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Abstract

Relational logic is an attractive candidate for a software description language, be-
cause both the design and implementation of software often involve reasoning about
relational structures: organizational hierarchies in the problem domain, architectural
configurations in the high level design, or graphs and linked lists in low level code. Un-
til recently, however, frameworks for solving relational constraints have had limited
applicability. Designed to analyze small, hand-crafted models of software systems,
current frameworks perform poorly on specifications that are large or that have par-
tially known solutions.

This thesis presents an efficient constraint solver for relational logic, with recent
applications to design analysis, code checking, test-case generation, and declarative
configuration. The solver provides analyses for both satisfiable and unsatisfiable
specifications—a finite model finder for the former and a minimal unsatisfiable core
extractor for the latter. It works by translating a relational problem to a boolean
satisfiability problem; applying an off-the-shelf SAT solver to the resulting formula;
and converting the SAT solver’s output back to the relational domain.

The idea of solving relational problems by reduction to SAT is not new. The core
contributions of this work, instead, are new techniques for expanding the capacity
and applicability of SAT-based engines. They include: a new interface to SAT that
extends relational logic with a mechanism for specifying partial solutions; a new
translation algorithm based on sparse matrices and auto-compacting circuits; a new
symmetry detection technique that works in the presence of partial solutions; and a
new core extraction algorithm that recycles inferences made at the boolean level to
speed up core minimization at the specification level.

Thesis Supervisor: Daniel Jackson
Title: Professor
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Chapter 1

Introduction

Puzzles with simple rules can be surprisingly hard to solve, even when a part of the
solution is already known. Take Sudoku, for example. It is a logic game played on a
partially completed 9 x 9 grid, like the one in Fig. 1-1. The goal is simply to fill in the
blanks so that the numbers 1 through 9 appear exactly once in every row, column,
and heavily boxed region of the grid. Each puzzle has a unique solution, and many
are easily solved. Yet some are ‘very hard.” Target completion time for the puzzle in

Fig. 1-1, for example, is 30 minutes [58].

6 2
1/8] |6
3 4
6 718
41 |2 |5
9| |8
5| |41 9] |3
2 114
3 5

Figure 1-1: A hard Sudoku puzzle [58].

Software engineering is full of problems like Sudoku—where the rules are easy
to describe, parts of the solution are known, but the task of filling in the blanks is
computationally intractable. Examples include, most notably, declarative configura-

tion problems such as network configuration [99], installation management [133], and
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scheduling [149]. The configuration task usually involves extending a valid config-
uration with one or more new components so that certain validity constraints are
preserved. To install a new package on a Linux machine, for example, an installa-
tion manager needs to find a subset of packages in the Linux distribution, including
the desired package, which can be added to the installation so that all package de-
pendencies are met. Also related are the problems of declarative analysis: software
design analysis [69], bounded code verification against rich structural specifications

[31, 34, 126, 138], and declarative test-case generation [77, 114, 134].

Automatic solutions to problems like Sudoku and declarative configuration usually
come in two flavors: a special-purpose solver or a special-purpose translator to some
logic, used either with an off-the-shelf SAT solver or, since recently, an SMT solver
[38, 53, 9, 29] that can also reason about linear integer and bitvector arithmetic.
An expertly implemented special-purpose solver is likely to perform better than a
translation-based alternative, simply because a custom solver can be guided with
domain-specific knowledge that may be hard (or impossible) to use effectively in a
translation. But crafting an efficient search algorithm is tricky, and with the advances
in SAT solving technology, the performance benefits of implementing a custom solver
tend to be negligible [53]. Even for a problem as simple as Sudoku, with many known
special-purpose inference rules, SAT-based approaches [86, 144] are competitive with

hand-crafted solvers (e.g. [141]).

Reducing a high-level problem description to SAT is not easy, however, since a
boolean encoding has to contain just the right amount and kind of information to
elicit the best performance from the SAT solver. If the encoding includes too many
redundant formulas, the solver will slow down significantly [119, 139, 41]. At the
same time, introducing certain kinds of redundancy into the encoding, in the form
of symmetry breaking [27, 116] or reconvergence [150] clauses, can yield dramatic

improvements in solving times.

The challenges of using SAT for declarative configuration and analysis are not
limited to finding the most effective encoding. When a SAT solver fails to find a

satisfying assignment for the translation of a problem, many applications need to
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know what caused the failure and correct it. For example, if a software package
cannot be installed because it conflicts with one or more existing packages, a SAT-
based installation manager such as OPIUM [133] needs to identify (and remove) the
conflicting packages. It does this by analyzing the proof of unsatisfiability produced
by the SAT solver to find an unsatisfiable subset of the translation clauses known
as an unsatisfiable core. Once extracted from the proof, the boolean core needs to
mapped back to the conflicting constraints in the problem domain. The problem
domain core, in turn, has to be minimized before corrective action is taken because
it may contain constraints which do not contribute to its unsatisfiability.

This thesis presents a framework that facilitates easy and efficient use of SAT for
declarative configuration and analysis. The user of the framework provides just a
high-level description of the problem—in a logic that underlies many software design
languages [2, 143, 123, 69]—and a partial solution, if one is available. The framework
then does the rest: efficient translation to SAT, interpretation of the SAT instance in
terms of problem-domain concepts, and, in the case of unsatisfiability, interpretation
and minimization of the unsatisfiable core. The key algorithms used for SAT encoding
[131] and core minimization [129] are the main technical contributions of this work;
the main methodological contribution is the idea of separating the description of the
problem from the description of its partial solution [130]. The embodiment of these
contributions, called Kodkod, has so far been used in a variety of applications for
declarative configuration [100, 149], design analysis [21], bounded code verification

[31, 34, 126], and automated test-case generation [114, 134].

1.1 Bounded relational logic

Kodkod is based on the “relational logic” of Alloy [69], consisting essentially of a
first-order logic augmented with the operators of the relational calculus [127]. The
inclusion of transitive closure extends the expressiveness beyond standard first-order
logics, and allows the encoding of common reachability constraints that otherwise

could not be expressed. In contrast to specification languages (such as Z [123], B
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2], and OCL [143]) that are based on set-theoretic logics, Alloy’s relational logic was
designed to have a stronger connection to data modeling languages (such as ER [22]
and SDM [62]), a more uniform syntax, and a simpler semantics. Alloy’s logic treats
everything as a relation: sets as relations of arity one and scalars as singleton sets.
Function application is modeled as relational join, and an out-of-domain application
results in the empty set, dispensing with the need for special notions of undefinedness.
The use of multi-arity relations (in contrast to functions over sets) is a critical factor
in Alloy being first order and amenable to automatic analysis. The choice of this logic
for Kodkod was thus based not only on its simplicity but also on its analyzability.

Kodkod extends the logic of Alloy with the notion of relational bounds. A bounded
relational specification is a collection of constraints on relational variables of any arity
that are bound above and below by relational constants (i.e. sets of tuples). All
bounding constants consist of tuples that are drawn from the same finite universe of
uninterpreted elements. The upper bound specifies the tuples that a relation may
contain; the lower bound specifies the tuples that it must contain.

Figure 1-2a shows a snippet of bounded relational logic! that describes the Sudoku
puzzle from Fig. 1-1. It consists of three parts: the universe of discourse (line 1); the
bounds on free variables that encode the assertional knowledge about the problem
(lines 2-7), such as the initial state of the grid; and the constraints on the bounded
variables that encode definitional knowledge about the problem (lines 10-21), i.e. the
rules of the game.

The bounds specification is straightforward. The unary relation num (line 2)
provides a handle on the set of numbers used in the game. As this set is constant, the
relation has the same lower and upper bound. The relations rl, r2 and r3 (lines 4-6)
partition the numbers into three consecutive, equally-sized intervals. The ternary
relation grid (line 7) models the Sudoku grid as a mapping from cells, defined by their
row and column coordinates, to numbers. The set {(1, 1, 6), (1, 4, 2), ..., (9, 9,

7)} specifies the lower bound on the grid relation; these are the mappings of cells to

!Because Kodkod is designed as a Java API, the users communicate with it by constructing
formulas, relations and bounds via API calls. The syntax shown here is just an illustrative rendering
of Kodkod’s abstract syntax graph, defined formally in Chapter 2.
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numbers that are given in Fig. 1-1.2 The upper bound on its value is the lower bound
augmented with the bindings from the coordinates of the empty cells, such as the cell
in the first row and second column, to the numbers 1 through 9.

The rest of the problem description defines the rules of Sudoku: each cell on the
grid contains some value (line 10), and that value is unique with respect to other
values in the same row, column, and 3 x 3 region of grid (lines 11-21). Relational join
is used to navigate the grid structure: the expression ‘grid[x|[num\y]’, for example,
evaluates to the contents of the cells that are in the row x and in all columns except
y. The relational join operator is freely applied to quantified variables since the logic
treats them as singleton unary relations rather than scalars.

Having a mechanism for specifying precise bounds on free variables is not necessary
for expressing problems like Sudoku and declarative configuration. Knowledge about
partial solutions can always be encoded using additional constraints (e.g. the ‘puzzle’
formulas in Figs. 1-2b and 1-2¢), and the domains of free variables can be specified
using types (Fig. 1-2b), membership predicates (Fig. 1-2c), or both (Fig. 1-2d). But
there are two important advantages to expressing assertional knowledge with explicit
bounds. The first is methodological: bounds cleanly separate what is known to be
true from what is defined to be true. The second is practical: explicit bounds enable

faster model finding.

1.2 Finite model finding

A model of a specification, expressed as a collection of declarative constraints, is a
binding of its free variables to values that makes the specification true. The bounded
relational specification in Fig. 1-2a, for example, has a single model (Fig. 1-3) which
maps the grid relation to the solution of the sample Sudoku problem. An engine that
searches for models of a specification in a finite universe is called a finite model finder,

or simply a model finder.

Traditional model finders [13, 25, 51, 68, 70, 91, 93, 117, 122, 151, 152] have

2The ‘... symbol is not a part of the syntax. It is used in Fig. 1-1 and in text to mean ‘etc’.
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{1,2,3,4,5,6,7,8, 9}

num 31 [{(1),(2),(3),(4),(6),(6),(7),(8),(9)},
£(1),(2),(3),(4),(5),(6),(7),(8),(9) }]
rl o [{(1),(2),(3) ), {(1),(2),(3)}]
r2 1 [{(4),(5),(6)}, {(4),(5),(6)}]
31 [{(7),(8),(9)}, {(7),(8),(9)}]
grid 3 [{<17 17 6>7<17 4’ 2)’ ) <97 97 7>}7
{(17 17 6>7<17 27 1>7<17 27 2)7 M <17 37 9>7
(1’ 47 2>’<17 57 1>7 ] <9’ 9’ 7>}]

V x, y: num | some grid[x][y]

V x, y: num | no (grid[x|[y] N grid[x][num\y])
V x, y: num | no (grid[x][y] N grid[num\x|[y])
V x: rl, y: rl | no (grid[x][y] N grid[r1\x][r1\y])
V x: rl, y: r2 | no (grid[x][y] N grid[r1\x][r2\y])
V x: rl, y: r3 | no (grid[x][y] N grid[r1\x][r3\y])
V x: 12, y: rl | no (grid[x][y] N grid[r2\x][r1\y])
V x: 12, y: 12 | no (grid[x][y] N grid[r2\x][r2\y])
V x: 12, y: r3 | no (grid[x][y] N grid[r2\x][r3\y])
V x: 13, y: rl | no (grid[x][y] N grid[r3\x][r1\y])
V x: 3, y: r2 | no (grid[x][y] N grid[r3\x][r2\y])
V x: 13, y: r3 | no (grid[x][y] N grid[r3\x][r3\y])

Py

(a) Sudoku in bounded relational logic

fof (at_most_one_in_each_row, axiom,
("X, Y1, Y2] :
((grid(X, Y1) = grid(X, Y2)) => Y1 = Y2))).

fof (at_most_one_in_each_column, axiom,
(! [X1,X2,Y] :

((grid(X1,Y) = grid(X2,Y)) => X1 = X2))).
fof (region_reflexive, axiom, (! [X]
fof (region_symmetric, axiom,

(! [X,Y] : (region(X,Y) => region(Y,X)))).
fof (region_transitive, axiom,
(! [X,Y,Z] :

: region(X,X))).

((region(X,Y) & region(Y,Z)) => region(X,Z)))).

fof (regions, axiom,
(region(1,2) & region(2,3) & region(4,5) &
region(5,6) & region(7,8) & region(8,9) &
“region(1,4) & “region(4,7) & “region(1,7) )).
fof (all_different, axiom,
11=2&1!1=3&2!=3&4!=5&4!=6&
51=6&7!1=8&7!=9&8!=9)).
fof (at_most_one_in_each_region, axiom,
(I [X1, Y1, X2, Y2] :
((region(X1,X2) & region(Y1,Y2) &
grid(X1,Y1) = grid(X2,Y2)) =
(X1 =X2 & Y1l =Y2)))).

fof (puzzle, axiom,

(grid(1,1) = 6 & grid(1,4) =2 & ... &
grid(9,9) = 7)).

(c) Sudoku in FOL (TPTP [124] syntax)

Tk W N =

_
R O OO0 O Utk Wk -

—
W N

14
15
16
17
18
19
20
21

22
23
24

abstract sig Num {grid: Num->Num}
abstract sig R1, R2, R3 extends Num {}
one sig N1, N2, N3 extends R1 {}

one sig N4, N5, N6 extends R2 {}

one sig N7, N8, N9 extends R3 {}

fact rules {
all x, y: Num | some grid[x][y]

all x, y: Num | no grid[x][y] & grid[x][Num-y]
all x, y: Num | no grid[x][y] & grid[Num-x][y]
all x: R1, y: R1 | no grid[x][y] & grid[R1-x][R1-y]
all x: R1, y: R2 | no grid[x][y] & grid[R1-x][R2-y]
all x: R1, y: R3 | no grid[x][y] & grid[R1-x][R3-y]
all x: R2, y: R1 | no grid[x][y] & grid[R2-x][R1-y]
all x: R2, y: R2 | no grid[x][y] & grid[R2-x][R2-y]
all x: R2, y: R3 | no grid[x][y] & grid[R2-x][R3-y]
all x: R3, y: Rl | no grid[x][y] & grid[R3-x][R1-y]
all x: R3, y: R2 | no grid[x][y] & grid[R3-x|[R2-y]
all x: R3, y: R3 | no grid[x][y] & grid[R3-x][R3-y]

}

fact puzzle {
N1->N1->N6 + N1->N4->N2 4 ...+
N9->N9->N7 in grid }

(b) Sudoku in Alloy

Given:
type int Num
Given(Num,Num,Num)

Find:
Grid(Num,Num) : Num
Satisfying:
!'rcn: Given(r,c,n) => Grid(r,c) = n.
I'rcl ¢2: Num(r) & Num(cl) & Num(c2) &
Grid(r,cl) = Grid(r,c2) => cl = c2.
! ¢rl r2: Num(rl) & Num(r2) & Num(c) &
Grid(rl,c) = Grid(r2,c) => rl = r2.

declare { Same(Num,Num)
Region(Num,Num,Num,Num) }

I'rl r2 cl ¢2: (Grid

(r1,cl ) = Grid(r2,c2) &
Region(rl,r2,cl,c2)) =>

(rl =12 & ¢l = ¢2).

{ Same(n,n). Same(nl,n2) <— Same(n2,nl).
Same(1,2). Same(1,3). Same(2,3). Same(4,5).
Same(4,6). Same(5,6). Same(7,8). Same(7,9).
Same(8,9). }

{ Region(rl,r2,cl,c2) <—
Same(rl,r2) & Same(cl,c2). }

Data:
Num = {1..9}

Given = { 1,1,6; 1,4,2; ...; 9,9,7; }

(d) Sudoku in FOL/ID (IDP [88] syntax)

Figure 1-2: Sudoku in bounded relational logic, Alloy, FOL, and FOL/ID.
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6lejr}2 181958 {(1),(2),(3),(4),(5),(6),(7),(8),(9)}
num — {(1),(2),(3), (7),(8),(9
9/1|8|5|6|4]7|2]|3 1 = {(1),(2),(3)}
2 7 4 '1 r2 = {<4>7<5>7<6>}
5818 79146 13 {(7).(8),(0)}
1/9|5]|6|4|7]8|3|2 grid — {(1,1,6),(1,2,4),(1,3,7),(1,4,2),(1,5,1),(1,6,3),(1,7,9),(1,8,5),(1,9,8),
(2,179%(2, 1),(2,3,8),(2,4,5),(2,5,6),(2,6,4),(2,7,7),(2,8,2),(2,9,3),
4|/8|2|3|5(1]|6|7]9 (3,1,2),(3,2,5),(3,3,3),(3,4,8),(3,5,7),(3,6,9),(3,7,4),(3,8,6),(3,9,1),
(4,1,1),(4,2,9),(4,3,5),(4,4,6),(4,5,4),(4,6,7),(4,7,8),(4,8,3),(4,9,2),
r/3/6]19/2/8J1/4/5 (5,1,4),(5,2,8),(5,3,2),(5,4,3),(5,5,5),(5,6,1),(5,7,6),(5,8,7),(5,9,9),
5/7(4|11]/9|2]3|8|6 (6,1,7),(6,2,3),(6,3,6),(6,4,9),(6,5,2),(6,6,8),(6,7,1),(6,8,4),(6,9,5),
(7,1,5),(7,2,7),(7,3,4),(7,4,1),(7,5,9) (7,6,2),(7,7,3),(7,8,8),(7,9,6),
8/2|9]|7|3|6|5|1]|4 (8,1,8),(8,2,2),(8,3,9),(8,4,7),(8,5,3),(8,6,6),(8,7,5),(8,8,1),(8,9,4),
3| 6|114/8|5)12|9|7 <971’3>’<9 2,6),(9,3,1),(9,4,4),(9,5,8),(9,6,5),(9,7,2),(9,8,9),(9,9,7) }
(a) Solution (b) Kodkod model

Figure 1-3: Solution for the sample Sudoku puzzle.

no dedicated mechanism for accepting and exploiting partial information about a
problem’s solution. They take as inputs the specification to be analyzed and an
integer bound on the size of the universe of discourse. The universe itself is implicit;
the user cannot name its elements and use them to explicitly pin down known parts
of the model. If the specification does have a partial model—i.e. a partial binding
of variables to values—which the model finder should extend, it can only be encoded
in the form of additional constraints. Some ad hoc techniques can be used to infer
partial bindings from these constraints. For example, Alloy3 [117] infers that the
relations N1 through N9 can be bound to distinct elements in the implicit universe
because they are constrained to be disjoint singletons (Fig. 1-2b, lines 3-5). In
general, however, partial models increase the difficulty of the problem to be solved,

resulting in performance degradation.

In contrast to traditional model finders, model extenders [96], such as IDP1.3 [88]
and Kodkod, allow the user to name the elements in the universe of discourse and to
use them to pin down parts of the solution. IDP1.3 allows only complete bindings of
relations to values to be specified (e.g. Fig. 1-2d, lines 23-24). Partial bindings for
relations such as Grid must still be specified implicitly, using additional constraints
(line 7). Kodkod, on the other hand, allows the specification of precise lower and
upper bounds on the value of each relation. These are exploited with new techniques

(Chapters 2-3) for translating relational logic to SAT so that model finding difficulty
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varies inversely with the size of the available partial model.

The impact of partial models on various model finders is observable even on small
problems, like Sudoku. Figure 1-4, for example, shows the behavior of four state-
of-the-art® SAT-based model finders on a progression of 6600 Sudoku puzzles with
different numbers of givens, or clues. The puzzle progression was constructed itera-
tively from 100 original puzzles which were randomly selected from a public database
of 17-clue Sudokus [110]. Each original puzzle was expanded into 66 variants, with
each consecutive variant differing from its predecessor by an additional, randomly
chosen clue. Using the formulations in Fig. 1-2 as templates, the puzzles were speci-
fied in the input languages of Paradox2.3 (first order logic), IDP1.3 (first order logic
with inductive definitions), Alloy3 (relational logic), and Kodkod (bounded relational
logic). The data points on the plots in Fig. 1-4 represent the CPU time, in millisec-
onds, taken by the model finders to discover the models of these specifications. All
experiments were performed on a 2 x 3 GHz Dual-Core Intel Xeon with 2 GB of
RAM. Alloy3, Paradox2.3, and Kodkod were configured with MiniSat [43] as their
SAT solver, while IDP1.3 uses MiniSatID [89], an extension of MiniSat for proposi-

tional logic with inductive definitions.

The performance of the traditional model finders, Alloy3 (Fig. 1-4b) and Para-
dox2.3 (Fig. 1-4c), degrades steadily as the number of clues for each puzzle increases.
On average, Alloy3 is 25% slower on a puzzle with a fully specified grid than on a
puzzle with 17 clues, whereaes Paradox2.3 is twice as slow on a full grid. The per-
formance of the model extenders (Figs. 1-4a and 1-4d), on the other hand, improves
with the increasing number of clues. The average improvement of Kodkod is 14 times

on a full grid, while that of IDP1.3 is about 1.5 times.

The trends in Fig. 1-4 present a fair picture of the relative performance of Kodkod
and other SAT-based tools on a wide range of problems. Due to the new translation
techniques described in Chapters 2-3, Kodkod is roughly an order of magnitude faster
than Alloy3 with and without partial models. It is also faster than IDP1.3 and Para-

3With the exception of Alloy3, which has been superseded by a new version based on Kodkod,
all model finders compared to Kodkod throughout this thesis represent the current state-of-the-art.
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Figure 1-4: Effect of partial models on the performance of SAT-based model finders, when
applied to a progression of 6600 Sudoku puzzles. The x-axis of each graph shows the
number of clues in a puzzle, and the y-axis shows the time, in milliseconds, taken by a given
model finder to solve a puzzle with the specified number of clues. Note that Paradox2.3,
IDP1.3 and Kodkod solved many of the puzzles with the same number of clues in the same
amount of time (or within a few milliseconds of one another), so many of the points on their
performance graphs overlap.
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Figure 1-5: Effect of partial models on the performance of a dedicated Sudoku solver, when
applied to a progression of 6600 Sudoku puzzles.

dox2.3 on the problems that this thesis targets—that is, specifications with partial
models and intricate constraints over relational structures.* For a potential user of
these tools, however, the interesting question is not necessarily how they compare to
one another. Rather, the interesting practical question is how they might compare to
a custom translation to SAT.

This question is hard to answer in general, but a comparison with existing cus-
tom translations is promising. Figure 1-5, for example, shows the performance of a
dedicated, SAT-based Sudoku solver on the same 6600 puzzles solved with Kodkod
and the three other model finders. The solver consists of 150 lines of Java code that
generate Lynce and Ouaknine’s optimized SAT encoding [86] of a given Sudoku puz-
zle, followed by an invocation of MiniSat on the generated file. The program took
a few hours to write and debug, as the description of the encoding [86] contained
several errors and ambiguities that had to be resolved during implementation. The
Kodkod-based solver, in contrast, consists of about 50 lines of Java API calls that
directly correspond to the text in Fig. 1-2a; it took an hour to implement.

The performance of the two solvers, as Figs. 1-4a and 1-5 show, is comparable.
The dedicated solver is slightly faster on 17-clue Sudokus, and the Kodkod solver
is faster on full grids. The custom solver’s performance remains constant as the
number of clues in each puzzle increases because it handles the additional clues by

feeding extra unit clauses to the SAT solver: adding these clauses takes negligible

4Problems that are better suited to other tools than to Kodkod are discussed in Chapter 5.

22



time, and, given that the translation time heavily dominates the SAT solving time,
their positive effect on MiniSat’s performance is unobservable. Both implementations
were also applied to 16 x 16 and 25 x 25 puzzles, with similar outcomes.® The solvers

based on other model finders were unable to solve Sudokus larger than 16 x 16.

1.3 Minimal unsatisfiable core extraction

When a specification has no models in a given universe, most model finders [25, 51,
68, 70, 88, 91, 122, 151, 152] simply report that it is unsatisfiable in that universe
and offer no further feedback. But many applications need to know the cause of a
specification’s unsatisfiability, either to take corrective action (in the case of declar-
ative configuration [133]) or to check that no models exist for the right reasons (in
the case of bounded verification [31, 21]). A bounded verifier [31, 21], for example,
checks a system description s; A ... A s, against a property p in some finite universe
by looking for models of the formula s; A...As, A—p in that universe. If found, such
a model, or a counterexample, represents a behavior of the system that violates p. A
lack of models, however, does not necessarily mean that the analysis was successful.
If no models exist because the system description is overconstrained, or because the
property is a tautology, the analysis is considered to have failed due to a vacuity error.

A cause of unsatisfiability of a given specification, expressed as a subset of the
specification’s constraints that is itself unsatisfiable, is called an wunsatisfiable core.
Every unsatisfiable core includes one or more critical constraints that cannot be re-
moved without making the remainder of the core satisfiable. Non-critical constraints,
if any, are irrelevant to unsatisfiability and generally decrease a core’s utility both
for diagnosing faulty configurations [133] and for checking the results of a bounded

analysis [129]. Cores that include only critical constraints are said to be minimal.

>The bounded relational encoding of Sudoku used in these experiments (Fig. 1-2a) is the easiest
to understand, but it does not produce the most optimal SAT formulas. An alternative encoding,
where the multiplicity some on line 10 is replaced by one and each constraint of the form ‘V x: r;,
y: 1; | no (grid[x][y] N grid[r;\x][r;\y])’ is loosened to ‘num C grid[r;][r;],” actually produces a SAT
encoding that is more efficient than the custom translation across the board. For example, MiniSat
solves the SAT formula corresponding to the alternative encoding of a 64 x 64 Sudoku ten times
faster than the custom SAT encoding of the same puzzle.
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(b) Core of the puzzle (highlighted)

Figure 1-6: An unsatisfiable Sudoku puzzle and its core.

Figure 1-6 shows an example of using a minimal core to diagnose a faulty Sudoku

The problem of unsatisfiable core extraction has been studied extensively in the

21). Removing ‘2’ from the highlighted cell fixes the puzzle.
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configuration. The highlighted parts of Fig. 1-6b comprise a set of critical constraints
that cannot be satisfied by the puzzle in Fig. 1-6a. The row (line 11) and column (line
12) constraints rule out ‘9’ as a valid value for any of the blank cells in the bottom
right region. The values ‘2’; ‘4", and ‘6’ are also ruled out (line 21), leaving five unique
numbers and six empty cells. By the pigeonhole principle, these cells cannot be filled

(as required by line 10) without repeating some value (which is disallowed by line

SAT community, and there are many efficient algorithms for finding small or minimal
cores of propositional formulas [32, 60, 61, 59, 79, 85, 97, 102, 153]. A simple facility
for leveraging these algorithms in the context of SAT-based model finding has been
implemented as a feature of Alloy3. The underlying mechanism [118] involves trans-
lating a specification to a SAT problem; finding a core of the translation using an

existing SAT-level algorithm [153]; and mapping the clauses from the boolean core



back to the specification constraints from which they were generated. The resulting
specification-level core is guaranteed to be sound (i.e. unsatisfiable) [118], but it is

not guaranteed to be minimal or even small.

Recycling core extraction (RCE) is a new SAT-based algorithm for finding cores
of declarative specifications that are both sound and minimal. It has two key ideas
(Chapter 4). The first idea is to lift the minimization process from the boolean level
to the specification level. Instead of attempting to minimize the boolean core, RCE
maps it back and then minimizes the resulting specification-level core, by removing
candidate constraints and testing the remainder for satisfiability. The second idea is
to use the proof of unsatisfiability returned by the SAT solver, and the mapping be-
tween the specification constraints and the translation clauses, to identify the boolean
clauses that were inferred by the solver and that still hold when a specification-level
constraint is removed. By adding these clauses to the translation of a candidate core,

RCE allows the solver to reuse previously made inferences.

Both ideas employed by RCE are straightforward and relatively easy to imple-
ment, but have dramatic consequences on the quality of the results obtained and the
performance of the analysis. Compared to NCE and SCE [129], two variants of RCE
that lack some of its optimizations, RCE is roughly 20 to 30 times faster on hard
problems and 10 to 60 percent faster on easier problems (Chapter 4). It is much
slower than Alloy3’s core extractor, OCE [118], which does not guarantee minimal-
ity. Most cores produced by OCE, however, include large proportions of irrelevant

constraints, making them hard to use in practice.

Figure 1-7, for example, compares RCE with OCE, NCE and SCE on a set of
100 unsatisfiable Sudokus. The puzzles were constructed from 100 randomly selected
16 x 16 Sudokus [63], each of which was augmented with a randomly chosen, faulty
clue. Figure 1-7a shows the number of puzzles on which RCE is faster (or slower)
than each competing algorithm by a factor that falls within the given range. Figure
1-7b shows the number of puzzles whose RCE cores are smaller (or larger) than those
of the competing algorithms by a factor that falls within the given range. All four

extractors were implemented in Kodkod, configured with MiniSat, and all experiments
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Figure 1-7: Comparison of SAT-based core extractors on 100 unsatisfiable Sudokus. Figure
(a) shows the number of puzzles on which RCE is faster, or slower, than each competing
algorithm by a factor that falls within the given range. Figure (b) shows the number of
puzzles whose RCE cores are smaller, or larger, than those of the competing algorithms
by a factor that falls within the given range. Both histograms are shown on a logarithmic
scale. The number above each column specifies its height, and the middle number is the
average extraction time (or core size) ratio for the puzzles in the given category.
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were performed on a 2 x 3 GHz Dual-Core Intel Xeon with 2 GB of RAM.

Because SCE is essentially RCE without the clause recycling optimization, they
usually end up finding the same minimal core. Of the 100 cores extracted by each
algorithm, 92 were the same (Fig. 1-7b). RCE was faster than SCE on 85 of the
problems (Fig. 1-7a). Since Sudoku cores are easy to find®, the average speed up of
RCE over SCE is about 37%. NCE is the most naive of the three approaches and does
not exploit the boolean-level cores in any way. It found a different minimal core than
RCE for 31 of the puzzles. For 26 of those, the NCE core was larger than the RCE
core, and indeed, easier to find, as shown in Fig. 1-7a. Nonetheless, RCE was, on
average, 77% faster than NCE. OCE outperformed all three minimality-guaranteeing
algorithms by large margins. However, only four OCE cores were minimal, and more

than half the constraints in 75 of its cores were irrelevant.

1.4 Summary of contributions

This thesis contributes a collection of techniques (Fig. 1-8) that enable easy and

efficient use of SAT for declarative problem solving. They include:

1. A new problem-description language that extends the relational logic of Al-
loy [69] with a mechanism for specifying precise bounds on the values of free
variables (Chapter 2); the bounds enable efficient encoding and exploitation of

partial models.

2. A new translation to SAT that uses sparse-matrices and auto-compacting cir-
cuits (Chapter 2); the resulting boolean encoding is significantly smaller, faster
to produce, and easier to solve than the encodings obtained with previously

published techniques [40, 119].

3. A new algorithm for identifying symmetries that works in the presence of arbi-

trary bounds on free variables (Chapter 3); the algorithm employs a fast greedy

SChapter 4 describes a metric for approximating the difficulty of a given problem for a particular
core extraction algorithm.
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Figure 1-8: Summary of contributions. The contributions of this thesis are highlighted
with gray shading; the remaining parts of the framework are implemented using standard
techniques. Filled arrows represent data and control flow between components. Clear arrows
represent usage relationships between components.
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technique that is both effective in practice and scales better than a complete

method based on graph automorphism detection.

4. A new algorithm for finding minimal unsatisfiable cores that recycles infer-
ences made at the boolean level to speed up core extraction at the specification
level (Chapter 4); the algorithm is much faster on hard problems than related
approaches [129], and its cores are much smaller than those obtained with non-

minimal extractors [118].

These techniques have been prototyped in Kodkod, a new engine for finding mod-
els and cores of large relational specifications. The engine significantly outperforms
existing model finders [13, 25, 88, 93, 117, 152] on problems with partial models,
rich type hierarchies, and low-arity relations. As such problems arise in a wide
range of declarative configuration and analysis settings, Kodkod has been used in
several configuration [149, 101], test-case generation [114, 135] and bounded verifi-
cation [21, 137, 31, 126, 34] tools (Table 1.1). These applications have served as a
comprehensive testbed for Kodkod, revealing both its strengths and limitations. The

latter open up a number of promising directions for future work (Chapter 5).
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bounded verification

test-case generation

declarative configuration

Alloy4 [21] analyzer for the Alloy language. Alloy4 uses Kodkod for simulation and checking
of software designs expressed in the Alloy modeling language. It is 2 to 10 times faster than
Alloy3 and provides a precise debugger for overconstrained specifications that is based on
Kodkod’s core extraction facility. Like its predecessor, Alloy4 has been used for modeling
and analysis in a variety of contexts, e.g. filesystems [75], security [81], and requirements
engineering [113].

Kato [136, 137] slicer for declarative specifications. Kato uses Kodkod to slice and solve Al-
loy specifications of complex data structures, such as red-black trees and doubly-linked lists.
The tool splits a given specification into base and derived constraints using a heuristically
selected slicing criterion. The resulting slices are then fed to Kodkod separately so that a
model of the base slice becomes a partial model for the derived slice. The final model, if any,
satisfies the entire specification. Because the subproblems are usually easier to solve than
the entire specification, Kato scales better than Alloy4 on specifications that are amenable
to slicing.

Forge [30, 31], Karun [126], and Minatur [34] bounded code verifiers. These tools use
Kodkod to check the methods of a Java class against rich structural properties. The basic
analysis [138] involves encoding the behavior of a given method, within a bounded heap, as
a set of relational constraints that are conjoined with the negation of the property being
checked. A model of the resulting specification, if one exists, represents a concrete trace of
the method that violates the property. All three tools have been used to find previously
unknown bugs in open source systems, including a heavily tested job scheduler [126] and an
electronic vote tallying system that had been already checked with a theorem prover [30].

Kesit [134, 135] test-case generator for software product lines. Kesit uses Kodkod to in-
crementally generate tests for products in a software product line. Given a product that is
composed of a base and a set of features, Kesit first generates a test suite for the base by
feeding a specification of its functionality to Kodkod. The tests from the resulting test-suite
(derived from the models of the specification) are then used as partial models for the speci-
fication of the features. Because the product is specified by the conjunction of the base and
feature constraints, the final set of models is a valid test-suite for the product as a whole.
Kesit’s approach to test-case generation has been shown to scale over 60 times better than
previous approaches to specification-based testing [76, 77].

Whispec [114] test-case generator for white-box testing. Whispec uses Kodkod to generate
white-box tests for methods that manipulate structurally complex data. To test a method,
Whispec first obtains a model of the constraints that specify the method’s preconditions.
The model is then converted to a test input, which is fed to the method. A path condition
of the resulting execution is recorded, and new path conditions (for unexplored paths) are
constructed by negating the branch predicates in the recorded path. Next, Kodkod is applied
to the conjunction of the pre-condition and one of the new path conditions to obtain a new
test input. This process is repeated until the desired level of code coverage is reached.
Whispec has been shown to generate significantly smaller test suites, with better coverage,
than previous approaches.

ConfigAssure [100, 101] system for network configuration. ConfigAssure uses Kodkod for
synthesis, diagnosis and repair of network configurations. Given a partially configured net-
work and set of configuration requirements, ConfigAssure generates a relational satisfiability
problem that is fed to Kodkod. If a model is found, it is translated back to a set of configura-
tion assignments: nodes to subnets, IP addresses to nodes, etc. Otherwise, the tool obtains
an unsatisfiable core of the configuration formula and repairs the input configuration by
removing the configuration assignments that are in the core. ConfigAssure has been shown
to scale to realistic networks with hundreds of nodes and subnets.

A declarative course scheduler [148, 149]. The scheduler uses Kodkod to plan a student’s
schedule based on the overall requirements and prerequisite dependencies of a degree pro-
gram; courses taken so far; and the schedule according to which particular courses are offered.
The scheduler is offered as a free, web-based service to MIT students. Its performance is
competitive with that of conventional planners.

Table 1.1: Recent applications of Kodkod.
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Chapter 2

From Relational to Boolean Logic

The relational logic of Alloy [69] combines the quantifiers of first order logic with
the operators of relational algebra. The logic and the language were designed for
modeling software abstractions, their properties and invariants. But unlike the logics
of traditional modeling languages [123, 143], Alloy makes no distinction between
relations, sets and scalars: sets are relations with one column, and scalars are singleton
sets. Treating everything as a relation makes the logic more uniform and, in some
ways, easier to use than traditional modeling languages. Applying a partial function
outside of its domain, for example, simply yields the empty set, eliminating the need
for special undefined values.

The generality and versatility of Alloy’s logic have prompted several attempts to
use its model finder, Alloy3 [117], as a generic constraint solving engine for declarative
configuration [99] and analysis [76, 138]. These efforts, however, were hampered by
two key limitations of the Alloy system. First, Alloy has no notion of a partial model.
If a partial solution, or a model, is available for a set of Alloy constraints, it can
only be provided to the solver in the form of additional constraints. Because the
solver is essentially forced to rediscover the partial model from the constraints, this
strategy does not scale well in practice. Second, Alloy3 was designed for small-scope
analysis [69] of hand-crafted specifications of software systems, so it performs poorly
on problems with large universes or large, automatically generated specifications.

Kodkod is a new tool that is designed for use as a generic relational engine.
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Its model finder, like Alloy3, works by translating relational to boolean logic and
applying an off-the-shelf SAT solver to the resulting boolean formula. Unlike Alloy3,
however, Kodkod scales in the presence of partial models, and it can handle large
universes and specifications. This chapter describes the elements of Kodkod’s logic
and model finder that are key to its ability to produce compact SAT formulas, with
and without partial models. Next chapter describes a technique that is used for

making the produced formulas slightly larger but easier to solve.

2.1 Bounded relational logic

A specification in the relational logic of Alloy is a collection of constraints on a set of
relational variables. A model of an Alloy specification is a binding of its free variables
to relational constants that makes the specification true. These constants are sets
of tuples, drawn from a common universe of uninterpreted elements, or atoms. The
universe itself is implicit, in the sense that its elements cannot be named or referenced
through any syntactic construct of the logic. As a result, there is no direct way to
specify relational constants in Alloy. If a partial binding of relations to constants—
i.e. a partial model—is available for a specification, it must be encoded indirectly,
with constraints that use additional variables (e.g. N1 through N9 in Fig. 1-2b) as
implicit handles to distinct atoms. While sound, this encoding of partial models is
impractical because the additional variables and constraints make the resulting model
finding problem larger rather than smaller.

The bounded relational logic of Kodkod (Fig. 2-1) extends Alloy in two ways:
the universe of atoms for a specification is made explicit, and the value of each free
variable is explicitly bound, above and below, by relational constants. A problem
description in Kodkod’s logic consists of an Alloy specification, augmented with a
universe declaration and a set of bound declarations. The universe declaration specifies
the set of atoms from which a model of the specification is to be drawn. The bound
declarations bound the value of each relation with two relational constants drawn from

the declared universe: an upper bound, which contains the tuples that the relation
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problem := universe relBound* formula*
universe := { atom[, atom|* }

relBound := var :urity [constant, constant]
constant := {tuple[, tuple]*} | {}[x{}]*
tuple := (atom][, atom]*)

atom, var := identifier
arity := positive integer

formula :=
no expr
| lone expr
| one expr
| some expr
| expr C expr
| expr = expr
| = formula
| formula A formula
| formula V formula
| formula = formula
| formula < formula

| V varDecls | formula
| 3 varDecls | formula

expr =
var
| "expr
| “expr
| *expr

| expr U expr

| expr N expr

| expr \ expr

| expr . expr

| expr — expr

| formula ? expr : expr

| {varDecls | formula}

expr|, var : expr|*

varDecls := var :

empty

at most one
exactly one
non-empty
subset
equal
negation
conjunction
disjunction
implication
equivalence

universal
existential
variable
transpose
closure
reflex. closure
uUnLon
intersection
difference
join
product
if-then-else

comprehension

(a) Abstract syntax

P : problem — binding — boolean
R : relBound — binding — boolean
F : formula — binding — boolean
E . expr — binding — constant
binding : var — constant
Pl{a1,...;an} r1...75 f1...fm]b:=

R[ri]b A...A R[rj]b A F[fi]b A... A F[fm]b

Rlv ik [l,u]]b:=1Cb(v) Cu

Fno plb = [E[p]b| = 0
F[lone p[b := |E[p]b| <1
Flone p]b := |E[p]b| =1
F[some p]b := |E[p]b| >0
FlpCqlb = E[p]b C E[q]b
F[p=g]b := E[p]b = E[g]b
F[-fIb = -F[fTb

F[f Ag]b = F[f]b AF[g]b
Flfvglb = F[f]bVF[g]b
F[f =g]b = F[f]b = F[g]b
Flf & glb = F[f]b & Flg]b

F[Vovi:el,.,vn:en| flb:=

Nserfe p(FIV v2 1 ez, ..ovn s en | fl(b @ v1{(s)})
F[3vi:et,..,vn:en | flb:=

Visere,pFlE v2 s €2, ,vn ten | fI(b @ vi—{(s)})

E[v]b = b(v)
E[p]b = {(p2,p1) | {p1,p2) € E[p]b}
E[p]b = {{p1,pn) | I P2, ..., Pn—1 |

(p1,p2), -, {(Pn—1,pn) € E[p]b}

E[*p]b = E['p]b U {(p1,p1) | true}

E[pUg]b := E[p]bUE[q]b

E[pnq]b := E[p]b N E[q]b

E[p\g¢lb = E[p]b\ E[q]b

Elp.qlb = {{p1,-sPn-1,492,..,qm) | (P1,..,Pn)
€ E[plb A (a1, ...,am) € E[q]b }

Elp—qlb = {{(p1,--,Pn,q1, -, qm) | (P1,---;Pn)
€ E[p]b A (a1, ...,am) € E[q]b }

E[f?p:¢]b := if F[f]b then E[p]b else E[¢]b

E[{vi:e1,...,vn ten | f}]b:=
{(s1,..;8n) | s1 €E[e1]b Asa €E[ea](b® vi—{(s1)})
A...Asn€E[en](b® UM virs {(si)})
AF[fIb & Uiy vi—{(s) }H)}

(b) Semantics

Figure 2-1: Syntax and semantics of bounded relational logic. Because Kodkod is designed
as a Java API, the users communicate with it by constructing universes, bounds, and
formulas via API calls. The syntax presented here is for illustrative purposes only. Mixed
and zero arity expressions are not allowed. The arity of a relation is the same as the arity of
its bounding constants. There is exactly one bound declaration v : [I,u] for each relation
v that appears in a problem description. The empty set {} has arity 1. The empty set of
arity k is represented by taking the cross product of the empty set with itself k£ times, i.e.

{} x...x{}.
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File — {(£0),(f1)}
1 {do, a1, fo, £1, £2} Dir — {(do),(d1)}
Root — {(a0)}
2 File i1 [{} {(£0),(£1),(£2)}] contents — {(d0,d1), (d0, £0), (d1,£1)}
T
Root : do)}, {(do
5 contents : ; [{(d0,d1)}, @
{(d0, d0), (d0, d1), (d0, £0), (d0, £1), (d0, £2),
(d1,d0), (d1,d1), (d1, £0), (d1,£1), (d1,£2)}] contents St
Dir
6 contents C Dir — (Dir U File)
7 V d: Dir | =(d C d."contents) @
8 Root C Dir File contents
9 (File U Dir) C Root.*contents
(a) Problem description (b) A sample model

Figure 2-2: A toy filesystem.

may include, and a lower bound, which contains the tuples that the relation must
include. Collectively, the lower bounds define a partial model, and the upper bounds

limit the pool of values available for completing that partial model.

Figure 2-2a demonstrates the key features of Kodkod’s logic on a toy specification
of a filesystem. The specification (lines 6-9) has four free variables: the binary relation
contents and the unary relations File, Dir, and Root. File and Dir represent the files and
directories that make up the filesystem. The contents relation is an acyclic mapping
of directories to their contents, which may be files or directories (line 6-7). Root
represents the root of the filesystem: it is a directory (line 8) from which all files and

directories are reachable by following the contents relation zero or more times (line 9).

The filesystem universe consists of five atoms (line 1). These are used to construct
lower and upper bounds on the free variables (lines 2-5). The upper bounds on File
and Dir partition the universe into atoms that represent directories (d0 and d1) and
those that represent files (£0, £1, and £2); their lower bounds are empty. The Root
relation has the same lower and upper bound, which ensures that all filesystem models
found by Kodkod are rooted at d0. The bounds on the contents relation specify that it
must contain the tuple (d0, d1) and that its remaining tuples, if any, must be drawn

from the cross product of the directory atoms with the entire universe.

A model of the toy filesystem is shown in Fig. 2-2b. Root is mapped to {(d0)},
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as required by its bounds. The contents relation includes the sole tuple from its lower
bound and two additional tuples from its upper bound. File and Dir consist of the
file and directory atoms that are related by contents, as required by the specification

(Fig. 2-2a, lines 6, 8 and 9).

2.2 Translating bounded relational logic to SAT

Using SAT to find a model of a relational problem involves several steps (Fig. 1-8):

translation to boolean logic, symmetry breaking, transformation of the boolean for-
mula to conjunctive normal form, and conversion of a boolean model, if one is found,
to a model of the original problem. The last two steps implement standard transfor-
mations [44, 68|, but the first two use novel techniques which are discussed in this

section and the next chapter.

2.2.1 Translation algorithm

Kodkod’s translation algorithm is based on the simple idea [68] that a relation over
a finite universe can be represented as a matrix of boolean values. For example, a
binary relation drawn from the universe {ay, ..., a,_1} can be encoded with an n x n
bit matrix that contains a 1 at the index [z, j] when the relation includes the tuple
(a;,a;). More generally, given a universe of n atoms, the collection of possible values

for a relational variable v 3 [, u| corresponds to a k-dimensional matrix m with

1 if (a;,,...,a;) €1,
mlit, ..., i) = § V(v, {ag,, ..., a:)) if (@i, ... a;,) € u\l,
0 otherwise,
where iy,...,ix € [0..n) and V maps its inputs to unique boolean variables. These

matrices can then be used in a bottom-up, compositional translation of the entire

specification (Fig. 2-3): relational expressions are translated using matrix operations,

and relational constraints are translated as boolean constraints over matrix entries.
Figure 2-4 illustrates the translation process on the constraint contents C Dir —

(Dir U File) from the filesystem specification (Fig. 2-2a, line 6). The constraint and
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Tp : problem — bool

Tgr : relBound — universe — matrix
Tg : formula — env — bool

Tg : expr — env — matrix

env : var — matrix

bool := 0 | 1 | boolVar | = bool | bool A bool | bool V bool | bool ? bool : bool

boolVar := identifier
idx := (int[, int]*)

V : var — (atom[, atom|*) — boolVar  boolean variable for a given tuple in a relation

() : matrix — {idx[, idx]*} set of all indices in a matriz

[] : matrix — int™t size of a matriz, (size of a dimension)™wmber of dimensions
[] : matrix — idx — bool matric value at a given index

M ¢ int'™ — (idx — bool) — matrix
M(s%, f) := new m € matrix where [m] = s¢ AV & € {0, ...,s — 1}¢, m[Z] = f(&)

M ¢ int™ — idx — matrix
M(s%, %) := M(s%, . if ¥ = & then 1 else 0)

Tp[{al, N ,an} U1 :kl[ll,ul] S V5 ij [l]-,uj] f1 N fm} = TF[/\;?LI fi](Uzzl'L}i — TR[Ui :ki [li,ui}, {al, e ,an}])

Tr[v g L), {a1,...,an}] == M(nF, X (i1, ..ig). if (@iys---ya4,) €1 then 1

else if {a;;,...,as,) € u\ 1l then V(v,(a;,...,a;,))
else 0)

Tr[no ple := —Tg[some ple

Tr[lone ple := Tg[no pleV Tr[one ple

Trlone ple := let m «— Tg[pe in vieQmD m[Z] A (/\y“EQmD\{a'c‘} —my])

Trlsome ple := let m — Tglple in Vz¢(,,) m[Z]

TrlpCqle = let m — (=Tgple V Tr[qle) in Aze ) m[7]

Trplp=gle = Tr[p C qle NTr[q C ple

Trnot fle := —Tg[fle

Tr[f Agle = Tr[fleATr[gle

Tr[fVgle := Tr[fleVTrgle

Tr[f = gle := —Tp[fleV Tr[gle

Trlf < gle = (Tr[fle ATr[gle) V (=Tr[fle A = Tr|gle)

TrlVvi:er,...,vn:en | fle:=let m«— Tglei]e in Aze () (-m[Z]VTrV vt e2,...,0n : en | fl(e@vi— M([m], )))
Tr[Fvi:er, .. ;vn ten | fle :=let m «— Tglei]e in Ve () (M[F] ATV v2 @ €2,...,vn : en | f(e ® vi— M([m], F)))

Tgv]e = e(v)

Tg[ple = (Te[ple)"

Tg[ple = let m «— Tglple,s¢ — [m],sq < (Az.i. if i=s then x else let y<«sq(z,i*2) in y Vy-y) in sq(m, 1)
Tg[*ple = let m «— Tg[ple, s? — [m] in m Vv M(5% \(i1,...,iq). if i1 =i2 A ... Ad1 =i then 1 else 0)
Tg[pUgle := TgpleV Tglgle

TrlpNgle := Trlple A Trlqle

Telp\qle = Talple A ~Trldle

Tglp . qle := Tglple- Trlqle

Tg[p—gle := Tgple x Tglgle

Tg[f?p: gle := let my «— Tg[ple,mp — Tglgle in M([mp], AZ. Tr[fle ? mp[@] : mq[Z])

Tr[{vi:e1,....,vn : en | f}e :=let mi « Tglei]e, s% « [m1] in
M, A(i1, ..., in). let ma — Tgle2](e ® v — M(s, (i1))),. ..,
mp < Tglen](e ® v — M(s,(11)) & ... Bvp_1 — M(s, (in—1))) in
mifit] A ... Amylin] A TE[f](e ®v1 — M(s, (i1)) ... B vy — M(s, (in))))

Figure 2-3: Translation rules for bounded relational logic.
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its subexpressions are translated in an environment that binds each free variable to
a matrix that represents its value. The bounds on a variable are used to populate its
representation matrix as follows: lower bound tuples are represented with 1s in the
corresponding matrix entries; tuples that are in the upper but not the lower bound
are represented with fresh boolean variables; and tuples outside the upper bound are
represented with Os. Translation of the remaining expressions is straightforward. The
union of Dir and File is translated as the disjunction of their translations so that a tuple
is in Dir U File if it is in Dir or File; relational cross product becomes the generalized
cross product of matrices, with conjunction used instead of multiplication; and the
subset constraint forces each boolean variable representing a tuple in Dir — (DirUFile)
to evaluate to 1 whenever the boolean representation of the corresponding tuple in

the contents relation evaluates to the same.

2.2.2 Sparse-matrix representation of relations

Many problems suitable for solving with a relational engine are typed: their uni-
verses are partitioned into sets of atoms according to a type hierarchy, and their
expressions are bounded above by relations over these sets [39]. The toy filesys-
tem, for example, is defined over a universe that consists of two types of atoms:
the atoms that represent directories and those that represent files. Each expres-
sion in the filesystem specification (Fig. 2-2a) is bounded above by a relation over
the types Tg, = {d0,d1} and Tje = {£0,f1,£f2}. The upper bound on contents,
for example, relates the directory type to both the directory and file types, i.e.
[contents| = {(Thir, Thir)» (Tairs Thie) } = {d0,d1} x {d0,d1} U {do,d1} x {f0, f1,f2}.
Previous relational engines (§2.3.1) employed a type checker [39, 128], a source-to-
source transformation [40], and a typed translation [68, 117], in an effort to reduce the
number of boolean variables used to encode typed problems. Kodkod’s translation,
on the other hand, is designed to exploit types, provided as upper bounds on free
variables, transparently: each relational variable is represented as an untyped matrix
whose dimensions correspond to the entire universe, but the entries outside the vari-

able’s upper bound are zeroed out. The zeros are then propagated up the translation
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0 do 1 co 1 c2 ¢c3 g
0 d1 0 cs Cg C7 Cg C9
e= 1< File— | fo |, Dir— 0 |, Root— | 0O |, contents — 00 0 0 0
f1 0 0 0O 0 0 0 O
f2 0 0 0o 0 0 0 O
do 0 co 1 c2 ¢c3 ¢4
di 0 c; cg C7 €8 C9
Tg[Dirle =e(Dir)=| 0 |, Tg[File]e =e(File)=| fo |, Tg[contentsle = e(contents)=| 0 0 0 0 O
0 f1 0000 O
0 fa 0000 O
do 0 do
dq 0 dy
Tg[Dir U File]Je = Tg[Dirle V Tg[Filele= | 0 V| fol=1]fo
0 fi fi
0 f2 f2
do
dy
Tg[Dir — (Dir U File)]e = Tg[Dirle x Tg[DirUFilele=[ do d1 0 0 0 ] x | fo
f1
f2

doANdo doAdi doAfo doAfi doA f2
diANdy dindr diNfo dinfi diAfa

= 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Tr[contents C Dir— (Dir U File)le = A (— Tg[contents|e V Tg[Dir — (Dir U File)]e)

co 1 co c3 ¢ doANdo doANdr doNfo doNfi doA fa

c5 Cg C7 €8 C9 diNdo diAdr diAfo diNfr diAfa
=A|l—-| 0 0 0 0 O \ 0 0 0 0 0

0 0 0 0 O 0 0 0 0 0

0 0 0 0 O 0 0 0 0 0

"—\Co\/(d()/\d()) ﬂl\/(do/\dl) _\CQV(dO/\fO) ﬂC3\/(do/\f1) —\C4\/(d()/\f2)
—|C5\/(d1/\d0) —|06V(d1/\d1) —|C7V(d1/\f0) —\Cg\/(dl/\f1) —|09\/(d1/\f2)

=A 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

= (—‘C()V(do/\do))/\(—\IV(do/\dl ))/\(—\CQV(do/\fO))/\(—‘C3V(do/\f1))/\(—\C4V(do/\f2)) AN
(—‘C5V(d1 Ado ))/\(—‘CG\/(d1/\d1))/\(—|C7V(d1/\f0))/\(—\cg\/(d1/\f1))/\(—‘cg\/(d1/\f2)).

Figure 2-4: A sample translation. The shading highlights the redundancies in the boolean
encoding.
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0 co 1 c2 c3 &4
0 Cy Cg C7 Cg8 C9
o | = 00000]=
3 00000 1] [3] [&] [&]
fs 00000
>
(a) TglFilele (b) Tg[contents]e

Figure 2-5: Sparse representation of the translation matrices Tg[File]e and Tg[contents|e
from Fig. 2-4. The upper half of each tree node holds its key, and the lower half holds its
value. Matrices are indexed starting at 0.

chain, ensuring that no boolean variables are wasted on tuples guaranteed to be out-
side an expression’s valuation. The upper bound on the expression Dir — (Dir U File),
for example, is {(Tair, Thir)» (Tairs Thie) }, and the regions of its translation matrix (Fig.

2-4) that correspond to the tuples outside of its ‘type’ are zeroed out.

This simple scheme for exploiting both types and partial models is enabled by
a new multidimensional sparse-matrix data structure for representing relations. As
noted in previous work [40], an untyped translation algorithm cannot scale if based on
the standard encoding of matrices as multi-dimensional arrays, because the number
of zeros in a k-dimensional matrix over a universe of n atoms grows proportionally

to nk.

Kodkod therefore encodes translation matrices as balanced trees that store
only non-zero values. In particular, each tree node corresponds to a non-zero cell (or
a range of cells) in the full n* matrix. The cell at the index [i1, ..., 1] that stores
the value v becomes a node with Z?Zl i;n*77 as its key and v as its value, where
the index-to-key conversion yields the decimal representation of the n-ary number

i1...1x. Nodes with consecutive keys that store a 1 are merged into a single node

with a range of keys, enabling compact representation of lower bounds.

Figure 2-5 shows the sparse representation of the translation matrices Tg[File|e
and Tg[contents]e from Fig. 2-4. The File tree contains three nodes, with keys that

correspond directly to the indices of the non-zero entries in the matrix. The contents
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tree consists of ten nodes, each of which corresponds to a non-empty entry [7, j] in
the contents matrix, with i %5+ j as its key and the contents of [i, j] as its value. Both
of the trees contain only nodes that represent exactly one cell in the corresponding
matrix. It is easy to see, however, that the nodes 1 through 3 in the contents tree,
for example, could be collapsed into a single node with [1..3] as its key and 1 as its
value if the entries [0,2] and [0, 3] of the matrix were replaced with 1s.

Operations on the sparse matrices are implemented in a straightforward way, so
that the cost of each operation depends on the number of non-zero entries in the ma-
trix and the tree insertion, deletion, and lookup times. For instance, the disjunction
of two matrices with my and msy non-zero entries takes O((m + my)log(my + ms))
time. It is computed simply by creating an empty matrix with the same dimensions as
the operands; iterating over the operands’ nodes in the increasing order of keys; com-
puting the disjunction of the values with matching keys; and storing the result, under
the same key, in the newly created matrix. A value with an unmatched key is inserted
directly into the output matrix (under its key), since the absence of a key from one of
the operands is interpreted as its mapping that key to zero. Implementation of other

operations follows the same basic idea.

2.2.3 Sharing detection at the boolean level

Relational specifications are typically built out of expressions and constraints whose
boolean encodings contain many equivalent subcomponents. The expression Dir —
(Dir U File), for example, translates to a matrix that contains two entries with equiva-
lent but syntactically distinct formulas: dgAd; at index [0, 1] and dy Ady at index [1, 0]
(Fig. 2-4). The two formulas are propagated up to the translation of the enclosing
constraint and, eventually, the entire specification, bloating the final SAT encoding
and creating unnecessary work for the SAT solver. Detecting and eliminating struc-
tural redundancies is therefore crucial for scalable model finding.

Prior work (§2.3.2) on redundancy detection for relational model finding produced
a scheme that captures a class of redundancies detectable at the problem level. This

class is relatively small and does not include the kind of low-level redundancy high-
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REACH(op : binary operator, v : vertex, k : integer)
1 if op = oP(v) ASIZEOF(v) =2 Ak > 1 then

2 L < REACH(op,LEFT(v),k — 1)

3 R« REACH(op,RIGHT(v), k — |L|)
4 return LUR

5 else

6

return {v}

Figure 2-6: Computing the d-reachable descendants of a CBC node. The functions op and
SiZEOF return the operator and the number of children of a given vertex. The functions
LEFT and RIGHT return the left and right children of a binary vertex. The d-reachable
descendants of a vertex v are given by REACH(OP(v), v, 2%).

lighted in Fig. 2-4. Kodkod uses a different approach and exploits redundancies at
the boolean level, with a new circuit data structure called Compact Boolean Circuits
(CBCs). CBCs are related to several other data structures (§2.3.4) which were devel-
oped for use with model checking tools (e.g. [49]) and so do not work as well with a

relational translator (§2.4).

A Compact Boolean Circuit is a partially canonical, directed, acyclic graph (V, E, d).
The set V is partitioned into operator vertices Vo, = Viynp U Vor U Vior U Vigg and leaves
Vieat = Vaar U {T,F}. The AND and OR vertices have two or more children, which are
ordered according to a total ordering on vertices <,; an if-then-else (ITE) vertex has
three children; and a NOT vertex has one child. Canonicity at the level of children is
enforced for all operator vertices. That is, two distinct vertices of the same type must
differ by at least one child, and no vertex can be simplified to another by applying
an equivalence law from Table 2.1 to its children. Beyond this, partial canonicity
is enforced based on the circuit’s binary compaction depth d > 1. In particular, no
binary vertex v € V can be transformed into another vertex w € V by applying the
law of associativity to the d-reachable descendants of v, computed as shown in Fig.
2-6.

An example of a non-compact boolean circuit and its CBC equivalents is shown
in Fig. 2-7. Part (a) displays the formula (x Ay A z) < (v A w) encoded as (—=(x A
yAz)V(wAw)A(=(wAv)V(zA(yAz))). Part (b) shows an equivalent CBC with

the binary compaction depth of d = 1, which enforces partial canonicity at the level
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Rule

Condition

—a — a

NOT

i7t:e—t
itt:e—e
i7t:e—1iVe
iTt:e— iAe
i7t:e— iVt
i7t:e— Nt

ITE

i=1Vt=e
1 =0

t=1Vi=t
t=0V-1=t
e=1V-i=e
e=0Vi=e

/\ie[l..n] ai — /\iE[l..i)u(i..n] @i
ie[t..n] 41 77 N\ig[1..4)u(i..n] i
/\iE[l./n] a; — 0

icfl.m @ — 0

(Aiep.myai) Nb—0
“Vien.ny @) Ab = ~(Vign. .y @)

“(Vien..ny@i) Ab—0
Nigpr.n) @) N = (Nigp..n) @)

AND

F el nlai=1
Ji,j€l..n,i#jNa; =a;
JFel..n],a; =0

Ji,j € [1..n],a¢ = aj

n<29AFie€(l..n],a; =-bVb=aq;
n<29AFie€l..n],a; =-bVb=—a;
n<2¢AJie€l..n],a; =b
n<2¢AJie[l..n],a; =b

(Viep.nmyas) Ao — b n<20AZie(l. nla=b
Aierr.m @) A Ajepm ) = Niepmy @) [ nS27Am<29AV € [1..m),3i € [1..nl,a; = b;
Viep.n @) A Ve m 0) = Vien m 05) |2 <28 Am <29 AVj € [1..m],3i € [1..n],a; = b,
Niein.mg ) A Vjenm ) = Niepom 0i) [n<29Am<29A3€[1..m],Fi€[1..n],a; =b;
Vien..n @ = Vien. iyui..n) % Fel..n],a; =0
ielt..n) 4~ Vie[ 5)u(i..n) % Ji,je(l..nl,i#jAa; =a,
i€fl.n) @i — 1 Jiel..nl,a =1
\/ie[lun] (l¢~>1 3i,j€ [1..n],ai = —a;
(Vie[l..n] a;)Vb—1 n<2¢ATie(l..n],a; =-bVb=—a;
_ "Pienm @) V= ~(Aigrm ) n<2ATicl. nla;=—bVb=—a;
o ﬂ(/\ie[lun]ai)\/bal nS2d/\3i€[1..n],ai:b
Viep..n @) V0= (Vign..n @i) n<20AZiel..n)a;=b
icll.n] @) VO —b n<29AFic[l..n],a; =b
(Viep.n) @)V (Vjepm 5) = (Viep.pp @) [n<20Am<2¢AVj€l..m],Fie (L. nl,a; =b;
(Nieiton @)V (Njepom) 03) = Nigp.m 03) | n <20 Am <29 AV € [1..m],Fi € [1..1],a; = b;
Vi %) Y (Njep.m %) = Viep.m %) |7 < 29 Am <29n3jel..m],3i€[l..n],a; = b,

Table 2.1: Simplification rules for a CBC with depth d. The rules that depend on d are
tested for applicability under two conditions. If the relevant operand is a (negated) binary
conjunction or a disjunction, then the rule is tested for applicability to its d-reachable
descendants. If the operand is a (negated) nary conjunction or a disjunction with up to 2¢
children, then the rule is tested for applicability to those children. The rule is not tested
for applicability otherwise, which ensures that all rules that depend on d are applicable in

constant O(29) time.
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of inner nodes’ children. That is, the depth of d = 1 offers only the basic canonicity
guarantee, forcing the subformula (v A w) to be shared. Part (c) shows the original
circuit represented as a CBC with the compaction depth of d = 2, which enforces
partial canonicity at the level of nodes’ grandchildren. The law of associativity applies

to the subformulas (z Ay A z) and (z A (y A 2)), forcing (x Ay A z) to be shared.

Xyz W VvV Yy z

(a) Original circuit

Figure 2-7: A non-compact boolean circuit and its compact equivalents.

Partial canonicity of CBCs is maintained by a factory data structure that syn-
thesizes and caches all CBCs that are a part of the same graph (V, E,d). Given an
operator and o operands with at most ¢ children each, the factory sorts the operands
and performs the applicable simplifications from Table 2.1. This takes O(ologo)
time, since the multi-operand rules can be applied in O(0) time, and the two-operand
rules, which are only applied to operands with at most 2¢ children (or d-reachable
descendants), take constant 27 time. If the simplification yields a boolean constant
or one of the operands, that result is returned. Otherwise, the operands are hashed,
and made into a new circuit only if the factory’s cache does not already contain a
circuit with the same inputs (or d-reachable descendants). Assuming collision resis-
tant hashing, checking the cache hits for (d-reachable) equality to the operands takes

O(max(24,0)) = O(o) time, since d is a small fixed constant.
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2.3 Related work

The body of research on SAT-based model finding for relational logic spans nearly
two decades. The first half of this section provides an overview of that work, with a
focus on prior techniques for exploiting types (§2.3.1) and for sharing subformulas in
the boolean encoding (§2.3.2). The second half covers the work that is not specific
to model finding but that is nonetheless closely related to the techniques employed
in Kodkod, namely other sparse-matrix (§2.3.3) and auto-compacting circuit (§2.3.4)

representations.

2.3.1 Type-based representation of relations

Early versions of the Alloy language [67, 68, 71] employed a simple type system
in which the universe of atoms was partitioned into a set of top-level types, and
the type of each expression was given as a product of these types. The language
was translated to SAT using rules [68, 71| that mirror those of Kodkod, but that are
applied to rectangular matrices with typed dimensions instead of square matrices with
dimensions that range over the entire universe. Under this scheme, a k-ary relation
of type Ty — ... — Ty is translated to a matrix with dimensions |13] x ... x |T}|.
For example, the Dir relation from the filesystem problem corresponds to a vector of
length 2, containing the boolean variables dy and d;, and the File relation corresponds
to a vector of length 3, containing the variables fy through fs.

The typed approach has the advantage of producing dense matrices that can
be represented simply as multidimensional arrays. But the disadvantage of using
irregularly-shaped matrices is that they restrict the kind of operations that can be
performed on expressions of different types. For example, the relations Dir and File
cannot be added together because the matrix disjunction operator that is used for
translating unions requires its arguments to have identical dimensions.

In the early versions of Alloy [68, 71], the dimension mismatch problem was ad-
dressed by merging some of the types into a single supertype. To make the expression

Dir U File legally typed and translatable, the types Ty, and Tg are merged (manu-
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ally, by changing the specification) into a new type, Tipject, that contains all files and
directories in the universe. The relations Dir and File are then both declared to have
Tobject as their type, resulting in two equally-sized translation vectors that can be
combined with the disjunction operator. The downside of this process, however, is
that it expands the upper bound on both Dir and File to the entire universe, doubling

the number of boolean variables needed to encode their values.

Alloy3 [117] addressed the dimension mismatch problem with two new features: a
type system [39, 128] that supports subtypes and union types, and a source-to-source
transformation [40] for taking advantage of the resulting type information without
changing the underlying translation (i.e. [68, 71]). These features are implemented
as two additional steps that happen before the translation. First, the typechecker
partitions the universe into a set of base types, and checks that the type of each
expression can be expressed as a relation over these base types. Next, the expression
types are used to atomize the specification into a set of equivalent constraints involving
expressions that range strictly over the base types. Finally, the new constraints, being

well-typed according to the old type system, are reduced to SAT as before [68, 71].

For example, suppose that the filesystem specification consists of a single con-
straint, namely contents C Dir — (Dir U File). To translate this specification to SAT,
Alloy3 first partitions the filesystem universe into two base types, Tg; and T, to
produce the following binding of expressions to types: Dir — {(T4i)}, File — {{The) },
Dir U File — {(Thw), (Thie)}, contents +— {(Tuir, Tair), (Thir, Thie) }, and Dir — (Dir U
File) — {{(Tair, Tair), (Tair, Thie) }. It then atomi