Example 4: An insufficient scope

Many properties require a certain minimum scope for a bounded analysis to be mean-
ingful. If a property applies only to lists of length 3 or more, establishing that it holds
for lists with fewer than 3 elements is not useful. But determining a minimum useful
scope can be tricky. Consider, for example, the following property, which states that
the prefix relation is transitive over cons cells:

∀ a, b, c: Cons | (a ⊆ b.prefixes ∧ b ⊆ c.prefixes) ⇒ a ⊆ c.prefixes

Since the property includes three quantified variables, it seems that 3 atoms per
type should be the minimum useful scope for checking the property against the revised
list specification. The corresponding core, however, shows that either this scope or
the property is insufficient to cover the prefix definition:

15 ∀ a: Cons | one a.cdr
16 ∀ a: List | ∃ e: Nil | e ⊆ a.∗cdr
19 prefixes ⊆ List→List
21 ∀ e: Nil, a: Cons | ¬ (a ⊆ e.prefixes)
22 ∀ a, b: Cons | (a ⊆ b.prefixes) ⇔ (a.car = b.car ∧ a.cdr in b.cdr.prefixes)
23 ¬(∀ a, b, c: Cons | (a ⊆ b.prefixes ∧ b ⊆ c.prefixes) ⇒ a ⊆ c.prefixes)

When the analysis is repeated in the scope of 4 atoms per type, the core increases
to include the rest of the prefix definition (line 20), demonstrating that the property
is strong enough but that the scope of 3 is too small. This makes sense. Because
every list must be nil-terminated, at least four lists are needed to check the property
against a scenario in which the variables a, b and c are bound to distinct cons cells.
Moreover, the core remains the same as the scope is increased (up to 8 atoms per
type), suggesting that 4 atoms per type is indeed the minimum useful scope.
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4.2 Core extraction with a resolution engine

The core extraction facility featured in the previous section implements a new tech-
nique for finding minimal cores, called recycling core extraction (RCE). RCE relies
on the ability of modern SAT solvers to produce checkable proofs of unsatisfiability,
expressed as DAGs. These proofs encode inferences made by the solver that lead
from a subset, or a core, of the input clauses to a contradiction. Exploiting SAT
proofs, however, is challenging because their cores are not guaranteed to be mini-
mal or even small. Moreover, mapping a small boolean core back to specification
constraints—a technique called one-step core extraction (OCE) [118]—may still yield
a large specification-level core. Shlyakhter [117], for example, found that reducing
the size of the boolean core prior to mapping it back had little to no effect on the size
of the resulting specification-level core.

RCE is based on two key ideas. The first idea is to minimize the core at the
specification rather than the boolean level. That is, the initial boolean core is mapped
to a specification level core, which is then pruned by removing candidate constraints
and testing the remainder for satisfiability. The second idea is to use the boolean
proof, and the mapping between the specification constraints and the translation
clauses, to identify the inferences made by the solver that are still valid when a
specification-level constraint is removed. By adding these inferences (expressed as
clauses) to the translation of a candidate core, RCE allows the solver to reuse the
work from previous invocations.

Although RCE was developed in the context of SAT-based model finding for rela-
tional logic, the technique is more widely applicable. This section therefore presents
the RCE algorithm, and the proofs of its soundness and minimality, in the context of
an abstract resolution-based analysis framework. The framework captures the general
structure of SAT solvers [43, 56, 87], SAT-based model finders [25, 117, 131], and
resolution-based theorem provers [74, 108, 145]. Abstractly, they all work by trans-
lating a declarative specification to a clausal logic and applying a resolution procedure
to the resulting clauses.1 The framework provides a high-level formalization of the
key properties of these specifications, translations, and resolution engines.

4.2.1 Resolution-based analysis

Resolution [109] is a complete technique for proving that a set of clauses is unsatis-
fiable. It involves the application of the resolution rule (Fig. 4-2) to a set of clauses
until the empty clause is derived, indicating unsatisfiability, or until no more clauses
can be derived, indicating satisfiability. This process is guaranteed to terminate on
an unsatisfiable input with a proof of its unsatisfiability, which takes the form of a
resolution refutation graph (Def. 4.1). Its behavior on satisfiable inputs depends on
the decidability of the underlying logic. SAT solvers, for example, are resolution en-
gines (Def. 4.2) for propositional logic, which is decidable, and they will terminate on
every set of propositional clauses given enough time. Theorem provers, on the other

1SAT solvers can be viewed as using the identity as their translation function.
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hand, will run forever on some inputs since first order logic is undecidable.

SAT solvers are unique among resolution-based tools in that their input language
is a clausal logic. Other tools that are based on resolution, such as theorem provers
and model finders, accept syntactically richer languages, which they translate to first
order or propositional clauses. The details of these languages and their translations
differ from one tool to another, but they all share two basic properties. First, the
input of each tool is a set of declarative constraints, or a specification (Def. 4.3), which
is tested for unsatisfiability in some implicit or explicit universe of values. Second,
translations employed by resolution-based tools are regular (Def. 4.4). That is, a
specification and its translation are either both satisfiable or both unsatisfiable; the
translation of a specification is the union of the clauses produced for each constraint;
and the clauses produced for a given constraint in the context of different specifications
are the same, up to a renaming of identifiers (i.e. variable, constant, predicate and
function names).

Figure 4-3 shows an example of a resolution-based analysis of the specification
(a⇔ b)∧(b⇔ c)∧¬(a⇒ c). The specification is encoded in non-clausal propositional
logic, and the translation T applies standard inference rules to transform this language
to clauses. It is easy to see that both the specification and the translation satisfy
the definitions 4.3 and 4.4. Because the specification is unsatisfiable, feeding its
translation to the resolution engine E produces a proof of unsatisfiability in the form
of a resolution refutation graph. The nodes of the graph are the translation clauses
and the resolvent clauses inferred by the engine. The edges denote the application
of the resolution rule. For example, the edges incident to ¬b indicate that ¬b is the
result of applying the resolution rule to the clauses ¬b ∨ c and ¬c. The translation
clauses that are connected to the empty clause c∅ form an unsatisfiable core of the
translation.

Definition 4.1 (Resolution refutation). Let C and R be sets of clauses such that R\C
contains the empty clause, denoted by c∅. A directed acyclic graph G = (C, R, E) is
a resolution refutation of C iff

1. each r ∈ R is the result of resolving some clauses x1, . . . , xn ∈ C ∪R;

2. the only edges in E are 〈x1, r〉, . . . , 〈xn, r〉 for each r ∈ R; and,

3. c∅ is the sink of G.

The sources of G are denoted by {c ∈ C | c∅ ∈ E∗LcM}, where E∗ is the reflexive
transitive closure of E and E∗LcM is the relational image of c under E∗. These form
an unsatisfiable core of C.

Definition 4.2 (Resolution engine). A resolution engine E : P(C) ⇀ G is a partial
function that maps each unsatisfiable clause set C to a resolution refutation graph
G = (C, R, E). The remaining clause sets on which E is defined are taken to resolution
graphs that do not include c∅, indicating satisfiability.
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(a1 ∨ . . . ∨ ai ∨ . . . ∨ an), (b1 ∨ . . . ∨ bj ∨ . . . ∨ bm), ai = ¬bj

a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bj−1 ∨ bj+1 . . . ∨ bm

Figure 4-2: The resolution rule for propositional logic.

¬c a

¬b

¬a

∅

a ∨ ¬b¬a ∨ b ¬b ∨ c b ∨ ¬c

(a ⇔ b) ∧ (b ⇔ c) ∧ ¬(a ⇒ c)

(¬a ∨ b) ∧ (a ∨ ¬b) ∧ (¬b ∨ c) ∧ (b ∨ ¬c) ∧ a ∧ ¬c

T

E

Figure 4-3: Resolution-based analysis of (a = b) ∧ (b = c) ∧ ¬(a⇒ c). The specification is
first translated to a set of propositional clauses, using a regular translation T . The resulting
clauses are then fed to a resolution engine E , which produces a proof of their unsatisfiability.
The unsatisfiable core of the proof is shown in gray. The ∅ square designates the empty
clause.
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Definition 4.3 (Declarative specification). A declarative specification S is a set of
constraints {s1, . . . , sn}, interpreted in a universe of values U .2 That is, all identifiers
that appear in S denote either values from U or variables that range over U . The
constraints si ∈ S represent boolean functions whose conjunction is the meaning of S
as a whole.

Definition 4.4 (Regular translation). A procedure T : L → P(C) is a regular trans-
lation of specifications in the language L to the clausal logic P(C) iff

1. a specification S ∈ L is unsatisfiable whenever T (S) is unsatisfiable;

2. the translation of a specification S ∈ L is the union of the translations of its con-
straints: T (S) = TS(roots(S)) = ∪s∈roots(S)TS(s), where TS(s) is the translation
of the constraint s in the context of the specification S; and,

3. the translation of the constraints S ′ ⊆ S is context independent up to a renam-
ing: TS(S ′) = r(T (S ′)) for some bijection r from the identifiers that occur in
TS(S ′) to those that occur in T (S ′), lifted to clauses and sets of clauses in the
obvious way.

4.2.2 Recycling core extraction

Recycling core extraction is closely related to three simpler techniques: naive, one-
step, and simple core extraction (NCE, OCE, and SCE). NCE and OCE have been
described in previous work, the former for propositional logic [32] and linear programs
[23] and the latter for declarative languages reducible to SAT [118]. SCE is a new
technique that combines NCE and OCE, and RCE is a refinement of SCE. The
pseudo-code for all four algorithms is shown in Fig. 4-4.

NCE (Fig. 4-4a) is the most basic method for extracting minimal cores in that it
uses the resolution engine solely for satisfiability testing. The algorithm starts with
an initial core K that contains the entire specification (line 1). The initial core is
then pruned, one constraint at a time, by discarding all constraints u for which a
regular translation of K \ {u} is unsatisfiable (lines 3-8). This pruning step is sound
since the regularity of the translation guarantees that T (K \ {u}) and K \ {u} are
equisatisfiable. In the end, K contains a minimal core of S.

Because it calls the resolution procedure once for each constraint, NCE tends
to be impractical for large specifications with small, hard cores. Shlyakhter et al.
[118] addressed this problem with OCE (Fig. 4-4b), which sacrifices minimality for
scalability. OCE simply returns all constraints in S whose translation contributes
clauses to the unsatisfiable core of E(T (S)). The set of constraints computed in this
way is an unsatisfiable core of S (§4.2.3), but it is usually not minimal.

SCE (Fig. 4-4c) combines the pruning loop of NCE with the extraction step of
OCE. In particular, SCE is NCE with the following modifications: initialize K with

2The term ‘universe of values’ refers to all possible values that the variables in a specification
can take. For example, in the case of bounded relational logic, the ‘universe of values,’ as opposed
to the ‘universe of atoms,’ refers to the entire state space of a specification.
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NCE(S: L, T : L → P(C), E: P(C)⇀G)

1 K ← S
2 M ← {}
3 while K 6⊆M do
4 u← pick(K \M)
5 M ←M ∪ {u}
6 (C, R, E)← E(T (K \ {u}))
7 if c∅ ∈ R then
8 K ← K \ {u}
9 return K

(a) Naive core extraction

OCE(S: L, T : L → P(C), E: P(C)⇀G)

1 (C, R, E)← E(T (S))
2 K ← {s∈S | c∅ ∈ E∗LTS(s)M}
3 return K

(b) One-step core extraction

SCE(S: L, T : L → P(C), E: P(C)⇀G)

1 (C, R, E)← E(T (S))
2 K ← {s∈S | c∅ ∈ E∗LTS(s)M}
3 M ← {}
4 while K 6⊆M do
5 u← pick(K \M)
6 M ←M ∪ {u}
7 (C, R, E)← E(TS(K \ {u}))
8 if c∅ ∈ R then
9 K ← {s ∈ K\{u} | c∅ ∈ E∗LTS(s)M}

10 return K

(c) Simple core extraction

RCE(S: L, T : L → P(C), E: P(C)⇀G)

1 (C, R, E)← E(T (S))
2 K ← {s∈S | c∅ ∈ E∗LTS(s)M}
3 M ← {}
4 while K 6⊆M do
5 u← pick(K \M)
6 M ←M ∪ {u}
7 C′ ← TS(K \ {u})
8 R′ ← R \ E∗LC \ C′M
9 if c∅ ∈ R′ then

10 K ← K \ {u}
11 else
12 (C′′, R′′, E′′)← E(C′ ∪R′)
13 if c∅ ∈ R′′ then
14 (C, R, E)← (C′, R′∪R′′, E′′∪(E.R′))
15 K ← {s : K\{u} | c∅ ∈ E∗LTS(s)M}
16 return K

(d) Recycling core extraction

Figure 4-4: Core extraction algorithms. S is an unsatisfiable specification, T is a regular
translation, and E is a resolution engine. Star (*) means reflexive transitive closure, rLXM
is the relational image of X under r, and . is range restriction.
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a core of S instead of S (line 2), and reduce K to a core of K \ {u} instead of
K \{u} in the iterative step (line 9). These modifications eliminate unnecessary calls
to the resolution engine without affecting either the soundness or the minimality of
the resulting core (§4.2.3). But they still do not eliminate all unnecessary work. By
applying E solely to TS(K \ {u}) on line 7, SCE forces the engine to re-learn some or
all the clauses that it has already learned about TS(K \ {u}) while refuting TS(K).

RCE (Fig. 4-4d) extends SCE with a mechanism for reusing learned clauses.
Line 7 of RCE constructs T (K \ {u}) from the already computed translations of
the constraints in S, and line 8 collects the resolvents that E had already learned
about T (K \ {u}). These are simply all resolvents reachable from T (K \ {u}) but
not from the other clauses previously fed to E . If they include the empty clause
c∅, u is discarded (line 10) because there must be some other constraint in K \ {u}
whose translation contributes the same or a larger set of clauses to the core of C as
u. Otherwise, line 12 applies E to T (K \ {u}) and its resolvents. If the result is a
refutation, the invalidity of K can be proved without u. The core of (C ′′, R′′, E ′′),
however, does not necessarily correspond to a core of S because the former may
include resolvents for T (K \ {u}). Consequently, lines 14-15 fix the proof and set K
to the corresponding core, which excludes at least u.

4.2.3 Correctness and minimality of RCE

The soundness and minimality of SCE and RCE are proved below. Theorem 4.1
establishes that the step they share with OCE is sound. This is then used in the proof
of Thm. 4.2 to show that, if it terminates, RCE produces a minimal unsatisfiable core
of its input. It is easy to see that RCE terminates if its input engine E terminates on
each invocation. Since RCE reduces to SCE when R′ is set to the empty set on line
8, Thm. 4.2 also establishes the soundness and minimality of SCE.

Theorem 4.1 (Soundness of OCE). Let G = (C, R, E) be a resolution refutation for
C = T (S), a regular translation of the unsatisfiable specification S. Then, K = {s∈
S | c∅ ∈ E∗LTS(s)M} is an unsatisfiable core of S.

Proof. It follows from the definition of K that K ⊆ S and {c ∈ C | c∅ ∈ E∗LcM} ⊆
TS(K). By Def. 4.1, the graph GK = (TS(K), R, E) is a resolution refutation of
TS(K). Because T is regular, T (K) = r(TS(K)) for some renaming r. Let r(GK)
denote GK with r applied to all of its vertices. By Def. 4.1, r(GK) is a resolution
refutation of r(TS(K)) = T (K). This completes the proof, since T (K) and K are
equisatisfiable due to the regularity of T .

Theorem 4.2 (Soundness and minimality of RCE). If it terminates, RCE(S, T , E)
returns a minimal unsatisfiable core of S, where S is an unsatisfiable specification, T
is a regular translation, and E a resolution engine.

Proof. To establish that K is unsatisfiable on line 16, it suffices to show that Ki

is unsatisfiable after the ith execution of lines 10 and 15. The soundness of the
base case (line 2) follows from Thm. 4.1. Suppose that Ki−1 is unsatisfiable and
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that the condition on line 9 is true. Then, by Def. 4.1 and construction of R′,
(TS(Ki−1 \ {u}), R′, E) is a refutation of T (Ki−1 \ {u}), which means that Ki−1 \ {u}
is unsatisfiable. Setting Ki to Ki−1\{u} on line 10 is therefore justified. Now suppose
that the condition on line 9 is false. For line 15 to execute, the condition on line 13
must hold. If it does, line 14 executes first, establishing (Ci, Ri, Ei) as a resolution
refutation for T (Ki−1 \ {u}) (Defs. 4.1 and 4.4, line 7). This and Thm. 4.1 ensure
that the constraints assigned to Ki on line 15 are unsatisfiable.

Suppose that K is sound but not minimal on line 16. Then, there is a constraint
s ∈ K such that K \{s} is unsatisfiable. Lines 4 and 6 ensure that s is picked on line
5 during some iteration i of the loop. Because K ⊆ Ki−1 and K \{s} is unsatisfiable,
it must be the case that Ki−1 \ {s} is also unsatisfiable. Consequently, either the
condition on line 9 or the one on line 13 is true in the ith iteration, causing s to be
removed from Ki. But this is impossible since K ⊆ Ki.

4.3 Experimental results

NCE, OCE, SCE and RCE have all been implemented in Kodkod, with MiniSat [43]
as the resolution engine and the algorithm from Chapter 2 as the regular translation
from bounded relational logic to propositional clauses. Table 4.1 shows the results of
applying these implementations to a subset of the benchmarks introduced in Chapter
2. The chosen problems come from a variety of disciplines (software engineering,
medicine, geometry, etc.), include 4 to 59 constraints, and exhibit a wide range of
behaviors. In particular, twelve are theorems (i.e. unsatisfiable conjunctions of axioms
and negated conjectures); four are believed to be satisfiable but have no known finite
models; two are unsatisfiable in small universes and satisfiable in larger ones; and
seven have no known finite models.

Each problem p was tested for satisfiability in scopes of increasing sizes until
a failing scope sfail(p) was reached in which either a model was found or all three
minimality-guaranteeing algorithms failed to produce a result for that scope within
5 minutes (300 seconds). The algorithms were then re-tested on each problem using
a scope of sfail(p)− 1 and a cut-off time of one hour (3600 seconds). All experiments
were performed on a 2× 3 GHz Dual-Core Intel Xeon with 2 GB of RAM.

The first three columns of Table 4.1 show the name of each problem, the num-
ber of constraints it contains, and the scope in which it was tested. The next two
columns contain the number of propositional variables and clauses produced by the
translator. The “transl (sec)” and “solve (sec)” columns show the time, in seconds,
taken by the translator to generate the problem and the SAT solver to produce the
initial refutation. The “initial core” and “min core” columns display the number
of constraints in the initial core found by OCE and the minimal core found by the
minimality-guaranteeing algorithms. The remaining columns show core extraction
time, in seconds, for each algorithm.

On average, RCE outperforms NCE and SCE by a factor of 14 and 7, respec-
tively. These overall averages, however, do not take into account the wide variance in
difficulty among the tested problems. A more useful comparison of the minimality-
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problem size scope variables clauses
transl 

(sec)

solve 

(sec)

init 

core

min 

core

OCE 

(sec)

NCE 

(sec)

SCE 

(sec)

RCE 

(sec)

AWD.A241 10 10 38457 88994 1 167 6 1 3 t/o t/o 125

AWD.AbIgnore 10 10 30819 60071 0 19 5 1 0 168 59 42

AWD.AbTransfer 10 7 15247 33217 0 23 7 4 1 112 40 59

Dijkstra 9 25 1606605 7725002 165 84 9 6 9 623 166 81

Hotel 59 5 22407 55793 0 0 53 31 0 30 20 14

Lists.Empties 12 60 2547216 7150594 72 12 7 6 7 351 115 146

Lists.Reflexive 12 14 34914 91393 1 23 10 5 2 133 88 97

Lists.Symmetric 12 8 7274 17836 0 27 12 7 2 173 173 149

RingElection 10 8 59447 187381 1 48 9 9 2 55 6 7

Trees 4 7 407396 349384 9 97 4 4 0 7 7 6

ALG212 6 7 1072200 1026997 7 69 6 5 1 101 101 107

COM008 14 9 6154 9845 0 1 14 10 0 271 274 301

GEO091 26 10 106325 203299 9 117 24 7 2 2486 1575 176

GEO092 26 8 48496 91281 3 7 24 7 0 191 102 41

GEO115 27 9 108996 188776 5 71 24 7 2 1657 1023 116

GEO158 26 8 46648 88234 3 38 25 7 1 404 242 86

GEO159 28 8 87214 195200 9 56 24 7 1 1060 197 70

LAT258 27 7 205621 336912 2 11 26 20 0 303 258 191

MED007 41 35 130777 265702 2 84 24 7 0 t/o t/o 71

MED009 41 35 130777 265703 2 73 24 7 0 t/o t/o 89

NUM374 14 3 6869 18933 0 0 14 5 0 4 4 4

SET943 18 5 5333 12541 0 0 14 4 0 109 46 39

SET948 20 14 339132 863889 5 36 10 6 1 309 204 205

SET967 20 4 14640 45111 0 0 10 2 0 2599 254 247

TOP020 14 10 2554114 4262733 21 112 2 2 5 1008 8 8
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Table 4.1: Evaluation of minimal core extractors. The notation “t/o” means that an
algorithm was unable to produce a core for the specified problem in the given scope within
one hour. Gray shading highlights the best running time among NCE, SCE, and RCE.
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problem N-score
NCE / 

RCE

average 

speed up

NUM374 -0.19 1.07

3.27

SET943 0.12 2.80

SET967 0.21 10.51

Trees 0.58 1.09

COM008 0.60 0.90

Hotel 1.05 2.21

3.21

RingElection 1.72 7.59

ALG212 1.86 0.94

Lists.Empties 1.87 2.40

LAT258 1.88 1.58

Dijkstra 1.94 7.72

AWD.AbTransfer 2.10 1.89

Lists.Symmetric 2.12 1.16

GEO092 2.13 4.68

Lists.Reflexive 2.21 1.37

AWD.AbIgnore 2.24 4.00

SET948 2.70 1.51

GEO158 2.85 4.70

GEO159 3.08 15.06

42.14

TOP020 3.13 131.46

GEO115 3.15 14.34

AWD.A241 3.18 28.81

GEO091 3.35 14.09

MED009 3.40 40.33

MED007 3.45 50.90

e
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y

m
e
d

iu
m

 h
a
rd

(a) RCE versus NCE

problem S-score
SCE / 

RCE

average 

speed up

NUM374 -0.19 1.08

1.07

SET967 -0.14 1.03

SET943 -0.03 1.19

TOP020 0.35 1.00

Trees 0.58 1.09

COM008 0.60 0.91

RingElection 0.64 0.86

Hotel 0.95 1.44

Lists.Empties 1.11 0.79

AWD.AbTransfer 1.80 0.67

3.63

LAT258 1.81 1.35

ALG212 1.86 0.94

AWD.AbIgnore 1.89 1.40

Dijkstra 1.94 2.06

Lists.Reflexive 2.06 0.91

GEO092 2.08 2.51

Lists.Symmetric 2.12 1.16

SET948 2.16 1.00

GEO158 2.83 2.81

AWD.A241 2.92 28.81

GEO159 2.99 2.80

GEO115 3.08 8.86

27.25
MED009 3.13 40.33

MED007 3.13 50.90

GEO091 3.30 8.93
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(b) RCE versus SCE

Table 4.2: Evaluation of minimal core extractors based on problem difficulty. If an algo-
rithm timed out on a given problem (after an hour), its running time for that problem is
taken to be one hour.
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guaranteeing algorithms is given in Table 4.2, where the problems are classified ac-
cording to their difficulty for NCE (Table 4.2a) and SCE (Table 4.2b). Tables 4.2
and 4.2b show a difficulty rating for each problem; the speed-up of RCE over NCE or
SCE on that problem; and the average speed-up of RCE on all problems in a given
category.

A core extraction problem is rated as easy for NCE if its N-score is less than 1,
hard if the score is 3 or more, and moderately hard otherwise. The N-score for a
problem is defined as log10((s−m) ∗ t + m ∗ t ∗ .01), where s is the size of the input
specification, m is the size of its minimal core, and t is the time, in seconds, taken by
the SAT solver to determine that S is unsatisfiable. The N-score formula predicts how
much work NCE has to do to eliminate irrelevant constraints from a specification,
by predicting that NCE will take (s − m) ∗ t seconds to prune away the (s − m)
irrelevant constraints. The formula allocates only 1 percent of the initial solving time
to the testing of a critical constraint because satisfiable formulas are solved quickly
in practice. The difficulty of a problem for SCE is computed in a similar way; the
S-score of a given problem is log10((s

′ −m) ∗ t + m ∗ t ∗ .01), where s′ is the size of
the initial (one-step) core.

Unsurprisingly, OCE outperforms both SCE and RCE in terms of execution time.
However, it generates cores that are on average 2.6 times larger than the corresponding
minimal cores. For 21 out of the 25 tested problems (84%), the OCE core included
more than 50% of the original constraints. In contrast, only 8 out of 25 (32%) minimal
cores included more than half of the original constraints.

4.4 Related work

The problem of finding unsatisfiable cores has been studied in the context of linear
programming [23], propositional satisfiability [32, 57, 79, 85, 97, 102, 153], and finite
model finding [118]. The first half of this section presents an overview of that work.
The second half summarizes the work on bounded model checking [52, 120] and other
applications of SAT [42, 65, 112, 115, 121, 146] that, like RCE, recycle learned clauses
for faster solving of closely related SAT instances.

4.4.1 Minimal core extraction

Among the early work on minimal core extraction is Chinneck and Dravnieks’ [23]
deletion filtering algorithm for linear constraints. The algorithm is similar to NCE:
given an infeasible linear program LP , it tests each functional constraint for member-
ship in an Irreducible Infeasible Subset (i.e. minimal unsatisfiable core) by removing
it from LP and applying a linear programming solver to the result. If the reduced
LP is infeasible, the constraint is permanently removed, otherwise it is kept. The
remaining algorithms in [23] are specific to linear programs, and there is no obvious
way to adapt them to other domains.

Most of the work on extracting small unsatisfiable cores comes from the SAT
community. Several practical algorithms [57, 102, 153] have been proposed for finding
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small, but not necessarily minimal, cores of propositional formulas. Zhang and Malik’s
algorithm [153], for example, works by extracting a core from a refutation, feeding it
back to the solver, and repeating this process until the size of the extracted core no
longer decreases. A few proposed algorithms provide strong optimality guarantees—
such as returning the smallest minimal core [85, 97] or all minimal cores [79, 80,
59, 61, 60] of a boolean formula—at the cost of scaling to problems that are orders
of magnitude smaller than those handled by the approximation algorithms. The
Complete Resolution Refutation (CRR) algorithm by Dershowitz et al. [32] strikes
an attractive balance between scalability and optimality: it finds a single minimal
core but scales to large real-world formulas. CRR was one of the inspirations for
RCE and is, in fact, an instantiation of RCE for propositional logic, with a SAT
solver as a resolution engine and the identity function as the translation procedure.

The work by Shlyakhter et al. [118] is most closely related to the techniques
presented in this chapter. It proposes one step core extraction (OCE) for declarative
specifications in a language reducible to propositional logic. The algorithm translates
an unsatisfiable specification to propositional logic, obtains an unsatisfiable core of
the translation from a SAT solver, and returns snippets of the original formula that
correspond to the extracted boolean core. Unlike RCE, the OCE method provides
no optimality guarantees. In fact, the core it produces is equivalent to the initial
core computed by RCE. As discussed in the previous section, this initial core is
relatively cheap to find, but it tends to be much larger than a minimal core for most
specifications.

4.4.2 Clause recycling

Many applications of SAT [42, 52, 65, 112, 115, 120, 121, 146] employ techniques for
reusing learned clauses to speed up solving of related boolean formulas. Silva and
Sakallah [121] proposed one of the early clause recycling schemes in the context of
automatic test pattern generation (ATPG). The ATPG problem involves solving a
SAT instance of the form C ∧ F ∧ D, where C is the set of clauses that encodes
the correct behavior of a given circuit, F is the description of a faulty version of
that circuit, and D states that C and F produce different outputs. A model of
an ATPG formula, known as a test pattern, describes an input to the circuit being
tested that distinguishes between the correct behavior C and the faulty behavior F .
Generating test patterns for multiple faults leads to a series of SAT instances of the
form C ∧ Fi ∧ Di. Silva and Sakallah’s [121] recycling method is based on reusing
conflict clauses3 implied by C, which they call pervasive clauses. This approach does
not exploit all valid learned clauses, however. If the faulty circuits Fi and Fi+i overlap,
clauses learned from Fi ∩ Fi+i are not reused.

Shtrichman [120] generalized the idea of pervasive clauses and applied it in the
context of SAT-based bounded model checking (BMC) [15, 16]. BMC is the problem
of checking if a finite state machine m has a trace of length k or less that violates a
temporal property p. Shtrichman’s [120] work focuses on checking properties that hold

3Conflict clauses are resolvents that encode root causes of conflicts detected during search [90].
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in all states of a given state machine (written as AGp in temporal logic). The check
is performed by applying a SAT solver to the formula I0 ∧Mk ∧Pk, where I0 encodes
the initial state of m, Mk describes all executions of m of length k, and Pk asserts that
p does not hold in at least one of the states described by Mk. A model of the BMC
formula represents an execution of m (of length at most k) which violates the property
p. If there are no counterexamples of length k, the check is repeated for executions of
length k + 1, leading to a series of overlapping SAT instances. Strichman’s method
reuses all conflict clauses that are implied by (I0 ∧Mk ∧ Pk)∩ (I0 ∧Mk+1 ∧ Pk+1). In
the case of BMC, these are the clauses learned from I0 ∧Mk.

Several clause-recycling techniques have also been proposed in the context of incre-
mental SAT solving [42, 65, 146]. Hooker [65] proposed the first incremental technique
for solving a series of SAT instances of the form C0 ⊆ . . . ⊆ Ck. The technique in-
volves reusing all conflict clauses implied by Ci when solving Ci+1. Whittemore et al.
[146] extended Hooker’s definition of incremental SAT to allow clause removal. Their
solver accepts a series of SAT instances C1, . . . , Ck, where each Ci+1 can be obtained
from Ci by adding or removing clauses. If clauses are removed from Ci, the solver
discards all learned clauses that depend on Ci \Ci+1 and reuses the rest. Identifying
the clauses that need to be discarded is expensive, however, and it requires extra
bookkeeping [146] during solving. Eén and Sörensson [42] addressed this problem
with an incremental solver that provides limited support for clause removal. In par-
ticular, Ci+1 \ Ci can contain any clause, but Ci \ Ci+1 must consist of unit clauses.
Since the clauses in Ci \ Ci+1 are treated as decisions by the search procedure, all
conflict clauses learned from Ci can be reused when solving Ci+1.
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Chapter 5

Conclusion

Design, implementation, analysis and configuration of software all involve reasoning
about relational structures: organizational hierarchies in the problem domain, ar-
chitectural configurations in the high level design, or graphs and linked list in low
level code. Until recently, however, engines for solving relational constraints have
had limited applicability. Designed to analyze small, hand-crafted models of software
systems, current frameworks perform poorly on large specifications, especially in the
presence of partial models.

This thesis presented a framework for solving large relational problems using SAT.
The framework integrates two facilities, a finite model finder and a minimal unsatisfi-
able core extractor, accessible through a high-level specification language that extends
relational logic with a mechanism for specifying partial models (Chapters 1-2). Both
facilities are based on new techniques. The model finder uses a new translation to
SAT (Chapter 2) and a new algorithm for detecting symmetries in the presence of
partial models (Chapter 3), while the core extractor uses a new method for recycling
inferences made at the boolean level to speed up core minimization at the specification
level (Chapter 4).

The work presented here has been prototyped and evaluated in Kodkod, a new rela-
tional engine with recent applications to declarative configuration [101, 149], test-case
generation [114, 135] and bounded verification [21, 31, 34, 126, 137]. The adoption and
use of Kodkod by the wider community has highlighted both strengths and limitations
of its techniques. The former include efficiency on specifications with partial models,
low-arity relations and rich type hierarchies; the latter include limited scalability in
the presence of high-arity relations, transitive closure and deeply nested quantifiers.
This chapter concludes the thesis with a summary of the key contributions behind
Kodkod, a discussion of the tool’s applicability compared to other solvers, and an
outline of directions for future work.

5.1 Discussion

The key contributions of this work are a new relational language that supports partial
models; a new translation from relational logic to SAT that uses sparse matrices and
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relational algebra
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Table 5.1: Features of state-of-the-art model finders. Filled diamonds indicate that a
specified feature is fully supported by a solver; half-filled diamonds indicate limited support;
and empty diamonds indicate no support.

auto-compacting circuits; a new algorithm for detecting symmetries in the presence of
partial models; and a new algorithm for finding minimal cores with resolution-based
engines. The language and the techniques combine into a framework that is well-
suited to solving problems in both declarative configuration and analysis. Kodkod is
currently the only engine (Table 5.1) that scales both in the presence of symmetries
(which is crucial for declarative analysis) and partial models (which is crucial for
declarative configuration). It is also the only model finding engine that incorporates
a facility for the extraction of minimal cores.

This thesis focused on efficient analysis of specifications that commonly arise in
declarative configuration and bounded verification. Such specifications are charac-
terized by the use of typed relations with low arity, set-theoretic operators and join,
shallowly nested (universal) quantifiers, and state spaces with partial models or many
symmetries. Kodkod outperforms existing tools significantly on specifications with
these features (e.g. the Sudoku examples from Chapter 1). It is, however, less effective
than some of the existing solvers on other classes of problems.

DarwinFM [13], for example, is the most efficient model finder for specifications
comprised of first order clauses over high-arity relations. It works by translating
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a formula in unsorted first order logic to a set of function-free first order clauses,
which are solved using the Darwin [14] decision procedure. A key advantage of this
approach over SAT-based approaches is its space efficiency. In particular, the size of
propositional encodings for first order or relational formulas grows exponentially with
universe size and relation arity. The size of Darwin encodings, on the other hand, is
linear in universe size. As a result, DarwinFM can handle formulas with high-arity
relations (e.g. arity 56) on which other model finders run out of resources [125].

IDP1.3 [88] is, like Kodkod, a model extender. Unlike Kodkod, however, it targets
specifications in sorted first order logic with inductive definitions (FOL/ID). Given
a specification in FOL/ID, the tool translates it to a set of clauses in propositional
logic with inductive definitions. These clauses are then tested for satisfiability using
MiniSatID [89]. Because its underlying engine supports inductive definitions, IDP1.3
performs much better in their presence than Kodkod. It can, for example, find a
Hamiltonian cycle in a graph with 200 nodes and 1800 edges in less than a second
[147]. Kodkod, in contrast, scales only to graphs with about 30 nodes and 100 edges.

Paradox2.3 [25] is a traditional SAT-based model finder for unsorted first order
logic. Unlike other SAT-based tools, Paradox2.3 searches for models incrementally.
In particular, it translates the input formula to SAT in a universe of size k and feeds
the result to an instance of MiniSat [43]. If the solver finds a model, it is translated
to a model of the original specification and the search terminates. Otherwise, the
clauses specific to the universe size are retracted from the solver’s database, followed
by the addition of new clauses that turn the solver’s database into a valid translation
of the original specification in a universe of size k + 1. This enables the SAT solver
to reuse search information between consecutive universe sizes, making the tool well-
suited to analyses whose goal is to find a model in some universe rather than test a
specification’s satisfiability in a specific universe. Paradox2.3 also employs a number
of heuristics [25] that enable it to translate specifications in unsorted FOL much more
efficiently than Kodkod, especially in the presence of deeply nested quantifiers.

Mace4 [92] implements a dedicated search algorithm for finding models of specifi-
cations in unsorted first order logic. Its search engine performs on-the-fly symmetry
breaking using a variant of the Least Number Heuristic [151]. Search combined with
dynamic symmetry breaking is particularly effective on specifications that arise in
group theory. Such specifications have highly symmetric state spaces and consist
of formulas that compare deeply nested terms for equality. Predecessors of Mace4
[51, 151, 152] have all been used to solve open problems in abstract algebra, and
search-based tools remain the most efficient model finders for this class of problems.

5.2 Future work

The techniques presented here have significantly extended the scalability and appli-
cability of relational model finding. Kodkod is orders of magnitude faster than prior
relational engines [68, 70, 117] and includes a unique combination of features that
make it suitable for both declarative configuration [101, 149] and analysis [21, 31, 34,
114, 126, 135, 137]. But a number of scalability and usability problems still remain.
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The engine currently implements only rudimentary techniques for deciding bitvector
arithmetic; its support for inductive definitions is very limited; it includes no special
handling for simpler fragments of its input language; and it does not incorporate any
heuristics for choosing good variable and constraint orderings either in the context of
model finding or core extraction.

5.2.1 Bitvector arithmetic and inductive definitions

The need for better handling of arithmetic and inductive definitions arose in several
applications [21, 31, 149] of Kodkod. At the moment, the tool handles both arithmetic
and transitive closure by direct translation to SAT. This approach, known as “bit-
blasting,” is effective for some problems. For example, Kodkod is as efficient as
state-of-the-art SMT solvers on specifications in which bitvectors are combined with
low-level operators (shifts, ands, and ors) and compared for (in)equality [46]. In
general, however, bit-blasting yields large and hard to solve boolean formulas.

An interesting direction for future work would be to explore if bit-blasting can be
avoided, or at least minimized, with the aid of two recently developed SMT techniques
[53, 89]. The first [53] is a linear solver for eliminating redundant variables from
bitvector expressions prior to bit-blasting; the second [89] is a new SAT solver that
supports inductive definitions. The former would have to be adapted for use with
Kodkod because most bitvector variables that appear in Kodkod formulas are not
free: they represent cardinalities of relations or sums of integer-valued atoms in a set.
Exploiting the latter would require extending CBCs (Chapter 2) with a new circuit
that represents definitional implication [89] and changing the translation procedure
to take advantage of this circuit.

5.2.2 Special-purpose translation for logic fragments

Because sets and scalars are treated as relations in bounded relational logic, Kodkod’s
translator represents every expression as a matrix of boolean values. Operations
on expressions are translated using matrix operations: join corresponds to matrix
multiplication, union to disjunction, intersection to conjunction, etc. The resulting
translation algorithm is effective on specifications that make heavy use of relational
operators. It is, however, much less efficient than the translators employed in Para-
dox2.3 and IDP1.3 on specifications that are essentially fragments of first order logic.

In particular, given a specification in which the only operations on relations are
function application and membership testing, Kodkod’s translator expends a large
amount of resources on creating matrices and multiplying them when all that is needed
to translate such a specification is a series of table lookups. This overhead is negligible
for small and medium-sized problems. But for large problems with nested quantifiers,
it makes a difference between generating a translation in a few seconds and several
minutes. For example, Kodkod takes nearly 3 minutes to translate a specification
that says a graph [147] with 7,260 vertices and 21,420 edges is 3-colorable. IDP1.3, in
contrast, translates the same specification in less than a second. Similar performance
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can be elicited from Kodkod only if the specification is re-written so that all joins are
eliminated.

An important direction for future work is the development of special-purpose
translation techniques for inputs that are specified in simpler fragments of Kodkod’s
input language. This would require solving two problems: identifying specifications
(or parts thereof) that are eligible for faster translation, and translating the identified
fragments in a more efficient manner. The latter could be accomplished either by
adapting the techniques used in other solvers or by incorporating those solvers into
Kodkod. The hybrid approach seems particularly appealing, since Kodkod’s users
would benefit automatically from any improvements to the underlying solvers, just
as they automatically benefit from improvements in the SAT technology.

5.2.3 Heuristics for variable and constraint ordering

It is well-known that SAT solvers are sensitive to the order in which variables and
clauses are presented to them, with small perturbations in input ordering causing
large differences in runtime. MiniSat, for example, can take anywhere between 1.5
and 5 minutes to solve the problem AWD.A241 from Chapter 2, depending on the
order in which its constraints are translated. Similarly, the order in which constraints
are selected for pruning during core extraction (Chapter 4) often make the difference
between finding a minimal core in a few seconds and giving up after a few hours.

The problem of choosing a good (variable) ordering has been studied extensively
in the SAT community [3, 4, 5, 17, 35, 37, 36, 66, 98]. Heuristics that work at the
boolean level, however, do not take into account domain-level knowledge. Recent work
on choosing variable orderings for specific problems, such as graph coloring [140] or
bounded model checking [142], has shown that heuristics based on domain knowledge
can significantly outperform more generic approaches. Corresponding heuristics have
not yet been developed for SAT-based model finding. The same is true for core extrac-
tion; no heuristics have been developed for choosing a good minimization order for a
given core. Both of these are exciting and promising areas for future research, with
a potential to further extend the efficiency and applicability of declarative problem
solving.
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[43] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT’03, volume
LNCS 2919, pages 502–518, 2004.
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