Encodings in SAT and
Constraints

lan Gent
University of St Andrews

Topics in this Series

Why SAT & Constraints!?

SAT basics

Constraints basics

Encodings between SAT and Constraints
Watched Literals in SAT and Constraints
Learning in SAT and Constraints

Lazy Clause Generation + SAT Modulo
Theories

Encodings SAT & CP

Maybe most obvious link SAT to CP

Works outside solvers

More interesting than you might think
Propagation-optimal encodings

® Examples CP to SAT

® Example SAT to CP

® Fundamental Conjecture of Reformulation

® Why it’s false!

Encodings: Motivation

® Entire basis of NP-completeness is encoding
® translate one problem to another
® in reasonable (poly) time
® and faithfully - solution preserving
® SAT is the first NP-complete problem
® SoWhy Not ...
® just translate everything into SAT

® and use a SAT solver?

Encodings: Motivation

Not a straw man argument

There are real advantages to using SAT (or CP) as
basis, and then encoding to it

We only need to write one solver

® which can then be highly optimised

It’s typically easier to write translator than new solver
Every time we optimise SAT (or CP)

® we optimise every other NP-complete problem

Encodings: Motivation

But it’s not as simple as that ...
We can’t really afford to lose propagation
e E.g if we need to establish AC
® then our encoded problem should do AC
® using standard SAT techniques
We can’t really afford to lose time
e E.g. we can establish AC in O(ed?)
® So it has to be this if we encode to SAT
® ..and then use standard encoding

Leads to idea of “propagation-optimal” encodings

Propagation Optimal

Encodings

® Encoded version might not propagate as well

® Propagation in encoded version might be slow

if we lose O(n) time at each node, translation will never be
competitive

® Propagation Optimal Encoding

translation time should be optimal for target consistency
level

native propagation (e.g. unit prop.) on encoding should
achieve target consistency level

and do it in optimal time for target consistency level

Encoding CSP to SAT

® Going to start with binary CSPs
® but ideas do generalise
® Focus on two key encodings
® Direct Encoding
e folklore,Walsh 2000
® Acts like Forward Checking
® Support Encoding
o Kasif 1990, Gent 2002
® Acts like AC

Encoding CSPs into
SAT

® e.g. CSP variable A domain size 3
® SAT variables al,a2,a3
o a|l=T & A=|
® “at-least-one” clause
© al ORa2 OR a3
® “at-most-one” clauses
e -a|l OR-a2
® -32 OR -a3
e -a3 OR -l

Conflict Clauses

A<B = A=
B=I X
B=2 X
B=3 v

One conflict clause for each X

10

Conflict Clauses

A<B A= A=2 A=3
B=1 -al OR —b1 X X
B=2 v X X
B=3 4 v X

IfA=1thenB=1.

Conflict Clauses

A<B A= A=2 A=3
B=| -al OR-bl | -a2 OR—b1 X
B=2 v X X
B=3 v v X

ITfA=2then B = 1.

Conflict Clauses

A<B A= A=2 A=3
B=| -al OR -bl -a2 OR bl -a3 OR bl
B=2 v a2 OR-b2 | -a3 OR —b2

B=3 v v -a3 OR —b3

Support Clauses

A<B A= A=2
B=I X X
B=2 v X
B=3 4 v

One “support” clause for each row/

column

14

Support Clauses

A<B| A=l A=2 A=3
B=1 X X X b1
B=2 v X X
B=3 v v X

B=1 is impossible as no value of A
supports It

15

Support Clauses

A<B A= A=2 A=3
B=1 X X X bl
B=2 v X X al OR -b2
B=3 v v X

16

If A=1, then there is no support for B=2

Support Clauses

A<B A=l A=2 A=3
B=1 X X X bl
B=2 v X X al OR -b2
B=3 v v X al OR a2 OR -b3

If A=1 and A=2, then there Is no support
for B=3

17

Support Clauses

A<B A= A=2 =
B=| X X X bl
B=2 v X X al OR -b2
B=3 v v X al OR a2 OR -b3

b2 OR b3 OR -al

b3 OR a2

-a3

Direct & Support
Encodings

“Direct Encoding” is most commonly used

almost folklore but see e.g. [Walsh, CP 2000]
at-least-one clauses
at-most-one clauses optional

conflict clauses

“Support Encoding” [Gent, ECAI 2002]

at-least-one clauses
at-most-one clauses (nhot optional)

support clauses [Kasif,Al] 1990]

Theoretical
Comparison

® Compare CSP algorithms FC & MAC
® FC = Forward Checking
® MAC = Maintaining Arc Consistency
® With (simple) DPLL running on encoded versions
® unit propagates between nodes
® Results on Direct Encoding
® DPLL on Direct performs equivalent search to FC
® [Genisson & Jegou ECAI 94]

® MAC can outperform DPLL on Direct encoding
® [Walsh CP 2000]

20

Arc Consistency in SAT

® Natural correspondence in the support encoding
o al=T < A=
e al=F & | & domain(A)
e al={TF} & | € domain(A)

® Key result on Support Encoding

® When unit propagation terminates without failure, the SAT variables
correspond to Arc Consistent domains in the CSP

® Simple Corollary

® DPLL on Support Encoding = MAC on CSP

21

Support Encoding is
AC-Optimal

® For a CSP with e constraints, domain size d
® unit propagation takes time O(ed ?)
® including translation time
® this is optimal worst case time for AC
® in fact maybe the second optimal algorithm for AC [Kasif 90]
® So translation to SAT & use of DPLL
® s equivalent to MAC
® is optimal time algorithm for MAC
® benefits from any other techniques used in SAT

® e.g.clause learning key in Chaff

22

Experimental
Comparison

Implemented translation in Common Lisp
Used Chaff on translated instances
Tested on hard random binary CSP’s

At peak difficulty, about 5-6 times slower than
MAC2001| [Bessiere/Regin [|CAIl 2001]

23

160688

1608

168

DPLL for Support vs

Direct:

T T T T T
@
e&
@
4 ¢
@
@
@
;++ ®q
L + * hY a
@ ®e
¢ 4g B H ®e® o
@ @
++ S
3 @ & & +
$%6¢ & & @, @ L3
R $ﬁ$w¢%$§++¢$i‘.®® 20060® o00’ ¢ 5 @ i3 o +, FACTR @
by, @ @ P gy + o + & ¢ o
& b +0 a + A
. +++++++++ ++F s ¢ % oo &%
$ bt +,
a +
XEB b3 +4
a X X +Hy
L x EJBEE + .
o] o oa ++4
r ><xx BEmDEPE%BFﬂEPE%EEbGEBB . Ty 5y
R S S VI - oo *
A K st x @
K "
Xxxxx X
o]
X @
X
x %
— x —
X o
X
ES Direct encoding, Max X
+ Direct encoding, mean
o} Support encoding, Max
X Support encoding, mean X
o]
X
1 1 1 1 1 1 1] 1
a 8.1 a.z2 8.3 8.4 8.5 8.6 a.7 a.8 8.9 1

24

Chaff used as DPLL
solver

N=50

X axis is constraint
tightness, p2

y axis is nodes searched

Support always searches
less

Support max is less than
direct mean

Zero search for p2>0.7

DPLL for Support vs

_Direct:

2400600 P 0009000, 6. &,]
eeawewe L2 00«%%@@%@@%@%@@ B x °e

o8

@
&XX%

o8
® (a o] o
g 4 o E]

*Bg & 6%‘3960 o o] -
X+ LR
+ + FByoagyeeea™ & AL TIVEIN
o] +,
2 xt X
CTCL R " KHRKK
R S aea * 30X
+++++++ 4 +H+ ++++;mmmﬂ+++ﬂ++++& +ffxxxx>c<xx>0<><><><xx X .
++ BE,EF‘E
a@a™ xxx ++++‘H+
BGEE Ve ~+H+++“+++
o} +
EEPB XXXXXXX ++++++
o] %% =
(o] X
a x>?(
o]
DEp x><)<>2<
o w*
X
5]
xxx
><X
XX
xx B Support encoding Total cpu -
+ Support encoding, Chaff cpu
o] Direct encoding Total cpu
X Direct encoding, Chaff cpu
1 1 1 1 1 1 1 1 1
1 a.z2 8.3 8.4 8.5 8.6 8.7 8.8 a 1

25

same data as previous slide
y axis is mean cpu time

top line includes
translation time

bottom line just chaff time

Support encoding usually
slower

Support just faster at peak
of hardness

At N=100, support
encoding about 3x faster
at peak

1080

100

]
1606060

1
e+@7

26

WalkSAT for Support
vs Direct:

Hoos’s Novelty+ variant
each point one instance

x axis is #flips for
support encoding

y axis is flips-speedup of
support vs direct

encoding

Umm, got that yet?

1680

100

19

vs Direct:

]
1666680

]
e+@6 1e+87

27

WalkSAT for Support

Hoos’s Novelty+ variant
each point one instance

x axis is #flips for
support encoding

y axis is flips-speedup of
support vs direct
encoding

This instance took about
10,000,000 flips for
support encoding, but
20 X more in the direct
encoding

1688

18

1
166000

28

e+@7

WalkSAT for Support
vs Direct:

® Hoos’s Novelty+ variant
® each point one instance

® x axis is #flips for
support encoding

® vy axis is flips-speedup of
support vs direct
encoding

® This instance took about
500,000 flips for support
encoding, but 922 X
more in the direct
encoding

WalkSAT for Support

_vs Direct:

1688
® Hoos’s Novelty+ variant
® each point one instance
o0 | | ® xaxis is #flips for support
encoding
A
& @
&
o ° %o \ ® vy axis is flips-speedup of
O Gy e ° support vs direct encoding
. .
10 o ° ¢ o ¢] .
o ¥ o ——® The median was 16 X more
¢ flips using the direct
& .
encoding
-
- ® The best the direct encoding
1 Teem ewe e could do was 2.34 X more

flips

29

Optimal Encodings:
Pluses and Minuses

Pluses

Just need to implement a
translation

Take advantage of state of
the art SAT solvers ...

... and future developments
Can be competitive with

direct CSP solvers
30

Minuses
Space complexity is worse

Hits worst case time
complexity in average case

Direct implementation
should always be faster

Support Encoding

® Generalised to non binary constraints
® with similar propagation-optimality
® meaning we can search arbitrary constraint problems using GAC
® Bessiere, Hebrard,Walsh 2002
® Investigated further on local search
® with mixed results
® Prestwich 2004
® Interesting further ideas
® Introducing as many solutions as possible

® while preserving correctness of course

So that’s that!

® Encodings are great
® Ok there are some minuses
® But we've got an ideal solution
® we can propagate any constraint
® in optimal time
® using only simplish encodings + SAT solvers

® so what’s the problem!?

“Space complexity is
worse”

® Forgot one little word...

“Space complexity is
exponentially
worse”

® Forgot one BIG word...

Exponentially worse?

Well, not in the case of AC
But in the case of GAC

Remember | said ...

we almost never list all tuples in constraints?

Well we have to in support encodings

all allowed tuples

Or in direct encodings

all disallowed tuples

Which can be exponentially bigger than an implicit representation

e.g. all different has n! allowed tuples and far more disallowed

Ok Forget It

® So there’s a cute encoding for AC in SAT
® But we can’t do well in general

® So encodings are useless, right?

Find smarter encodings

® Give up on the idea of one true encoding
® Just like there’s no single key constraint
® Have an army of encodings
® One for every constraint we want
® Maybe propagation optimal for that

® Steal ideas from propagation algorithms?

o Eg GAC-Lex

Inspiration

We present an encoding of GACLex

The encoding was inspired by an algorithm for maintaining

I'll tell you what that is in a minute

GACLex

Initial algorithm proposed by Miguel/Frisch/VWalsh

Later variants and study presented in

® Global Constraints for Lexicographic Orderings

Frisch, Hnich, Kiziltan, Miguel,Walsh, 2002 [CP], 2006 [Al]]

38

Lexicographic Constraint

Arrays A/B of variables
A <Bif

A[1] < B[1]

A[1] = B[1] & A[2] < B[2]

A[1]=B[I] for all |
Application in symmetry

A/B indistinguishable
A =< B breaks symmetry

39

Lexicographic Constraint

Arrays A/B of variables

A<BIf

A[1] < B[1] P

A[1] = B[1] & A[2] < B[2]

A.[I]zB[I] for all 1

Application in symmetry
A/B indistinguishable

A =< B breaks symmetry

GAC: Generalised Arc Consistency

A <Bis GAC If A B

any value A[l] is allowed by

some setting of the values of
other A/B vars 1 1

similarly for BJ[I]

If A <B is not GAC

we can establish GAC

41

GAC: Generalised Arc Consistency

A <Bis GAC If A B
any value A[l] is allowed by 0 0
some setting of the values of
other A/B vars 1 1
similarly for B[I] « %

If A <Bis not GAC

0 0

we can establish GAC

E.g. A[3] =1 is not 1 0

possible, as then A > B
Similarly B[3] =0

42

GAC: Generalised Arc Consistency

A <Bis GAC If A B

any value A[l] is allowed by
some setting of the values of

other A/B vars 1 1

similarly for B[I]

If A <B is not GAC

we can establish GAC

Establish GAC by setting A 1 0

[3] =0, B[3]=1

43

GAC: Generalised Arc Consistency

GAC Lex can be A B

established in O(n) time

for binary domains 0 0
Frisch et al, CP 2002 1 1
specialised algorithm 0 1

We encode GAC Lex using))

new constraints

44

Encoding GAC Lex

Assume that A/B indexed from 1

Introduce new array a[] indexed from O

two values of each a[l]
Meaning of a[]

a[l] = 1 & A[1]=B[1], ... A[1]=B[I]

a[l] = 0 & A < B guaranteed by A[1..1], B[1..1]
Add O(n) constraints linking A/B/a[]

45

5 Constraints for GAC Lex

1) a[0]=1

Presentational
convenience

Allows uniform
presentation of
remaining constraints

46

5 Constraints for GAC Lex

1)a[0]=1
2)a[l]=0 = a[l+1]=0

O<Il=<n-1
Monotonicity

If GAC Lex guaranteed
by 1..1, it is guaranteed
by 1..1+1

47

5 Constraints for GAC Lex

1a
2)a
3)a

0]=1
11=0 & a[l+1]=0

11=1 = A[1]=B[I]

O<l=n-1

Equality

Monotonicity implies
each a[J]=1 for J < |
3) gives A[J] = B[J] for
sequence up to |

Gives intended meaning
to a[l]=1

48

5 Constraints for GAC Lex

1a

2)a|
3)al

4)a

0]=1

|
|
1]
=0 = A[l+1] < B[I+1]

=0 = a[l+1]=0
=1 = A[l]=BJI]
=1 & a[l+1]

O<l=n-1
Inequality

a[l+1]=0 means we
want to guarantee A<B
from 1..1

But a[l]=1 means we
have A[1..1]=B[1..1]

So we must set A[1+1]
<B[l+1]

49

5 Constraints for GAC Lex

1)a[0]=1
2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=B][I]
4)a[l]=1 & a[l+1]
=0 = A[l+1] < B[I+1]
5)a[l]=1 = A[l+1] < BJl
+1]

O<Il=n-1

Redundant constraint
Implied by (2) & (3)
But not deduced by AC

5) included so that AC
can do implication

In fact only needed for
domain size > 2

50

5 Constraints for GAC Lex

1)a[0]=1

2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=BJl]

4)a[l]=1 & a[l+1]

=0 = A[l+1] < B[I+1] x

5)a[l]=1 & A[l+1] < B[l *

+1] *

51

5 Constraints for GAC Lex

1)a[0]=1
1

2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=B][I]

4)a[l]=1 & a[l+1]

=0 = A[l+1] < B[I+1] *

5)a[l]=1 & A[l+1] < B[l »

+1] *

52

5 Constraints for GAC Lex

1)a[0]=1
2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=B][I]
4)a[l]=1 & a[l+1]
=0 = A[l+1] < B[I+1]
5)a[l]=1 = A[l+1] < BJl
+1]

53

5 Constraints for GAC Lex

1)a[0]=1

2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=BJl]

4)a[l]=1 & a[l+1]
=0 > A[l+1] < B[|+ﬂ/

¥ P k|| D

5)a[l]=1 & A[l+1] < B[l

+1]

54

5 Constraints for GAC Lex

1)a[0]=1
2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=B][I]
4)a[l]=1 & a[l+1]
=0 = A[l+1] < B[I+1]
5)a[l]=1 = A[l+1] < BJl
+1]

¥ P k|| D

55

5 Constraints for GAC Lex

1)a[0]=1

2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=BJl]

4)a[l]=1 & a[l+1]

=0 = A[l+1] < B[I+1]

¥ P [P || o

5)a[l]=1 > A[l+1] <B[l

+1]

o

56

5 Constraints for GAC Lex

1)a[0]=1

2)a[l]=0 = a[l+1]=0
3)a[l]=1 = A[l]=BJl]

4)a[l]=1 & a[l+1]

=0 S A[l+1] <B[I+I] ——

5)a[l]=1 & A[l+1] < B[l

+1]

O O | o (|| |9

57

5 Constraints for GAC Lex

1)a[0]=1 ? A |

2)a[1]=0 & a[l+1]=0 !

3)a[l]=1 = A[1]=B[I] . 0 0

A a[l]=1 & a[1+1] - 1 1 1
=0 = A[l+1] < B[I+1] 0 [O 1

5)a[l]=1 & A[l+1] < B[l 0 0 0
+1] 0 1 0

For 0/1 domains, x<y <x=0, y=1

58

Theoretical Analysis

Arc Consistency (AC) establishes GAC Lex
Specifically:
A/B GAC Lex in any AC state of A/B/a[] variables
Time Complexity in Boolean Domains
AC takes O(n) time
Encoding+AC = optimal algorithm for GAC
This is a “propagation-optimal” encoding

59

Stable Marriage

® Stable Marriage problem
® Assume every female has a preference list of all males
® And vice versa
® And there are n males and n females
® Find a stable matching of females to males
® There is no pair Ann & Andy, not married
® Where Ann prefers Andy to her husband
® And Andy prefers Ann to his wife

® je.Ann & Andy would elope with each other

60

Stable Marriage

® Gale-Shapley algorithm is low polynomial time
® |nspired SAT encoding
® Which achieves AC in same poly time

® And solutions can be read off from AC
domains

® Gent, Irving, Manlove, Prosser, Smith 2001

61

SAT to Constraints

Don’t need to encode SAT to Constraints?

We do if we want propagation-optimal

At first sight looks hard/impossible

® assuming we use AC propagation

Taking boolean domains to n-ary

And AC per constraint is O(d?)

® Maybe we'll lose O(d/2) = O(d) or something

But there is a propagation optimal encoding

Extended Literal
Encoding

® Based on the “literal encoding”
® Bennaceur 1996

® But extension makes it propagation-optimal
® Gent, Prosser, Walsh, 2003

® Also called “Place Encoding”

® Jarvisalo & Niemela, 2004

Literal Encoding

® For each k-clause C in the SAT problem

® Variable xc in CSP encoding

® Domain of xcis {l..k}
® The meaning of xc =i

® s that the i literal of clause C is satisfied

® from which we can read solution of SAT problem
® For every pair of clauses C| C;

® |[f there are any ...

® Add constraint ruling out complementary literals

Literal Encoding

Example
ci/c2 | xo=| | xo=2 | x»=3
Ci:aORbORC
X|=| X v v
x=2| v X v
C:-a OR -b OR ¢
X|=3 v v v

Literal Encoding
Problem

® can do unit propagation,
but ...

® u.p. should take O(mk)

® But each constraint O(k?)

ci/c2| xo=1| | x2=2 | x=3
x=l| x v v
x=2| v X v
w=3| v | v | v

Literal Encoding
Problem

® can do unit propagation, but ...
® u.p. should take O(mk)

® But each constraint O(k?)
® And there can be O(m?)
® because var might occur
® m/2 times positively

® m/2 times negatively

® So this is O(m?k?)

ci/c2| xo=1| | x2=2 | x=3
x=l| x v v
x=2| v X v
w=3| v | v | v

Extended Literal
Encoding

® As before:
® For each k-clause C in the SAT problem
® Variable xcin CSP encoding
® Domain of xcis {l..k}
® Extension
® Reintroduce original boolean variables
® Domain {0,1}
® Constraints between booleans and clause vars

® none between clause vars and other clause vars

Extended Literal
Encoding Example

Ci:aORDbORC

Ci:-a OR -b OR ¢

a/ClI

X|=|

X|=2

X1=3

a=0

X

v

a=|

v

v

Extended Literal
Encoding Example

Ci:aORDbORC

Ci:-a OR -b OR ¢

c/ClI

X|=|

X|=2

X1=3

c=0

v

v

c=|

v

v

Extended Literal
Encoding Example

Ci:aORDbORC

Ci:-a OR -b OR ¢

a/C2

X|=|

X|=2

X1=3

c=0

v

v

c=|

X

v

Extended Literal
Encoding Example

Ci:aORDbORC

Ci:-a OR -b OR ¢

a/C2 | xXo=1| | x2=2 | x2=3
2=0 v’ v v
a=| X v v

Extended Literal
Encoding Example

Ci:aORDbORC

Ci:-a OR -b OR ¢

b/C2 | x2=| | X2=2 | x=3
b=|I v X v

Extended Literal
Encoding Example

Ci:aORDbORC

Ci:-a OR -b OR ¢

c/C2

X|=|

X|=2

X1=3

c=0

v

v

c=|

v

v

Extended Literal
Complexity

® This example looks worse
® 6 constraints/36 cells
® compared to | constraint/18 cells
® But asymptotics are better
® We have O(mk) constraints
® One for each literal in each clause
® FEach propagates in time O(2k) = O(k)

e Total O(mk?) propagation time

Extended Literal
Complexity

® This example looks worse
® 6 constraints/36 cells
® compared to | constraint/18 cells
® But asymptotics are better
® We have O(mk) constraints
® One for each literal in each clause
® FEach propagates in time O(2k) = O(k)

e Total O(mk?) propagation time

Extended Literal
Complexity

® This is propagation optimal if we fix k

® Plus there is easy propagation optimal encoding
k-SAT to 3-SAT

® eg.a ORb OR c OR d becomes
® aORbORZ
e 7zORcORAd

® So we have propagation optimal encoding of k-
SAT to CSP

|s the Extended Literal
Encoding worthwhile!?

® Not really
® Why not!

Why not?

Hard to see the advantages of translating SAT to CSP in general

It’s unlikely that the translated version will propagate as fast in
practice as in SAT

® which is true from CSP to SAT too but ...
Also harder to see advantages we get

® CP solvers good at propagating multiple different types of
constraints together

® And writing specialised propagators, for (e.g.) clauses

e If we're going to only propagate one type of constraint, why not
build a (SAT) solver to do it?

Overall, encodings SAT to CP have attracted little interest

Fundamental Conjecture
of Reformulation

® In early 2000s, work such as above on AC,
GACLex, SATtoCP, StableMarriage, ...

® | ed me to suggest the

® “Fundamental Conjecture of
Reformulation”

Fundamental Conjecture
of Reformulation

® This says that ...

® For any [reasonable] constraint propagator taking
time p(n) (for some polynomial p)

® not saying what reasonable is

® There is an encoding of the constraint so that a
standard AC algorithm can do the same work as the
propagator in time p(n), including translation time

® Since we have optimal encodings both ways, AC can
be interchanged SAT

Fundamental Conjecture
of Reformulation

® If true,...

® There would be a strong argument that
encodings should become key focus of SAT/
CP research

® |ncluding techniques to beat some of the
disadvantages

® c.g. hitting worst case space complexity

Encoding All-Different

® |t was always obvious that All-Different
would be an acid test of the conjecture

® Key constraint
® Very good GAC algorithm (Regin)
® flow based

® beats “obvious” encoding easily

Encoding All-Different

® Fundamental conjecture fails the acid test
® |e.it’s false
® Key result
® Bessiere, Katsirelos, Narodytska, Walsh, 09
® |t is impossible to encode all-different to SAT

® in a polynomial sized number of clauses

® and obtain GAC

Impossibility Result

® Result based on circuit complexity
® Encoding constraint ¢ to into SAT

® gives a SAT checker [ie. there being a
solution tuple to c]

® gives monotone circuit of poly size
® So if there’s no monotone circuit of poly size

® there’s no encoding of c into SAT

Impossibility Result

Perfect matching has no monotone circuit of poly size
® Rasborov 85,Tardos 88
All-Different subsumes perfect-matching
But we already had ...
® So if there’s no monotone circuit of poly size
® there’s no encoding of c into SAT
Proof by contradiction:
® We are done.

There is no propagation-optimal encoding of AlIDifferent into SAT
(or generic AC)

Encodings Summary

More to encodings than you might think
Attractive, fun and interesting area

And valuable....

® increase power of SAT solving especially
But still some problems

® C(Can’t expect to beat native implementation
® Can have space complexity problems

® Can hit worst case all the time

