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Topics in this Series

• Why SAT & Constraints? 

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo 
Theories



Encodings SAT & CP
• Maybe most obvious link SAT to CP

• Works outside solvers

• More interesting than you might think 

• Propagation-optimal encodings

• Examples CP to SAT

• Example SAT to CP

• Fundamental Conjecture of Reformulation

• Why it’s false! 



Encodings: Motivation
• Entire basis of NP-completeness is encoding

• translate one problem to another

• in reasonable (poly) time

• and faithfully - solution preserving

• SAT is the first NP-complete problem

• So Why Not ... 

• just translate everything into SAT

• and use a SAT solver?



Encodings: Motivation

• Not a straw man argument

• There are real advantages to using SAT (or CP) as 
basis, and then encoding to it

• We only need to write one solver

• which can then be highly optimised

• It’s typically easier to write translator than new solver

• Every time we optimise SAT (or CP)

• we optimise every other NP-complete problem



Encodings: Motivation
• But it’s not as simple as that ... 

• We can’t really afford to lose propagation

• E.g. if we need to establish AC

• then our encoded problem should do AC

• using standard SAT techniques

• We can’t really afford to lose time 

• E.g. we can establish AC in O(ed2)

• So it has to be this if we encode to SAT

• ... and then use standard encoding

• Leads to idea of “propagation-optimal” encodings



Propagation Optimal 
Encodings

• Encoded version might not propagate as well 

• Propagation in encoded version might be slow

• if we lose O(n) time at each node, translation will never be 
competitive

• Propagation Optimal Encoding

• translation time should be optimal for target consistency 
level

• native propagation (e.g. unit prop.) on encoding should 
achieve target consistency level

• and do it in optimal time for target consistency level



Encoding CSP to SAT
• Going to start with binary CSPs

• but ideas do generalise

• Focus on two key encodings

• Direct Encoding

• folklore, Walsh 2000

• Acts like Forward Checking

• Support Encoding

• Kasif 1990, Gent 2002

• Acts like AC
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Encoding CSPs into 
SAT

• e.g. CSP variable A domain size 3

• SAT variables a1, a2, a3

• a1=T ó A=1

• “at-least-one” clause

• a1 OR a2 OR a3

• “at-most-one” clauses

• -a1 OR –a2

• -a2 OR –a3

• -a3 OR –a1
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Conflict Clauses
A < B A=1 A=2 A=3

B=1   

B=2 ü  

B=3 ü ü 

One conflict clause for each 
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Conflict Clauses
A < B A=1 A=2 A=3

B=1 -a1 OR –b1  

B=2 ü  

B=3 ü ü 

If A = 1 then B ≠ 1.
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Conflict Clauses
A < B A=1 A=2 A=3

B=1 -a1 OR –b1 -a2 OR –b1 

B=2 ü  

B=3 ü ü 

If A = 2 then B ≠ 1.
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Conflict Clauses
A < B A=1 A=2 A=3

B=1 -a1 OR –b1 -a2 OR –b1 -a3 OR –b1

B=2 ü -a2 OR –b2 -a3 OR –b2

B=3 ü ü -a3 OR –b3
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Support Clauses
A < B A=1 A=2 A=3

B=1   

B=2 ü  

B=3 ü ü 

One “support” clause for each row/
column
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Support Clauses
A < B A=1 A=2 A=3

B=1    -b1

B=2 ü  

B=3 ü ü 

B=1 is impossible as no value of A 
supports it



16

Support Clauses
A < B A=1 A=2 A=3

B=1    -b1

B=2 ü   a1 OR -b2

B=3 ü ü 

If A≠1, then there is no support for B=2
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Support Clauses
A < B A=1 A=2 A=3

B=1    -b1

B=2 ü   a1 OR -b2

B=3 ü ü  a1 OR a2 OR -b3

If A≠1 and A≠2, then there is no support 
for B=3
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Support Clauses
A < B A=1 A=2 A=3

B=1    -b1

B=2 ü   a1 OR -b2

B=3 ü ü  a1 OR a2 OR –b3

b2 OR b3 OR -a1 b3 OR –a2 -a3
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Direct & Support 
Encodings

• “Direct Encoding” is most commonly used

• almost folklore but see e.g. [Walsh, CP 2000]

• at-least-one clauses

• at-most-one clauses optional

• conflict clauses 

• “Support Encoding” [Gent, ECAI 2002]

• at-least-one clauses

• at-most-one clauses (not optional)

• support clauses [Kasif, AIJ 1990]
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Theoretical 
Comparison

• Compare CSP algorithms FC & MAC

• FC = Forward Checking

• MAC = Maintaining Arc Consistency 

• With (simple) DPLL running on encoded versions

• unit propagates between nodes

• Results on Direct Encoding 

• DPLL on Direct performs equivalent search to FC

• [Genisson & Jegou ECAI 94]

• MAC can outperform DPLL on Direct encoding

• [Walsh CP 2000]
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Arc Consistency in SAT
• Natural correspondence in the support encoding

• a1=T ó A=1

• a1=F ó 1 ∉ domain(A)

• a1={T,F} ó 1 ∈ domain(A)

• Key result on Support Encoding

• When unit propagation terminates without failure, the SAT variables 
correspond to Arc Consistent domains in the CSP

• Simple Corollary

• DPLL on Support Encoding = MAC on CSP
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Support Encoding is 
AC-Optimal

• For a CSP with e constraints, domain size d

• unit propagation takes time O(ed 2 )

• including translation time

• this is optimal worst case time for AC

• in fact maybe the second optimal algorithm for AC [Kasif 90]

• So translation to SAT & use of DPLL

• is equivalent to MAC

• is optimal time algorithm for MAC

• benefits from any other techniques used in SAT

• e.g. clause learning key in Chaff
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Experimental 
Comparison

• Implemented translation in Common Lisp

• Used Chaff on translated instances

• Tested on hard random binary CSP’s

• At peak difficulty, about 5-6 times slower than 
MAC2001 [Bessière/Regin IJCAI 2001]
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DPLL for Support vs 
Direct: 

• Chaff used as DPLL 
solver

• N=50

• x axis is constraint 
tightness, p2

• y axis is nodes searched

• Support always searches 
less

• Support max is less than 
direct mean

• Zero search for p2>0.7
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DPLL for Support vs 
Direct: 

• same data as previous slide

• y axis is mean cpu time

• top line includes 
translation time

• bottom line just chaff time

• Support encoding usually 
slower

• Support just faster at peak 
of hardness

• At N=100, support 
encoding about 3x faster 
at peak
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WalkSAT for Support 
vs Direct: 

• Hoos’s Novelty+ variant

• each point one instance

• x axis is #flips for 
support encoding

• y axis is flips-speedup of 
support vs direct 
encoding

• Umm, got that yet?
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WalkSAT for Support 
vs Direct: 

• Hoos’s Novelty+ variant

• each point one instance

• x axis is #flips for 
support encoding

• y axis is flips-speedup of 
support vs direct 
encoding

• This instance took about 
10,000,000 flips for 
support encoding, but 
20 x more in the direct 
encoding
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WalkSAT for Support 
vs Direct: 

• Hoos’s Novelty+ variant

• each point one instance

• x axis is #flips for 
support encoding

• y axis is flips-speedup of 
support vs direct 
encoding

• This instance took about 
500,000 flips for support 
encoding, but 922 x 
more in the direct 
encoding



29

WalkSAT for Support 
vs Direct: 

• Hoos’s Novelty+ variant

• each point one instance

• x axis is #flips for support 
encoding

• y axis is flips-speedup of 
support vs direct encoding

• The median was 16 x more 
flips using the direct 
encoding

• The best the direct encoding 
could do was 2.34 x more 
flips
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Optimal Encodings: 
Pluses and Minuses

Pluses

+Just need to implement a 
translation

+Take advantage of state of 
the art SAT solvers …

+… and future developments 

+Can be competitive with 
direct CSP solvers

Minuses

- Space complexity is worse

- Hits worst case time 
complexity in average case

- Direct implementation 
should always be faster



Support Encoding
• Generalised to non binary constraints

• with similar propagation-optimality

• meaning we can search arbitrary constraint problems using GAC

• Bessiere, Hebrard, Walsh 2002

• Investigated further on local search

• with mixed results

• Prestwich 2004

• Interesting further ideas

• Introducing as many solutions as possible

• while preserving correctness of course



So that’s that!

• Encodings are great

• Ok there are some minuses

• But we’ve got an ideal solution

• we can propagate any constraint

• in optimal time

• using only simplish encodings + SAT solvers

• so what’s the problem?



“Space complexity is 
worse”

• Forgot one little word... 



“Space complexity is 
exponentially 

worse”

• Forgot one BIG word... 



Exponentially worse?
• Well, not in the case of AC 

• But in the case of GAC

• Remember I said ... 

• we almost never list all tuples in constraints?

• Well we have to in support encodings

• all allowed tuples

• Or in direct encodings

• all disallowed tuples

• Which can be exponentially bigger than an implicit representation

• e.g. all different has n! allowed tuples and far more disallowed



Ok Forget It

• So there’s a cute encoding for AC in SAT

• But we can’t do well in general

• So encodings are useless, right?



Find smarter encodings

• Give up on the idea of one true encoding

• Just like there’s no single key constraint

• Have an army of encodings

• One for every constraint we want

• Maybe propagation optimal for that

• Steal ideas from propagation algorithms?

• E.g. GAC-Lex
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Inspiration 

• We present an encoding of GACLex

• I’ll tell you what that is in a minute

• The encoding was inspired by an algorithm for maintaining 
GACLex

• Initial algorithm proposed by Miguel/Frisch/Walsh

• Later variants and study presented in

• Global Constraints for Lexicographic Orderings

• Frisch, Hnich, Kiziltan, Miguel, Walsh, 2002 [CP], 2006 [AIJ]
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Lexicographic Constraint

• Arrays A/B of variables
• A ≤ B if 

• A[1] < B[1]
• A[1] = B[1] & A[2] < B[2]
• …
• A[I]=B[I] for all I

• Application in symmetry
• A/B indistinguishable
• A ≤ B breaks symmetry
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Lexicographic Constraint

• Arrays A/B of variables
• A ≤ B if 

• A[1] < B[1]
• A[1] = B[1] & A[2] < B[2]
• …
• A[I]=B[I] for all I

• Application in symmetry
• A/B indistinguishable
• A ≤ B breaks symmetry

A B

0 0

0 1

1 0

1 1

0 0

… …
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GAC: Generalised Arc Consistency

• A ≤ B is GAC if
• any value A[I] is allowed by 

some setting of the values of 
other A/B vars

• similarly for B[I]

• If A ≤ B is not GAC
• we can establish GAC

A B

0 0

1 1

* *

0 0

1 0

… …
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GAC: Generalised Arc Consistency

• A ≤ B is GAC if
• any value A[I] is allowed by 

some setting of the values of 
other A/B vars

• similarly for B[I]

• If A ≤ B is not GAC
• we can establish GAC

• E.g. A[3] = 1 is not 
possible, as then A > B

• Similarly B[3] = 0

A B

0 0

1 1

* *

0 0

1 0

… …
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GAC: Generalised Arc Consistency

• A ≤ B is GAC if
• any value A[I] is allowed by 

some setting of the values of 
other A/B vars

• similarly for B[I]

• If A ≤ B is not GAC
• we can establish GAC

• Establish GAC by setting A
[3] = 0,  B[3]=1

A B

0 0

1 1

0 1

0 0

1 0

… …
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GAC: Generalised Arc Consistency

• GAC Lex can be 
established in O(n) time 
for binary domains
• Frisch et al, CP 2002
• specialised algorithm

• We encode GAC Lex using 
new constraints

A B

0 0

1 1

0 1

0 0

1 0

… …
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Encoding GAC Lex

• Assume that A/B indexed from 1
• Introduce new array a[] indexed from 0

• two values of each a[I]

• Meaning of a[]
• a[I] = 1 ó A[1]=B[1], … A[I]=B[I]
• a[I] = 0 ó A ≤ B guaranteed by A[1..I], B[1..I]

• Add O(n) constraints linking A/B/a[]
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5 Constraints for GAC Lex

1)a[0]=1 • Presentational 
convenience

• Allows uniform 
presentation of 
remaining constraints
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0

• 0 ≤ I ≤ n-1
• Monotonicity
• If GAC Lex guaranteed 

by 1..I, it is guaranteed 
by 1..I+1
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]

• 0 ≤ I ≤ n-1
• Equality
• Monotonicity implies 

each a[J]=1 for J ≤ I
• 3) gives A[J] = B[J] for 

sequence up to I
• Gives intended meaning 

to a[I]=1
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]

• 0 ≤ I ≤ n-1
• Inequality
• a[I+1]=0 means we 

want to guarantee A<B 
from 1..I

• But a[I]=1 means we 
have A[1..I]=B[1..I]

• So we must set A[I+1]
<B[I+1]
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

• 0 ≤ I ≤ n-1
• Redundant constraint
• Implied by (2) & (3)
• But not deduced by AC
• 5) included so that AC 

can do implication
• In fact only needed for 

domain size > 2
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

*

* 0 0

* 1 1

* * *

* 0 0

* 1 0

… … …
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

1

* 0 0

* 1 1

* * *

* 0 0

* 1 0

… … …
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

1

1 0 0

* 1 1

* * *

* 0 0

* 1 0

… … …
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

1

1 0 0

1 1 1

* * *

* 0 0

* 1 0

… … …
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

1

1 0 0

1 1 1

* * *

* 0 0

0 1 0

… … …
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

1

1 0 0

1 1 1

* * *

0 0 0

0 1 0

… … …
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5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

1

1 0 0

1 1 1

0 * *

0 0 0

0 1 0

… … …



58

5 Constraints for GAC Lex

1)a[0]=1
2)a[I]=0 è a[I+1]=0
3)a[I]=1 è A[I]=B[I]
4)a[I]=1 & a[I+1]

=0 è A[I+1] < B[I+1]
5)a[I]=1 è  A[I+1] ≤ B[I

+1]

a A B

1

1 0 0

1 1 1

0 0 1

0 0 0

0 1 0

… … …

For 0/1 domains, x<y óx=0, y=1
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Theoretical Analysis

• Arc Consistency (AC) establishes GAC Lex
• Specifically:

• A/B GAC Lex in any AC state of A/B/a[] variables

• Time Complexity in Boolean Domains
• AC takes O(n) time
• Encoding+AC = optimal algorithm for GAC
• This is a “propagation-optimal” encoding

•
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Stable Marriage
• Stable Marriage problem

• Assume every female has a preference list of all males

• And vice versa

• And there are n males and n females

• Find a stable matching of females to males 

• There is no pair Ann & Andy, not married

• Where Ann prefers Andy to her husband

• And Andy prefers Ann to his wife

• i.e. Ann & Andy would elope with each other

•
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Stable Marriage

• Gale-Shapley algorithm is low polynomial time

• Inspired SAT encoding

• Which achieves AC in same poly time

• And solutions can be read off from AC 
domains

• Gent, Irving, Manlove, Prosser, Smith 2001



SAT to Constraints
• Don’t need to encode SAT to Constraints?

• We do if we want propagation-optimal

• At first sight looks hard/impossible

• assuming we use AC propagation

• Taking boolean domains to n-ary

• And AC per constraint is O(d2)

• Maybe we’ll lose O(d/2) = O(d) or something

• But there is a propagation optimal encoding



Extended Literal 
Encoding

• Based on the “literal encoding”

•  Bennaceur 1996

• But extension makes it propagation-optimal

• Gent, Prosser, Walsh, 2003

• Also called “Place Encoding”

• Jarvisalo & Niemela, 2004



Literal Encoding
• For each k-clause C in the SAT problem

• Variable xC in CSP encoding

• Domain of xC is {1..k}

• The meaning of xC = i 

• is that the ith literal of clause C is satisfied

• from which we can read solution of SAT problem

• For every pair of clauses C1, C2

• If there are any ...

• Add constraint ruling out complementary literals 



Literal Encoding 
Example

C1: a OR b OR c

C2: -a OR -b OR c

C1/C2 x2=1 x2=2 x2=3

x1=1 x ü ü

x1=2 ü x ü

x1=3 ü ü ü



Literal Encoding 
Problem

• can do unit propagation, 
but ... 

• u.p. should take O(mk)

• But each constraint O(k2)

C1/C2 x2=1 x2=2 x2=3

x1=1 x ü ü

x1=2 ü x ü

x1=3 ü ü ü



Literal Encoding 
Problem

• can do unit propagation, but ... 

• u.p. should take O(mk)

• But each constraint O(k2)

• And there can be O(m2)

• because var might occur

• m/2 times positively

• m/2 times negatively

• So this is O(m2k2)

C1/C2 x2=1 x2=2 x2=3

x1=1 x ü ü

x1=2 ü x ü

x1=3 ü ü ü



Extended Literal 
Encoding

• As before:

• For each k-clause C in the SAT problem

• Variable xC in CSP encoding

• Domain of xC is {1..k}

• Extension

• Reintroduce original boolean variables

• Domain {0,1}

• Constraints between booleans and clause vars

• none between clause vars and other clause vars



Extended Literal 
Encoding Example

C1: a OR b OR c

C2: -a OR -b OR c

a/C1 x1=1 x1=2 x1=3

a=0 x ü ü

a=1 ü ü ü



Extended Literal 
Encoding Example

C1: a OR b OR c

C2: -a OR -b OR c

c/C1 x1=1 x1=2 x1=3

c=0 ü ü x

c=1 ü ü ü



Extended Literal 
Encoding Example

C1: a OR b OR c

C2: -a OR -b OR c

a/C2 x1=1 x1=2 x1=3

c=0 ü ü ü

c=1 x ü ü



Extended Literal 
Encoding Example

C1: a OR b OR c

C2: -a OR -b OR c

a/C2 x2=1 x2=2 x2=3

a=0 ü ü ü

a=1 x ü ü



Extended Literal 
Encoding Example

C1: a OR b OR c

C2: -a OR -b OR c

b/C2 x2=1 x2=2 x2=3

b=0 ü ü ü

b=1 ü x ü



Extended Literal 
Encoding Example

C1: a OR b OR c

C2: -a OR -b OR c

c/C2 x1=1 x1=2 x1=3

c=0 ü ü x

c=1 ü ü ü



Extended Literal 
Complexity

• This example looks worse 

• 6 constraints/36 cells

• compared to 1 constraint/18 cells

• But asymptotics are better

• We have O(mk) constraints

• One for each literal in each clause

• Each propagates in time O(2k) = O(k) 

• Total O(mk2) propagation time



Extended Literal 
Complexity

• This example looks worse 

• 6 constraints/36 cells

• compared to 1 constraint/18 cells

• But asymptotics are better

• We have O(mk) constraints

• One for each literal in each clause

• Each propagates in time O(2k) = O(k) 

• Total O(mk2) propagation time



Extended Literal 
Complexity

• This is propagation optimal if we fix k

• Plus there is easy propagation optimal encoding 
k-SAT to 3-SAT

• e.g. a OR b OR c OR d becomes

•  a OR b OR z 

• -z OR c OR d

• So we have propagation optimal encoding of k-
SAT to CSP



Is the Extended Literal 
Encoding worthwhile?

• Not really 

• Why not? 



Why not?
• Hard to see the advantages of translating SAT to CSP in general

• It’s unlikely that the translated version will propagate as fast in 
practice as in SAT

• which is true from CSP to SAT too but ... 

• Also harder to see advantages we get

• CP solvers good at propagating multiple different types of 
constraints together

• And writing specialised propagators, for (e.g.) clauses

• If we’re going to only propagate one type of constraint, why not 
build a (SAT) solver to do it?

• Overall, encodings SAT to CP have attracted little interest



Fundamental Conjecture 
of Reformulation

• In early 2000s, work such as above on AC, 
GACLex, SATtoCP, StableMarriage, ... 

• Led me to suggest the 

• “Fundamental Conjecture of 
Reformulation”



Fundamental Conjecture 
of Reformulation

• This says that ... 

• For any [reasonable] constraint propagator taking 
time p(n) (for some polynomial p)

• not saying what reasonable is

• There is an encoding of the constraint so that a 
standard AC algorithm can do the same work as the 
propagator in time p(n), including translation time

• Since we have optimal encodings both ways,  AC can 
be interchanged SAT



Fundamental Conjecture 
of Reformulation

• If true, ... 

• There would be a strong argument that 
encodings should become key focus of SAT/
CP research

• Including techniques to beat some of the 
disadvantages 

• e.g. hitting worst case space complexity



Encoding All-Different

• It was always obvious that All-Different 
would be an acid test of the conjecture

• Key constraint 

• Very good GAC algorithm (Regin)

• flow based

• beats “obvious” encoding easily



Encoding All-Different

• Fundamental conjecture fails the acid test

• I.e. it’s false

• Key result 

• Bessiere, Katsirelos, Narodytska, Walsh, 09

• It is impossible to encode all-different to SAT 

• in a polynomial sized number of clauses

• and obtain GAC



Impossibility Result

• Result based on circuit complexity

• Encoding constraint c to into SAT 

• gives a SAT checker [ie. there being a 
solution tuple to c]

• gives monotone circuit of poly size

• So if there’s no monotone circuit of poly size

• there’s no encoding of c into SAT



Impossibility Result
• Perfect matching has no monotone circuit of poly size

• Rasborov 85, Tardos 88

•  All-Different subsumes perfect-matching

• But we already had ... 

• So if there’s no monotone circuit of poly size

• there’s no encoding of c into SAT

• Proof by contradiction: 

• We are done.  

• There is no propagation-optimal encoding of AllDifferent into SAT 
(or generic AC) 



Encodings Summary
• More to encodings than you might think

• Attractive, fun and interesting area

• And valuable....

• increase power of SAT solving especially

• But still some problems

• Can’t expect to beat native implementation

• Can have space complexity problems

• Can hit worst case all the time


