Encodings in SAT and Constraints

lan Gent University of St Andrews

Topics in this Series

- Why SAT & Constraints?
- SAT basics
- Constraints basics
- Encodings between SAT and Constraints
- Watched Literals in SAT and Constraints
- Learning in SAT and Constraints
- Lazy Clause Generation + SAT Modulo Theories

Encodings SAT & CP

- Maybe most obvious link SAT to CP
- Works outside solvers
- More interesting than you might think
- Propagation-optimal encodings
 - Examples CP to SAT
 - Example SAT to CP
 - Fundamental Conjecture of Reformulation
 - Why it's false!

Encodings: Motivation

- Entire basis of NP-completeness is encoding
 - translate one problem to another
 - in reasonable (poly) time
 - and faithfully solution preserving
- SAT is the first NP-complete problem
- So Why Not ...
 - just translate everything into SAT
 - and use a SAT solver?

Encodings: Motivation

- Not a straw man argument
- There are real advantages to using SAT (or CP) as basis, and then encoding to it
- We only need to write one solver
 - which can then be highly optimised
- It's typically easier to write translator than new solver
- Every time we optimise SAT (or CP)
 - we optimise every other NP-complete problem

Encodings: Motivation

- But it's not as simple as that ...
- We can't really afford to lose propagation
 - E.g. if we need to establish AC
 - then our encoded problem should do AC
 - using standard SAT techniques
- We can't really afford to lose time
 - E.g. we can establish AC in $O(ed^2)$
 - So it has to be this if we encode to SAT
 - ... and then use standard encoding
- Leads to idea of "propagation-optimal" encodings

Propagation Optimal Encodings

- Encoded version might not propagate as well
- Propagation in encoded version might be slow
 - if we lose O(n) time at each node, translation will never be competitive

• Propagation Optimal Encoding

- translation time should be optimal for target consistency level
- native propagation (e.g. unit prop.) on encoding should achieve target consistency level
- and do it in optimal time for target consistency level

Encoding CSP to SAT

- Going to start with binary CSPs
 - but ideas do generalise
- Focus on two key encodings
 - Direct Encoding
 - folklore, Walsh 2000
 - Acts like Forward Checking
 - Support Encoding
 - Kasif 1990, Gent 2002
 - Acts like AC

Encoding CSPs into SAT

- e.g. CSP variable A domain size 3
 - SAT variables a I, a2, a3
 - a I =T ⇔ A=I
- "at-least-one" clause
 - al OR a2 OR a3
- "at-most-one" clauses
 - -al OR -a2
 - -a2 OR --a3
 - -a3 OR -a1

A < B	A=I	A=2	A=3
B=I	×	×	×
B=2	\checkmark	×	×
B=3	\checkmark	\checkmark	×

One conflict clause for each \mathbf{X}

A < B	A=I	A=2	A=3
B=I	-a1 OR –b1	×	×
B=2	✓	×	×
B=3	\checkmark	\checkmark	×

If A = 1 then $B \neq 1$.

A < B	A=I	A=2	A=3
B=I	-al OR -bl -a2 OR -b1		×
B=2	✓	×	×
B=3	\checkmark	✓	×

If A = 2 then $B \neq 1$.

A < B	A=I	A=2	A=3
B=I	-al OR –bl	-a2 OR –b1	-a3 OR –b1
B=2 ✓		-a2 OR –b2	-a3 OR –b2
B=3	B=3 ✓		-a3 OR –b3

A < B	A < B A=I A=2		A=3
B=I	×	×	×
B=2	✓	×	×
B=3	\checkmark	\checkmark	×

One "support" clause for each row/ column

A < B	A=I	A=2	A=3	
B=I	×	×	×	-b1
B=2	\checkmark	×	×	
B=3	\checkmark	\checkmark	×	

B=1 is impossible as no value of A supports it

A < B	A=I	A=2	A=3	
B=I	×	×	×	-bl
B=2	\checkmark	×	×	a1 OR -b2
B=3	\checkmark	\checkmark	×	

If $A \neq 1$, then there is no support for B=2

A < B	A=I	A=2	A=3	
B=I	×	×	×	-bl
B=2	✓	×	×	al OR -b2
B=3	\checkmark	\checkmark	×	a1 OR a2 OR -b3

If $A \neq 1$ and $A \neq 2$, then there is no support for B=3

A < B	A=I	A=2	A=3	
B=I	×	×	×	-bl
B=2	\checkmark	×	×	al OR -b2
B=3	\checkmark	\checkmark	×	al OR a2 OR –b3
	b2 OR b3 OR -a1	b3 OR –a2	-a3	

Direct & Support Encodings

- "Direct Encoding" is most commonly used
 - almost folklore but see e.g. [Walsh, CP 2000]
 - at-least-one clauses
 - at-most-one clauses optional
 - conflict clauses
- "Support Encoding" [Gent, ECAI 2002]
 - at-least-one clauses
 - at-most-one clauses (not optional)
 - support clauses [Kasif, AlJ 1990]

Theoretical Comparison

- Compare CSP algorithms FC & MAC
 - FC = Forward Checking
 - MAC = Maintaining Arc Consistency
- With (simple) DPLL running on encoded versions
 - unit propagates between nodes
- Results on Direct Encoding
 - DPLL on Direct performs equivalent search to FC
 - [Genisson & Jegou ECAI 94]
 - MAC can outperform DPLL on Direct encoding
 - [Walsh CP 2000]

Arc Consistency in SAT

- Natural correspondence in the support encoding
 - al=T ⇔ A=I
 - $aI = F \Leftrightarrow I \notin domain(A)$
 - $aI = \{T, F\} \Leftrightarrow I \in \text{domain}(A)$
- Key result on Support Encoding
 - When unit propagation terminates without failure, the SAT variables correspond to Arc Consistent domains in the CSP
- Simple Corollary
 - DPLL on Support Encoding = MAC on CSP

Support Encoding is AC-Optimal

- For a CSP with e constraints, domain size d
 - unit propagation takes time O(ed ²)
 - *including* translation time
 - this is optimal worst case time for AC
 - in fact maybe the second optimal algorithm for AC [Kasif 90]
- So translation to SAT & use of DPLL
 - is equivalent to MAC
 - is optimal time algorithm for MAC
 - benefits from any other techniques used in SAT
 - e.g. clause learning key in Chaff

Experimental Comparison

- Implemented translation in Common Lisp
- Used Chaff on translated instances
- Tested on hard random binary CSP's
- At peak difficulty, about 5-6 times slower than MAC2001 [Bessière/Regin IJCAI 2001]

DPLL for Support vs Direct:

- Chaff used as DPLL solver
- N=50
- x axis is constraint tightness, p2
- y axis is nodes searched
- Support always searches less
- Support max is less than direct mean
- Zero search for p2>0.7

DPLL for Support vs Direct:

- same data as previous slide
- y axis is mean cpu time
- top line includes translation time
- bottom line just chaff time
- Support encoding usually slower
- Support just faster at peak of hardness
- At N=100, support encoding about 3x faster at peak

WalkSAT for Support vs Direct:

- Hoos's Novelty+ variant
- each point one instance
- x axis is #flips for support encoding
- y axis is flips-speedup of support vs direct encoding
- Umm, got that yet?

WalkSAT for Support vs Direct:

- Hoos's Novelty+ variant
- each point one instance
- x axis is #flips for support encoding
- y axis is flips-speedup of support vs direct
- This instance took about 10,000,000 flips for support encoding, but 20 x more in the direct encoding

WalkSAT for Support vs Direct:

encoding

WalkSAT for Support vs Direct:

Optimal Encodings: Pluses and Minuses

Pluses

- + Just need to implement a translation
- + Take advantage of state of the art SAT solvers ...
- + ... and future developments
- + Can be competitive with direct CSP solvers

- Space complexity is worse

Minuses

- Hits worst case time complexity in average case
- Direct implementation should always be faster

Support Encoding

- Generalised to non binary constraints
 - with similar propagation-optimality
 - meaning we can search arbitrary constraint problems using GAC
 - Bessiere, Hebrard, Walsh 2002
- Investigated further on local search
 - with mixed results
 - Prestwich 2004
 - Interesting further ideas
 - Introducing as many solutions as possible
 - while preserving correctness of course

So that's that!

- Encodings are great
 - Ok there are some minuses
- But we've got an ideal solution
 - we can propagate any constraint
 - in optimal time
 - using only simplish encodings + SAT solvers
 - so what's the problem?

"Space complexity is worse"

• Forgot one little word...

"Space complexity is **exponentially** worse"

• Forgot one BIG word...

Exponentially worse?

- Well, not in the case of AC
- But in the case of GAC
- Remember I said ...
 - we almost never list all tuples in constraints?
- Well we have to in support encodings
 - all allowed tuples
- Or in direct encodings
 - all disallowed tuples
- Which can be exponentially bigger than an implicit representation
 - e.g. all different has *n*! allowed tuples and *far more* disallowed

Ok Forget It

- So there's a cute encoding for AC in SAT
- But we can't do well in general
- So encodings are useless, right?
Find smarter encodings

- Give up on the idea of one true encoding
 - Just like there's no single key constraint
- Have an army of encodings
 - One for every constraint we want
 - Maybe propagation optimal for that
- Steal ideas from propagation algorithms?
 - E.g. GAC-Lex

Inspiration

- We present an encoding of GACLex
 - I'll tell you what that is in a minute
- The encoding was inspired by an algorithm for maintaining GACLex
- Initial algorithm proposed by Miguel/Frisch/Walsh
- Later variants and study presented in
 - Global Constraints for Lexicographic Orderings
 - Frisch, Hnich, Kiziltan, Miguel, Walsh, 2002 [CP], 2006 [AIJ]

Lexicographic Constraint

- Arrays A/B of variables
- $A \le B$ if
 - A[1] < B[1]
 - A[1] = B[1] & A[2] < B[2]
 - ...
 - A[I]=B[I] for all I
- Application in symmetry
 - A/B indistinguishable
 - A ≤ B breaks symmetry

Lexicographic Constraint

- Arrays A/B of variables
- $A \le B$ if
 - A[1] < B[1]
 - A[1] = B[1] & A[2] < B[2]
 - ...
 - A[I]=B[I] for all I
- Application in symmetry
 - A/B indistinguishable
 - A ≤ B breaks symmetry

• $A \leq B$ is GAC if

- any value A[I] is allowed by some setting of the values of other A/B vars
- similarly for B[I]
- If $A \leq B$ is not GAC
 - we can establish GAC

А	В
0	0
1	1
*	*
0	0
1	0

• $A \leq B$ is GAC if

- any value A[I] is allowed by some setting of the values of other A/B vars
- similarly for B[I]
- If $A \leq B$ is not GAC
 - we can establish GAC
- E.g. A[3] = 1 is not possible, as then A > B
- Similarly B[3] = 0

А	В	
0	0	
1	1	
*	*	
0	0	
1	0	

• $A \leq B$ is GAC if

- any value A[I] is allowed by some setting of the values of other A/B vars
- similarly for B[I]
- If $A \leq B$ is not GAC
 - we can establish GAC
- Establish GAC by setting A
 [3] = 0, B[3]=1

- GAC Lex can be established in O(n) time for binary domains
 - Frisch et al, CP 2002
 - specialised algorithm
- We encode GAC Lex using new constraints

Encoding GAC Lex

- Assume that A/B indexed from 1
- Introduce new array a[] indexed from 0
 - two values of each a[I]
- Meaning of a[]
 - $a[I] = 1 \Leftrightarrow A[1]=B[1], \dots A[I]=B[I]$
 - $a[I] = 0 \Leftrightarrow A \leq B$ guaranteed by A[1..I], B[1..I]
- Add O(n) constraints linking A/B/a[]

1)a[0]=1

- Presentational convenience
- Allows uniform presentation of remaining constraints

```
1) a[0]=1
2) a[I]=0 \rightarrow a[I+1]=0
```

- $0 \le | \le n-1$
- Monotonicity
- If GAC Lex guaranteed by 1..I, it is guaranteed by 1..I+1

```
1) a[0]=1
2) a[I]=0 → a[I+1]=0
3) a[I]=1 → A[I]=B[I]
```

- 0 ≤ I ≤ n-1
- Equality
- Monotonicity implies each a[J]=1 for J ≤ I
- 3) gives A[J] = B[J] for sequence up to I
- Gives intended meaning to a[I]=1

- 1) a[0]=12) $a[I]=0 \rightarrow a[I+1]=0$ 3) $a[I]=1 \rightarrow A[I]=B[I]$ 4) a[I]=1 & a[I+1] $=0 \rightarrow A[I+1] < B[I+1]$
- $0 \le | \le n-1$
- Inequality
- a[I+1]=0 means we want to guarantee A<B from 1...I
- But a[I]=1 means we have A[1..I]=B[1..I]
- So we must set A[I+1]
 <B[I+1]

1) a[0]=12) $a[I]=0 \rightarrow a[I+1]=0$ 3) $a[I]=1 \rightarrow A[I]=B[I]$ 4) a[I]=1 & a[I+1] $=0 \rightarrow A[I+1] < B[I+1]$ 5) $a[I]=1 \rightarrow A[I+1] \le B[I + 1]$

- 0 ≤ I ≤ n-1
- Redundant constraint
- Implied by (2) & (3)
- But not deduced by AC
- 5) included so that AC can do implication
 - In fact only needed for domain size > 2

1) a[0]=12) $a[I]=0 \rightarrow a[I+1]=0$ 3) $a[I]=1 \rightarrow A[I]=B[I]$ 4) a[I]=1 & a[I+1] $=0 \rightarrow A[I+1] < B[I+1]$ 5) $a[I]=1 \rightarrow A[I+1] \le B[I + 1]$

а	А	В
*		
*	0	0
*	1	1
*	*	*
*	0	0
*	1	0

. . .

. . .

. . .

1) a[0]=12) $a[I]=0 \rightarrow a[I+1]=0$ 3) $a[I]=1 \rightarrow A[I]=B[I]$ 4) a[I]=1 & a[I+1] $=0 \rightarrow A[I+1] < B[I+1]$ 5) $a[I]=1 \rightarrow A[I+1] \le B[I$ +1]

а	А	В
1		
1	0	0
*	1	1
*	*	*
*	0	0
*	1	0

1) a[0]=12) $a[I]=0 \rightarrow a[I+1]=0$ 3) $a[I]=1 \rightarrow A[I]=B[I]$ 4) a[I]=1 & a[I+1] $=0 \rightarrow A[I+1] < B[I+1]$ 5) $a[I]=1 \rightarrow A[I+1] \le B[I$ +1]

а	А	В
1		
1	0	0
- 1	1	1
*	*	*
*	0	0
*	1	0

1) a[0]=12) $a[I]=0 \rightarrow a[I+1]=0$ 3) $a[I]=1 \rightarrow A[I]=B[I]$ 4) a[I]=1 & a[I+1] $=0 \rightarrow A[I+1] < B[I+1]$ 5) $a[I]=1 \rightarrow A[I+1] \le B[I$ +1]

а	А	В
1		
1	0	0
1	1	1
*	*	*
*	0	0
0	1	0

1)a[0]=1	а	А	В
$2)a[1]=0 \rightarrow a[1+1]=0$	1		
3) $a[I] = 1 \rightarrow A[I] = B[I]$	1	0	0
4) a[1]=1 & a[1+1]	1	1	1
$=0 \Rightarrow A[I+1] < B[I+1]$	*	*	*
5)a[I]=1 → A[I+1] ≤ B[I	→ 0	0	0
+1]	0	1	0

1)a[0]=1	а	А	В
$2)a[1]=0 \rightarrow a[1+1]=0$	1		
3) $a[I] = 1 \rightarrow A[I] = B[I]$	1	0	0
4) $a[1] = 1 \& a[1+1]$	1	1	1
$=0 \Rightarrow A[I+1] < B[I+1]$	→ 0	*	*
5)a[I]=1 → A[I+1] ≤ B[I	0	0	0
+1]	0	1	0

Г

1)a[0]=1	а	А	В
$2)a[1]=0 \rightarrow a[1+1]=0$	1		
3) $a[I] = 1 \rightarrow A[I] = B[I]$	1	0	0
4) $a[1] = 1 \& a[1+1]$	1	1	1
$=0 \rightarrow A[I+1] < B[I+1]$	0	• 0	1
5) a[I]=1 → A[I+1] ≤ B[I	0	0	0
+1]	0	1	0

For 0/1 domains, $x < y \Leftrightarrow x=0, y=1$

Theoretical Analysis

- Arc Consistency (AC) establishes GAC Lex
 - Specifically:
 - A/B GAC Lex in any AC state of A/B/a[] variables
- Time Complexity in Boolean Domains
 - AC takes O(n) time
 - Encoding+AC = optimal algorithm for GAC
 - This is a "propagation-optimal" encoding

Stable Marriage

- Stable Marriage problem
 - Assume every female has a preference list of all males
 - And vice versa
 - And there are *n* males and *n* females
- Find a **stable** matching of females to males
 - There is no pair Ann & Andy, not married
 - Where Ann prefers Andy to her husband
 - And Andy prefers Ann to his wife
 - i.e. Ann & Andy would elope with each other
 - •

Stable Marriage

- Gale-Shapley algorithm is low polynomial time
 - Inspired SAT encoding
 - Which achieves AC in same poly time
 - And solutions can be read off from AC domains
 - Gent, Irving, Manlove, Prosser, Smith 2001

SAT to Constraints

- Don't need to encode SAT to Constraints?
- We do if we want propagation-optimal
- At first sight looks hard/impossible
 - assuming we use AC propagation
- Taking boolean domains to n-ary
- And AC per constraint is $O(d^2)$
 - Maybe we'll lose O(d/2) = O(d) or something
- But there is a propagation optimal encoding

Extended Literal Encoding

- Based on the "literal encoding"
 - Bennaceur 1996
- But extension makes it propagation-optimal
 - Gent, Prosser, Walsh, 2003
- Also called "Place Encoding"
 - Jarvisalo & Niemela, 2004

Literal Encoding

- For each *k*-clause C in the SAT problem
 - Variable *x*_C in CSP encoding
 - Domain of x_C is $\{1..k\}$
- The meaning of $x_{\rm C}$ = i
 - is that the *i*th literal of clause C is satisfied
 - from which we can read solution of SAT problem
- For every pair of clauses $C_{1,}C_{2}$
 - If there are any ...
 - Add constraint ruling out complementary literals

Literal Encoding Example

C_I: a OR b OR c

CI/C2	x 2=1	x ₂ =2	x ₂ =3
x1=1	x	~	\checkmark
x1=5	✓	x	~
x1=3	~	~	\checkmark

Literal Encoding Problem

- can do unit propagation, but ...
 - u.p. should take O(*mk*)
- But each constraint $O(k^2)$

C1/C2	x 2=1	x ₂ =2	x ₂ =3
x1=1	x	~	~
x1=5	✓	x	~
x1=3	~	~	\checkmark

Literal Encoding Problem

- can do unit propagation, but ...
 - u.p. should take O(mk)
- But each constraint $O(k^2)$
- And there can be $O(m^2)$
 - because var might occur
 - m/2 times positively
 - m/2 times negatively
- So this is $O(m^2k^2)$

C1/C2	x 2=1	x ₂ =2	x ₂ =3
x1=1	x	~	~
x1=2	✓	x	✓
x ₁ =3	✓	~	✓

Extended Literal Encoding

- As before:
 - For each *k*-clause C in the SAT problem
 - Variable *x*_C in CSP encoding
 - Domain of x_C is $\{1..k\}$
- Extension
 - Reintroduce original boolean variables
 - Domain {0,1}
- Constraints between booleans and clause vars
 - none between clause vars and other clause vars

C_I: a OR b OR c

a/CI	xı=I	x1=5	x1=3
a=0	x	~	~
a=I	✓	✓	✓

C_I: a OR b OR c

c/CI	x1=1	xı=2	x1=3
c=0	~	✓	X
c=I	✓	~	\checkmark

C_I: a OR b OR c

a/C2	x ₁ =1	x1=5	x1=3
c=0	~	✓	~
c=I	x	~	✓

C_I: a OR b OR c

a/C2	x 2=1	x ₂ =2	x ₂ =3
a=0	~	~	~
a=I	x	~	✓
Extended Literal Encoding Example

C_I: a OR b OR c

b/C2	x 2=1	x ₂ =2	x ₂ =3
Ь=0	~	~	~
b=I	~	×	✓

C₂: -a OR -b OR c

Extended Literal Encoding Example

C_I: a OR b OR c

c/C2	x1=1	xı=2	x1=3
c=0	~	✓	X
c=I	✓	✓	✓

C₂: -a OR -b OR c

Extended Literal Complexity

- This example looks worse
 - 6 constraints/36 cells
 - compared to 1 constraint/18 cells
- But asymptotics are better
- We have O(mk) constraints
 - One for each literal in each clause
 - Each propagates in time O(2k) = O(k)
 - Total $O(mk^2)$ propagation time

Extended Literal Complexity

- This example looks worse
 - 6 constraints/36 cells
 - compared to 1 constraint/18 cells
- But asymptotics are better
- We have O(mk) constraints
 - One for each literal in each clause
 - Each propagates in time O(2k) = O(k)
 - Total $O(mk^2)$ propagation time

Extended Literal Complexity

- This is propagation optimal if we fix k
 - Plus there is easy propagation optimal encoding k-SAT to 3-SAT
 - e.g. a OR b OR c OR d becomes
 - a OR b OR z
 - -z OR c OR d
- So we have propagation optimal encoding of k-SAT to CSP

Is the Extended Literal Encoding worthwhile?

- Not really
- Why not?

Why not?

- Hard to see the advantages of translating SAT to CSP in general
- It's unlikely that the translated version will propagate as fast in practice as in SAT
 - which is true from CSP to SAT too but ...
- Also harder to see advantages we get
 - CP solvers good at propagating multiple different types of constraints together
 - And writing specialised propagators, for (e.g.) clauses
 - If we're going to only propagate one type of constraint, why not build a (SAT) solver to do it?
- Overall, encodings SAT to CP have attracted little interest

Fundamental Conjecture of Reformulation

- In early 2000s, work such as above on AC, GACLex, SATtoCP, StableMarriage, ...
- Led me to suggest the
- "Fundamental Conjecture of Reformulation"

Fundamental Conjecture of Reformulation

- This says that ...
- For any [reasonable] constraint propagator taking time p(n) (for some polynomial p)
 - not saying what reasonable is
- There is an encoding of the constraint so that a standard AC algorithm can do the same work as the propagator in time p(n), including translation time
- Since we have optimal encodings both ways, AC can be interchanged SAT

Fundamental Conjecture of Reformulation

- If true, ...
- There would be a strong argument that encodings should become key focus of SAT/ CP research
- Including techniques to beat some of the disadvantages
 - e.g. hitting worst case space complexity

Encoding All-Different

- It was always obvious that All-Different would be an acid test of the conjecture
 - Key constraint
 - Very good GAC algorithm (Regin)
 - flow based
 - beats "obvious" encoding easily

Encoding All-Different

- Fundamental conjecture *fails* the acid test
- I.e. it's false
- Key result
 - Bessiere, Katsirelos, Narodytska, Walsh, 09
- It is impossible to encode all-different to SAT
 - in a polynomial sized number of clauses
 - and obtain GAC

Impossibility Result

- Result based on *circuit complexity*
- Encoding constraint c to into SAT
 - gives a SAT checker [ie. there being a solution tuple to c]
 - gives monotone circuit of poly size
- So if there's no monotone circuit of poly size
 - there's no encoding of c into SAT

Impossibility Result

- Perfect matching has *no* monotone circuit of poly size
 - Rasborov 85, Tardos 88
- All-Different subsumes perfect-matching
- But we already had ...
 - So if there's no monotone circuit of poly size
 - there's no encoding of c into SAT
- Proof by contradiction:
 - We are done.
- There is no propagation-optimal encoding of AllDifferent into SAT (or generic AC)

Encodings Summary

- More to encodings than you might think
- Attractive, fun and interesting area
- And valuable....
 - increase power of SAT solving especially
- But still some problems
 - Can't expect to beat native implementation
 - Can have space complexity problems
 - Can hit worst case all the time