
Encoding Global Unobservability for Efficient Translation to SAT

Abstract. The paper studies the use of global unobservability constraints in a CNF translation of
Boolean formulas, where the unobservability of logic blocks is encoded with CNF unobservability
variables and the logic output values of the blocks with CNF logic variables. Each block’s unob-
servability variable is restricted by local unobservability constraints, expressing conditions that the
output value of the block will not propagate to the primary output, given values of inputs to nearby
gates on the path to the primary output. Global unobservability constraints add conditions that a
block is unobservable if all paths to the primary output pass through logic blocks that are unobserv-
able. By introducing a cut of unobservability check-points at the inputs of the top gate in a Boolean
formula, we can impose global unobservability constraints for every logic block. The results show
that global unobservability constraints lead to small additional speedup if local unobservability is
exploited, but make the SAT-time less dependent on values of parameters in the translation.

1  Introduction
CNF-based SAT-solvers face two main hurdles to further improvements. First, the operation-inten-
sive Boolean Constraint Propagation (BCP), taking up to 90% of the SAT time [13], and generat-
ing many non-sequential memory accesses that are prone to cache misses; also, BCP requires data-
dependent branches that are hard to predict, and so frequently incur the branch misprediction pen-
alty—at least 19 cycles, and up to 125 instructions in the Intel Pentium 4 [6]. Second, many L2-
cache misses for big formulas [28], resulting in expensive accesses to main memory; the L2-cache
miss penalty is up to hundreds of cycles currently, and is increasing [6].

Conventional translation to CNF [19] captures only local structural information for logic gates,
and so does not exploit the concept of unobservability [2][18] (related to the concept of dominators
in testing [1])—that the output values of subcircuits may be unobservable at the primary output,
i.e., do not influence its value, given the values of other signals, and so those subcircuits can be
pruned from the solution space.

Gupta et al. [5] implemented a circuit-based SAT-solver that uses structural information to iden-
tify gates with unobservable outputs and remove those gates from the solution space. Similar opti-
mizations were exploited by Safarpour et al. [17]. Other circuit-based SAT-solvers identify signals
with equal or complemented values in order to prune the solution space [8][11][14], or use a hybrid
representation of Boolean circuits [3][14]—gate-level for the circuit, and CNF for constraints and
learnt clauses. 

This paper makes four contributions: 1) a method to introduce global unobservability constraints
in a CNF translation where the unobservability of logic blocks is encoded with variables;
2) a method to increase the number of logic blocks restricted by global unobservability constraints;
3) a correctness proof for this translation; and 4) experimental results on Boolean formulas from
formal verification of processors. The presented translation is general and applicable to other
classes of formulas.

2  Previous Translations to CNF
In the formal verification tool flow [23] used in the experiments, the final Boolean formula consists
of AND, OR, NOT, and ITE (“if-then-else”) gates. Hashing [20] ensures that: there are no duplicate
gates; merges an AND having another AND as input into a single AND, and similarly for ORs;
eliminates duplicate inputs; and replaces an AND/OR with a constant if the gate has inputs that are
complements of each other.
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2.1 Conventional Translation from Propositional Logic to CNF

By introducing a new CNF variable for the output of every logic gate, and imposing constraints that
preserve the gate’s function [19], we get a satisfiability-equivalent CNF formula. Both the size of
the resulting CNF and the complexity of the translation are linear in the size of the original Boolean
formula. Instead of explicitly translating the inverters, we can subsume them in their fanout gates
[15], by replacing all instances of the variable for the inverter output with the negated variable for
the inverter input, thus eliminating the output variable and the 2 clauses for each inverter.

2.2 Translation to CNF by Merging ITE-Trees and Other Gate Groups

In the formal verification tool flow, we can apply an optimization [26] that produces Boolean for-
mulas with many ITE-trees. An ITE-tree can be translated to CNF with a unified set of clauses [26],
without intermediate variables for outputs of ITEs inside the tree. For example, ITE(c1, ITE(c2, e1,
e2), ITE(c2, e3, e4)), where c1, c2, e1, ..., e4 are Boolean variables, will be translated to CNF by
introducing a new variable o only for the output of the tree, and using the clauses (¬ e1 ∨  ¬c1 ∨  ¬ c2
∨  o) ∧ (e1 ∨  ¬ c1 ∨  ¬ c2 ∨  ¬o) ∧ (¬ e2 ∨  ¬ c1 ∨  c2 ∨  o) ∧ (e2 ∨  ¬ c1 ∨  c2 ∨  ¬ o) ∧ (¬e3 ∨  c1 ∨  ¬ c2 ∨
o) ∧ (e3 ∨  c1 ∨  ¬ c2 ∨  ¬ o) ∧ (¬ e4 ∨  c1 ∨  c2 ∨  o) ∧ (e4 ∨  c1 ∨  c2 ∨  ¬ o). That is, for every path from
a non-controlling input of the tree, we introduce 2 clauses to express the conditions that if the input
is true (false) and is selected to appear at the tree output by controlling inputs of ITEs, then the tree
output should be true (false). See Fig. 1.a for another example.

Fig. 1. (a) Example ITE-tree, and its translation to CNF with a unified set of clauses without intermediate variables for out-
puts of ITEs inside the tree; and (b) Merging an ITE-tree with 1 level of its AND/OR leaves that have fanout count of 1.
Each ITE-tree is represented with the conjunction of all clauses for paths from the tree leaves to the tree output. ITEs are
shown as multiplexors

ITE-trees can be further merged with one or more levels of their AND/OR leaves that have
fanout count of 1 (see Fig. 1.b). We can also merge other gate groups [25], e.g., AND/OR→ITE (an
ITE with an AND or OR as its then- or else-input, or both of these inputs), AND/ITE→OR, and
OR/ITE→AND, but that results in minor additional improvements if ITE-trees are merged [26].
Since a gate may have many input gates with fanout count of 1, we can choose which input gate to
merge by a variant of the FANIN heuristic [12] for BDD-variable ordering: selecting the input gate
with highest topological level. The motivation is to shorten the longest path for BCP from a pri-
mary input to the output of the driven gate. Thus, if the heuristic is applied to many groups, we
could shorten many paths for BCP from primary inputs to the primary output.
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The benefits from merging ITE-trees are: fewer variables and clauses, i.e., reduced solution
space, and so less BCP and fewer cache misses; use of signal unobservability—the 2 clauses for
each path in an ITE-tree become satisfied as soon as an ITE-controlling signal selects another path;
guiding the SAT-solver branching, making it easier for a SAT-solver to prune infeasible paths; and
higher ranking of variables controlling ITEs at the top of ITE-trees, leading to better decisions and
learning.

2.3 Reflecting the Local Unobservability of ITE-Trees

The controlling value of an AND (OR) gate, when applied at an input of the gate, will uniquely
determine the value of the gate, regardless of the values of other inputs, i.e., the controlling value of
an AND (OR) is 0 (1). We can account for the local unobservability of an ITE-tree by merging it
with adjacent gates on the only path from the ITE-tree output to the primary output. Then, if one of
those gates has a controlling value on an input that is not along this path, all clauses for the ITE-tree
will get satisfied, thus allowing a conventional CNF-based SAT solver to exploit unobservability.

2.4 CNF Unobservability Variables and Constraints for Local Unobservability

An alternative way to encode the local unobservability of a logic block is to introduce a CNF unob-
servability variable [27], representing the conditions when the block’s output is unobservable at the
primary output—see Fig. 2. Such conditions depend on values of inputs to nearby gates situated on
a fanout-free partial path from the block output toward the primary output. A CNF logic variable is
still used to represent the logic value of the block output. The unobservability variable for a logic
block is disjuncted to each clause for that block, so that when the unobservability variable is 1—
meaning that the logic block is not observable at the primary output—all clauses for that block will
be satisfied and a conventional CNF-based SAT-solver will have more freedom in assigning values
to the variables in these clauses, possibly leaving some of those variables unassigned. A value of 0
assigned to a CNF unobservability variable means that the block’s output value may be allowed to
propagate to the end of the fanout-free partial path from the block output toward the primary out-
put, and so may be observable at the primary output. In this paper, a CNF unobservability variable
is introduced only for logic blocks with fanout count of 1.
 

Fig. 2. Example blocks B1 and B2, and the constraints for their unobservability variables u1 and u2. When imposing con-
straints for a partial path, we can skip gates from that path, e.g., gate G3 above, since those constraints encode the partial
unobservability of the block output at the path output. Then, a value of 1 for the block’s unobservability variable still means
that the block is definitely unobservable at the path output, while a value of 0 means that the block may be observable at the
path output. The partial paths, used in the constraints for the unobservability variables of different blocks, should not overlap
in order to ensure that the new CNF formula will be satisfiability-equivalent with the CNF formula from conventional trans-
lation
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3  Constraints for Global Unobservability of Logic Blocks
In order to more fully exploit the unobservability of a logic block, we can account for its global
unobservability. An unobservability check-point is a signal that has an associated CNF unobserv-
ability variable. The nearest cutset of unobservability check-points for a block consists of the unob-
servability check-points that are each situated on a different path from the block output to the
primary output, covering all such paths, such that each of these check-points is closest to the block
compared to other unobservability check-points on the same path from the block output to the pri-
mary output. 

A new constraint for unobservability of each block is added, in order to express the condition that
if all of the nearest unobservability check-points are unobservable, then the block is unobservable,
since each path from the block output to the primary output will go through one of those unobserv-
ability check-points. This is illustrated in Fig. 3 for the example block B1 from Fig. 2. Assuming
that there are only two paths from o5 to the primary output, and that u3 and u4 are the nearest unob-
servability check-points on those paths, then the new unobservability constraint for block B1 is u3 ∧
u4 ⇒ u1.

We also need to extend the constraint for local observability of each block at the end of its
fanout-free partial path toward the primary output, by accounting for the observability of each of
the nearest unobservability check-points. If the block is observable at the end of its partial path
toward the primary output, and one of the nearest unobservability check-points is observable, then
the block is considered observable. In Fig. 3, the constraint for local observability of block B1 at o5
from Fig. 2, i.e., a1 ∧  a2 ∧  ¬b1 ∧  d1 ∧  ¬e1 ⇒ ¬u1, is extended for each of the two nearest unob-
servability check-points, u3 and u4, resulting in the observability constraints ¬u3 ∧  a1 ∧  a2 ∧  ¬b1 ∧
d1 ∧  ¬e1 ⇒ ¬u1 and ¬u4 ∧  a1 ∧  a2 ∧  ¬b1 ∧  d1 ∧  ¬e1 ⇒ ¬u1.

Fig. 3. Example block B1 (from Fig. 2) and its constraints for unobservability. It is assumed that there are only two paths
from o5 to the primary output, such that u3 and u4 are the nearest unobservability check-points on the first and second path,
respectively. That is, u3 and u4 form the nearest cutset of unobservability check-points. The new/modified constraints,
resulting from global conditions, are shown in rectangles.

4  Global Unobservability Constraints for All Logic Blocks
By introducing a cut of unobservability check-points at the inputs of the top gate in a Boolean for-
mula, we can impose global unobservability constraints for every logic block, since each path from
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any logic block to the primary output will go through the inputs of the top gate in the formula.
Without such a cut, most logic blocks have a path to the primary output without going through an
unobservability check-point.

In Boolean correctness formulas from formal verification of microprocessors, the top gate is an
OR, and so only this case is discussed here. Let the top OR gate have n inputs, and let each input i
(for i = 1, ..., n) have a logic variable li and unobservability variable ui. Then, an input is unobserv-
able (its unobservability variable is 1) if a logic variable for one of the other inputs has a value of 1.
An input is observable (its unobservability variable is 0) if the logic variables for all other inputs
are 0. We also need to impose the constraint that at least one of the inputs is observable (this is a
property of AND and OR gates).

5  Correctness Proof of the New Translation to CNF
THEOREM 1. The new CNF formula, obtained after introducing CNF unobservability variables and
corresponding constraints for local and global unobservability, is satisfiable iff the original CNF
formula with only CNF logic variables is satisfiable.

Proof: If. The satisfiability of the original CNF formula implies the satisfiability of the new CNF
formula, obtained after introducing CNF unobservability variables and corresponding constraints.
A satisfying assignment for the original CNF formula with only logic variables results in values for
all logic variables. Since the value of each unobservability variable depends on logic variables from
the local partial path to the primary output, and possibly on values of other unobservability vari-
ables for signals at higher points, and the implications for each unobservability variable are fully
specified, then a unique value will follow for each unobservability variable, thus satisfying all
clauses from unobservability or observability constraints for that variable. Thus, it is possible to
assign values to the unobservability variables in order to satisfy the new CNF formula, given that
the original CNF formula is satisfied.

And only if. The satisfiability of the new CNF formula, obtained after introducing unobservabil-
ity variables and constraints, implies the satisfiability of the original CNF formula with only CNF
logic variables. If we remove the clauses for block unobservability and observability constraints
from the satisfied new CNF formula with unobservability variables, then we would get a satisfied
CNF formula that is a variant of the original CNF formula, such that the unobservability variable
for each block appears in every clause for that block. If a block’s unobservability variable is 0, then
removing that variable from the block’s clauses will not affect their satisfiability. That would also
be the case if a block’s unobservability variable is 1 and the block’s output has value that is consis-
tent with the values of the block’s inputs, given the function of the block, since then the original
clauses for the block will be satisfied. However, if the block’s unobservability variable is 1 and the
block’s output has value that is not consistent with the values of the block’s inputs, then we need to
prove that we can flip the value of the block’s output—thus making it logically consistent with the
values of the block’s inputs—while keeping the satisfiability of all clauses. This is possible since
the new output value can be propagated along all paths from the block output toward the primary
output—without reaching the primary output. For each path toward the primary output, we can flip
the output values of gates until reaching the input of a gate where another input has a controlling
value that had made the block’s unobservability variable to be 1 (either directly, through the local
unobservability constraints, or indirectly, by implying a value of 1 for another unobservability vari-
able that then implied a value of 1 for the considered unobservability variable, possibly through a
chain of implications involving other unobservability variables). Hence, if the new CNF formula—
containing unobservability variables and corresponding constraints—is satisfied, then it is possible
to derive a satisfying assignment for the original CNF formula with only logic variables. �



6  Discussion
The CNF unobservability variable for a logic block appears in all the clauses for that block, and in
clauses that represent the unobservability and observability constraints for this variable. Then, SAT
decision heuristics that favor the most frequent variables will make a decision for the value of a
block’s unobservability variable before making a decision for the value of the block’s output logic
variable, since the output logic variable will also appear in all clauses for the block, but in at most
two other clauses, since each considered block has a fanout count of 1. That is, SAT-solvers with
such heuristics will first make decisions about the unobservability/observability of logic blocks, by
assigning values to their unobservability variables, and then will try to justify these decisions with
assignments to other variables. Hence, the unobservability variables introduce a higher-level of
abstraction in the decisions of a conventional CNF-based SAT-solver, where some of the decisions
will represent choices about the unobservability or observability of logic blocks. Furthermore, the
SAT-solver will learn clauses to prevent infeasible observability/unobservability configurations
from repeating. 

Previous approaches for exploiting signal unobservability [5][17] required extensions to CNF-
based SAT-solvers in order to dynamically mark logic gates as unobservable, based on the current
variable assignments. Furthermore, these previous approaches used gate-level representations of
circuits. In contrast, the presented CNF translation allows us to directly use existing CNF-based
SAT-solvers, as well as to exploit the block structure of circuits.

In the experiments, unobservability variables were introduced only for ITE-trees with fanout
count of 1. However, for small ITE-trees that are represented with a few clauses, the overhead of
added unobservability variables and clauses for unobservability and observability constraints usu-
ally slows down the SAT-solving. To avoid such effects, two variations of the new translation were
also explored: 1) a partial method where the new translation to CNF was applied only to ITE-trees
that require more clauses than a given threshold; and 2) a hybrid scheme, where the unobservability
of the big ITE-trees, requiring more clauses than a given threshold, was encoded with the new
translation, and that of the smaller ITE-trees with the translation from Sect. 2.3.

7  Results
The Boolean formulas used in the experiments are from formal verification of safety of the bench-
marks: 1dlx_iq50, a single-issue pipelined DLX [6], modeled as in [20], and extended with a 50-
entry instruction queue between the instruction memory and the execution pipeline; 9vliw_iq2, a 9-
wide VLIW processor with predicated execution, register remapping, advanced loads (see [22]),
and a 2-entry instruction queue; and 9vliw_iq6, a variant a 6-entry instruction queue. The Boolean
formulas were generated, and then translated to CNF with a tool flow [23] that was used at Motor-
ola [9] to formally verify a model of the M•CORE processor, and detected bugs. The SAT-solver
Siege_v4 [16]—one of the top performers in the SAT’03 competition [10]—was used for the exper-
iments. The computer was a Dell OptiPlex GX260 with a 3.06-GHz Intel Pentium 4, having a 512-
KB on-chip L2-cache, 2 GB of memory, and running Red Hat Linux 9.0.

Compared were five translation strategies: the old best strategy, which had the best performance
in [26] and had resulted in up to 420× speedup relative to conventional CNF translation—merging
ITE-trees, AND/OR→ITE groups, as well as ITE→AND and ITE→OR groups (if several inputs
are ITEs with fanout count of 1, the ITE with highest topological level is chosen, based on a variant
of the FANIN heuristic [12]); (1) a partial method where the new translation to CNF was applied
only to ITE-trees that require more clauses than a given threshold, and only constraints for local
unobservability were used; (2) a hybrid scheme, where the unobservability of the big ITE-trees,
requiring more clauses than a given threshold, was encoded with the new translation by using only
constraints for local unobservability, and the unobservability of the smaller ITE-trees was
accounted for with the translation from Sect. 2.3; (1g) and (2g), extensions of Strategies (1) and (2),



respectively, with global constraints.

Table 1 summarizes the results for each benchmark. Strategy (2g) had the best performance on 2
of the 3 benchmarks, and resulted in speedup of 2.05× for the most complex benchmark, 9vliw_iq6,
relative to the old best strategy that was already a very efficient translation to CNF. For 9vliw_iq6,
Strategy (2g) was applied only to ITE-trees with more than 40 clauses (the value of the threshold).

8  Conclusions
The paper studied the use of global unobservability constraints in a CNF translation of Boolean for-
mulas, where the unobservability of logic blocks is encoded with CNF unobservability variables
and the logic output values of the blocks with CNF logic variables. An unobservability variable is
restricted to be 1, if the output value of the block will not propagate to the primary output, given
assignments to inputs of nearby gates on a partial path from the block output to the primary output.
Global unobservability constraints add conditions that a block is unobservable if all paths to the pri-
mary output pass through logic blocks that are unobservable. By introducing a cut of unobservabil-
ity points at the inputs of the top logic gate in a Boolean formula, we can impose global
unobservability constraints for every logic block. The experimental results showed that global
unobservability constraints lead to small additional speedup if local unobservability is exploited,
but make the SAT-time less dependent on values of parameters in the translation. Future work will
fine-tune this translation to CNF.
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