SAT Encodings of the At-Most-k Constraint

Some Old, Some New, Some Fast, Some Slow

Alan M. Frisch and Paul A. Giannaros *

Artificial Intelligence Group, Department of Computer Science,
University of York, United Kingdom.
frisch@cs.york.ac.uk

Abstract. This paper examines the encoding into SAT of the
<w(X1,...,Xn) constraint, which is true if and only if at most k of the
Boolean variables X1, ..., X, are true. Though this is probably the con-
straint most commonly encoded into SAT, the encoding that is usually
used is inferior to several other encodings. This paper surveys the available
encodings, introduces some new encodings, and presents some experiments
evaluating their performance.

1 Introduction

Considering the phenomenal advancement in the state of the art in SAT solvers
and in their application to hard problems, progress in the understanding of SAT
encodings and their use in practice seems much slower. This paper considers a
prime example: the SAT encoding of the <j(Xi,..., X,) constraint, which is true
if and only if at most k of the Boolean variables X1, ..., X,, are true.

The <p(Xi,...,X,) constraint is probably the constraint most commonly
encoded into SAT. Here’s why: many naturally arising problems can be con-
ceived of as requiring the assignment of values to non-Boolean variables, variables
whose domain of potential values has more than two elements. A non-Boolean
variable whose domain is of size n is most often encoded as a set of Boolean
variables Xi,...,X,, where the assignment of TRUE to X, indicates that the
original variable is assigned the i‘" value from its domain. Since the original vari-
able must be assigned exactly one variable, we must ensure that exactly one of
Xi,...,X, is assigned TRUE. This is most commonly considered as two con-
straints: <1(X1,...,Xp) and >1(Xq,...,X,). This <4(Xq,...,X,) constraint is
most commonly encoded as

n—1 n
/\ ~Xiv-X;,
=1 gj=tu41

which we call the binomial encoding.

* We are grateful to Jingchao Chen for providing us with a copy of his paper prior to
its publication, thus enabling us to generalise his product encoding and to experiment
with it. Thanks also go to Neil Moore for comments on our paper.

There is much about SAT encodings that is unclear, but one thing that is clear
— though perhaps not widely known — is that the binomial encoding is inferior
to several others. That’s right — the constraint most widely encoded in SAT is
usually encoded in an inferior manner.

This paper addresses two questions: what alternative SAT encodings of
<k(Xi,...,X,) are available, and how good are they? We do this by surveying
the available encodings, introducing some new encodings, and presenting some
experiments evaluating their performance.!

2 The Name of the Game

Here we define three properties of encodings: correctness and two properties re-
lating to the power obtained by applying unit propagation to an encoding.

Let ¢ (X, A) denote an encoding of <j(X1,...,X,), where X = X;,..., X,
and A denotes the possibly empty set of new variables introduced by the encoding.
We say that ¢ (X, A) is a correct encoding if for every assignment a to X, «
satisfies <p(X1,...,X,) if and only if @ can be extended to an assignment that
satisfies ¢ (X, A).

We say that unit propagation enforces arc consistency on an encoding
¢r(X, A) if for any partial assignment a to X the result of performing unit
propagation on ¢ (X, A) results in the generation of an empty clause (i.e., un-
satisfiability is detected) or

— at most k variables in X are assigned TRUE, and
— if exactly k variables in X are assigned TRUE then the remaining n — k
variables are assigned FALSE.

If, in addition, whenever the empty clause o’ is not generated and all the variables
of X are assigned, all the variables of A are assigned, then we say that unit
propagation enforces arc consistency™ on the encoding.

3 An Inventory of Encodings

This section presents an inventory of SAT encodings of the <p(Xi,...,X,) con-
straint, some new, some old. The encodings are presented in the order in which
they were invented. Table 1 summarises the methods and their properties.

3.1 Binomial Encoding

The most widely known encoding of <i(Xy,...,X,), often referred to in the
literature as the pair-wise or naive encoding, is A} Nj=ip1 —Xi V =X;. The
obvious generalisation of this method with binomial selection leads us to name
this the ‘binomial” encoding of <y(X7,...,X,):

! We recommend that this paper is read in colour as plots of the experimental results
are in colour.

Method Origin Clauses New vars | AC
binomial folklore (kil) 0 ACt
binary (k = 1) | Frisch et al. [7] O(nlog,n) O(logy m) ACt
binary (k > 2) | this paper O(knlogym) O(kn) none
sequential Sinz [9] O(kn) O(kn) ACt
commander |k = 1: Kwon & Klieber[8] ()+ (2::2)) n/2 |kn/2 ACt

k > 2: this paper
product k =1: Chen [3] (k+1)(n 4+ O(kn'/ D) | (E+1)nt/ F+DIAC
k > 2: this paper

Table 1: A summary of the encoding methods. The “new vars” column reports the
number of new variables introduced by the encoding. The AC column indicates whether
unit propagation on the encoding enforces arc consistency, arc consistency™ or neither.

A VX

IC{1,...,n}, i€l
#I=k+1

This encoding introduces no new variables and comprises (kil) clauses each
of size k + 1.

Later we will have need to encode an >} constraint. The familiar encoding of
> produces one clause, \/;—_; v;. The obvious generalisation is again with binomial
selection by taking > in terms of <,,_:

Zk(Ub .. -avn) = Snfk(ﬁvh .. -7jvn)

3.2 Binary Encoding

At Most One The binary encoding of <;(X}, ..., X,) was originally introduced
by Frisch et al. [7,6]. The encoding introduces new variables By, ..., Bfiog, n]- It

then associates with each X; a unique bit string s; € {1,0}/'82"1. The binary
encoding of <{(X1,...,X,) is

n [logy 1]

A A XVl g)
i=1 =1

where ¢(i, j) denotes Bj if the j** bit of s; is 1 and otherwise denotes —B;.

In cases where m is not a power of 2, Frisch et al. [7] introduced a small
optimisation that omits some clauses from the encoding. We shall not consider
this here.

This encoding introduces [log, n] extra variables and uses n[log, n| clauses.

At Most k Here we generalise the binary encoding to handle the <y (X1,...,X,,)
constraint. As before associate with each X; a unique bit string s; € {1,0} 18271,
The encoding introduces new variables B; , (1 < i < k, 1 < g < [logy,n]),
which are essentially k copies of the previous B variables. The binary encoding
of <p(Xi,...,X,)is

n k [logyn]
\/ /\ _‘Xz\/(b(z7gv.7)
i=1 g=1 j=1

where ¢(i, g,) denotes B, ; if the j'* bit of s; is 1 and otherwise denotes =B, ;.
This formula can be transformed to CNF by introducing new variables T ;
(1 <g<k,1<i<n) and replacing the outer disjunction with

k [logyn]
(~X: VT VeV T) AN\ (~Tyi V 6(i.g.5))
=1

g=1 J

This encoding introduces k(n + [log, n]) extra variables and uses n clauses of
size k + 1 and nk[logy, n] clauses of size 2.

When & > 2 this encoding has many symmetries. For example, a solution can
be changed to another by permuting the values of the “registers” (and making the
corresponding changes to the 7" variables.) This symmetry can be broken by using
lexicographic ordering constraints to constrain the values of the registers to be in
non-decreasing order. Furthermore, we can consistently break more symmetries
by adding the constraint that if any register contains the value 0 then (at least)
the first register does. Thus, T51,. .., Tk,1 must all be false, and the clause (X; V
T11VTeyV---VTgy) can replaced by (X1 V T11 V T2 ;) and correspondingly
the clauses of the form (=T, ; V ¢(i,g,7)) can be dropped for all values of g other
than one. (One could also eliminate 77 ; but we shall not consider that since it is
a special case and has very little consequence.) We can also add the constraints
that if any register has the second value then (at least) one of the first two does,
and so on. Each of these enables the clauses to be simplified as previously. Similar
symmetry-breaking constraints and corresponding simplifications can be imposed
at the other end.

We have conducted some experiments on the performance of this encoding,
which suggest that the lexicographic ordering constraints slightly harm perfor-
mance, so we shall not consider these further. The elimination of some T vari-
ables is clearly advantageous as it simplifies clauses, which also facilitates unit
propagation. So the encoding we use is

n min(%,k) min(i,k) [log, n]
A ((ﬂXZ-v Vo oA A A <ﬂTg,iv¢<z‘,g,j>))
i=1 g=max(1l,k—n+i) g=max(l,k—n+i) Jj=1

3.3 The Sequential Counter Encoding

Sinz [9] introduced an encoding of <y(Xi,...,X,) that works by encoding a
circuit that sequentially counts the number of X; that are true. For each 1 <

1 < n there is a register whose value is constrained to contain the number of
X1,...,X; that are true. Each register maintains its count in base one and hence
uses k bits to count to k. Thus the encoding introduces the new variables R; ;,
1 <i<n, 1 <5 <k, where each R;; represents the it bit of register j. The
clauses of the encoding are as follows.

n—1
/\ -X; VR (1)
i=1
k
/\ Ry (2)
=2
n—1 k
A N\ -Rici; VR 3)
i=2 j=1
n—1 k
-X; V ﬁRifl’jfl Vv Ri,j (4)
i=2 j=2
/\ X5 VR4 (5)

Il
o

(3

Formula (1) states that if X; is true then the first bit of register ¢ must be true.
Formula (2) ensures that in the first register only the first bit can be true. Formulas
(3) and (4) together constrain each register ¢ (1 < ¢ < n) to contain the value of
the previous register plus X;. Finally (5) asserts that there can’t be an overflow
on any register as it would indicate that more than k variables are true.

As claimed by Sinz, this encoding introduces k(n — 1) new variables and com-
prises 2nk + 2n — 3k + 1 clauses.

3.4 The Commander Encoding

At Most One Klieber and Kwon [8] introduced the commander encoding of
<4, which works by recursively partitioning the set of variables into groups of
some fixed size and encoding <; over each group. Klieber and Kwon describe
the algorithm as follows: partition the variables into groups of size s, denoting the
groups G, ..., Gy, and introduce a ‘commander’ variable for each group, denoting
these ci,...,cq. Then:

1. Encode <; for each group G; using the binomial method.
2. If a commander variable is true then some variable in its corresponding group

must be true: ’
/\ (ci = \/ v) (6)

=1 veG;
3. If a commander variable is false, no variable in its corresponding group can

be true:
g

/\ /\ - = —w (7)

i=1 veqG;

4. Encode <; on the set of all commander variables, e.g. with recursive applica-
tion of this algorithm.

We now give a new, simpler description of the commander encoding for <j,
which is useful because it readily generalises to an encoding for <j. First observe
that (6) is an encoding of <; on the variables G; U {—¢;}, for each group i. Now
observe that the combination of the <; constraint of step 1 together with (7) is
the binomial encoding of <;(G; U {—c¢;}), for each group 4. Thus the clauses of
steps 1, 2 and 3 together encode an exactly-one constraint on the variables of
G; U{—¢;} for each group i. Steps 1, 2, and 3 can be replaced with an encoding
of the exactly-one constraint (using the binomial methods of <; and >7), turning
the algorithm into:

1. Encode >; and <; for each set G; U —¢; using the binomial method.
2. Encode <; on the commander variables, e.g. with recursive application of this
algorithm.

If on each recursive application of the encoding the variables are partitioned
into groups of of size g, Kwon and Klieber show that in the limit of large n the
encoding produces

(s+1)/2+1/s i s +s+2
1-1/s 25 — 2

clauses.? Klieber and Kwon claim without proof that the fewest clauses are pro-
duced when s = 3, leading to 3.5n clauses and introducing n/2 commander vari-
ables.

At Most k Our generalisation follows from the new view of the encoding for <.
Again, we partition the variables into g > k sets G1,...,Gy. For each group G;
we introduce k£ commander variables, ¢; 1 to ¢; . The algorithm is then as follows:

1. Encode > and <, for each set (G; U {—¢;; | j = 1..k}) using the binomial
method.

2. Remove symmetrical solutions when less than k variables in a group are true
by ordering the commander variables:

k-1
/\ Cij = Cij+1
j=1
3. Encode <j on the commander variables, e.g. with recursive application of this
algorithm.

The symmetry-breaking step is easy to add and yields an encoding which
performs much better.

Proof of the encoding size proceeds in a similar vein to that presented by
Klieber and Kwon for <j.

2 Tt is approximately equal to the number of clauses per group multiplied by the number
of groups as n tends to infinity. For details of this result see [8].

Lemma 1. Encoding <j with the generalised commander encoding on n variables
and a group size s creates n/(s — k) groups in the limit of large n.

Proof. To begin with the n variables are partitioned into n/s groups. Each group
has k commander variables introduced. This is repeated for the kn/s commanders.
The total groups is therefore:

= kiT1n nx k)" n 1 n
; s s;<s> - gl—(%) T s—k =

Now consider the number of clauses constructed for each group. Each group has
exactly-k encoded on it and its commanders. The binomial encoding of exactly-k
produces (Zilf) + (it’i) clauses. This leads to a total number of clauses for the
generalised commander encoding equal to:

n s+k N s+k B n(82+s+k2+k)(s+k)!
s—k\\k+1 kE—1 N (s —k)(s+DI(k+1)!
We have disregarded the symmetry breaking step in this analysis but note that

it requires an additional k — 1 clauses for each group. To minimise the number of
clauses produced we conjecture that s should be set to k + 2.

3.5 Product Encoding

At Most One Chen [3] recently introduced a novel encoding of the <j, constraint.
He calls this the “product encoding” because it decomposes <;(X7,...,X,,) into
two constraints, <;(Y1,...,Y,,) and <4(Z3,...,Z,,), where p1 X pa > n.

At Most k Here we generalise the product encoding of <; to to an encoding of
Sk(Xh RN Xn)

1. Choose natural numbers pq,...pr41 such that p; X -+ X prg1 > n.

2. For each X; use a unique tuple ; = (z1,...,2,41), where 1 < z; < p;, to
refer to that variable. Let X be the set of all such tuples.

3. For all z; € X let x;/j be the tuple that results from removing the j**
element from x;.

4. For all1 <d < k+1 forall y € {z/d|lz € X} introduce a variable Ag,,.

The product encoding of <y (Xy,...,X,) is

k1
/\ <(/\ _‘m\/Ad,w/d> N <k ({Adz/ale GX}))

d=1 reX

One must ensure that the “recursive” use of < in the definition is a constraint
on strictly fewer than n variables. In certain cases this requires taking care in how
the tuples are assigned to the variables. We will not discuss the issue in detail

here but remark that the problem is avoided if the tuples that are assigned to
variables include the following k 4 2 elements:

(1,1,...,1)
(2,1,1,...,1) (1,2,1,1,...,1) (1,1,2,1,...,1) --- (1,1,...,1,2)

This scheme obviously does not work if n = k£ + 1. Indeed, Chen’s original
algorithm for <; does not work if n = 2. This is not a problem in practice
because if n = k + 1 then the binomial method provides a simple constraint:
X1 V- VX,

3.6 Other Encodings

In addition to the sequential counter encoding, Sinz [9] also introduced the parallel
counter encoding, which recursively splits the X; variables in two halves, counts
the true variables in each half. The two counts, represented in base two, are
then added. This encoding uses only O(n) clauses but unit propagations does not
enforce arc consistency.

The totalizer encoding of Bailleux and Boufkhad [1] can simultaneously han-
dle at-most-k and at-least-j constraints. It uses ©(n?) clauses. Unit propagation
enforces arc-consistency, but not in optimal time.

There are several pieces of work on translating pseudo-Boolean constraints,
which generalise Boolean cardinality constraints, into SAT [10, 2, 5].

4 Performance Evaluation

This section evaluates the performance of five SAT encodings of the
<k(X1,...,X,) constraint, some fast, some slow. In particular, experiments to-
talling hundreds of hours of CPU time were conducted on five encodings: binomial,
commander, binary, product and sequential. We tested each encoding in detect-
ing the unsatisfiability of a generalisation of the well-known pigeonhole problem,
both with and without symmetry-breaking constraints. We also conducted a con-
trolled experiment designed to measure the speed with which variable assignments
propagate to a solution.

Our implementation of the commander encoding always uses a group size
s = k + 2 as per our conjecture in §3.4; that our conjecture holds for all k used
in the experiments was verified for large s. The method is used recursively except
that the binomial encoding is used if n < 7 (in this case the binomial encoding
has fewer clauses) or n < k + s (in this case the commander encoding does not
decompose to a smaller subproblem).

Our implementation of the product encoding uses the method recursively ex-
cept that the binomial encoding is used if n < 7 (in this case the binomial encod-
ing has fewer clauses) or n < k + 1 (in this case the product encoding does not
decompose to a smaller subproblem).

Our experiments were conducted using MiniSat 2 [4] (release 070721) and
distributed over tens of machines with the same hardware: Intel Core 2 6600

103 F ‘ —
""""" Binary == Binary
102F| --- Binomial --- Binomial
...... Commander === Commander
— Dimensional — Dimensional
10" | —— LTseq —— LTseq
D 8
= 10°F %
: E
3 @)
1071 F 4
Vi
#
1072 F o i
-
e
[
10—3 L L L L L L L L L L L L
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Holes Holes

Fig. 1: Pigeonhole problem without symmetry breaking, one pigeon per hole

(2x2.40GHz) with 3 GiB of RAM. Experiments were stopped if the encoding time
plus the solving time exceeded 10 minutes.

In the graphs that follow log scales are used on the axes as necessary to produce
the most informative graph.

4.1 Experiments with the Pigeonhole Problem

The pigeonhole problem was used by Klieber and Kwon [8] to compare the per-
formance of the commander encoding of <; against binomial and LTggqg. The
goal of the problem is to prove that that p pigeons cannot be put into h =p — 1
holes, where each pigeon must be in at least one hole and no hole can contain
more than one pigeon. Experiments are presented by Klieber and Kwon with and
without symmetry broken by ordering the pigeons, which has a large impact on
the size of the problems that can be solved.?

As well as conducting more thorough experiments with the problem on the
different implementations of <;, we generalise the pigeonhole problem to allow us
to experiment on <g: given that each hole can now fit k£ pigeons in it, the goal is
to prove that p = hk — 1 pigeons be placed into A holes?

Without Symmetry Breaking With one pigeon per hole, Fig. 1 shows that
binomial is the clear loser and commander the clear winner in terms of solve
time for the original pigeonhole problem without symmetry breaking. Commander
performs almost an order of magnitude better than binomial before the time limit

3 Further details of the pigeonhole experiment and its implementation can be found in
8, § 3.

140 - E I I — Binar ,
-------- Binary i 900 | ' y. I,’

ol - Binomial --- Binomial K
...... Commander ;5 800 H --- Commander 'r'
— Dimensional — Dimensional | /'

100 - ” S 700 :
—— LTseq LTseq

Clauses

Solve (s)

60 | E

40 -

Holes Holes

Fig. 2: Pigeonhole problem without symmetry breaking, two pigeons per hole

is reached. Product briefly overtakes commander — with such few variables the
finer details of how each encoding performs near group or square-root boundaries
is significant.

With multiple pigeons per hole commander continues to perform the best,
with the effect more pronounced now with 2 pigeons per hole (Fig. 2). Binomial
and product do not scale well, being just capable of solving at most 11 pigeons
in 5 holes within the time limit. This trend continues up until our experiments
conclude, where commander is the only encoding able to solve 16 pigeons in 3
holes and 21 pigeons in 4 holes (30,455 clauses, solve time 55s) before reaching its
limit.

With Symmetry Breaking Adding symmetry-breaking constraints into the
encoding enables the solution of instances an order of magnitude bigger for all
five encoding methods. When there is one pigeon per hole, Fig. 3 shows that
little variation exists between the product, commander, and LTggq encodings in
this experiment, though commander is consistently marginally faster. The small
bumps in the number of clauses produced by binary and product occur when the
number of pigeons passes a power of 2 or a square number respectively.

Our results confirm previous results [8] that the commander encoding out-
performs LTsgq on the pigeonhole problem in the unordered case. Though the
number of clauses generated for the LT'sgq encoding for the ordered case with 129
holes is similar to that reported by Klieber and Kwon, we have observed a vast
difference in solve time. This may be due to slightly different implementations of
the benchmark, or to Klieber and Kwon using a different version of MiniSat (the
version is not reported in [8]).

When there are multiple pigeons per hole, solve times fluctuate for 2 pigeons
per hole, though once smoothed the solve times show approximately the same

02k 7 Binary P : L]
--- DBinomial L
N Commander P
10 F . . e i]
— Dimensional I
= —— LTseq e
o 10°F e 1
2 L
1071 F P _/]
1072 g |
/// 2
103 L L
10t 102
107 ¢
106 -
" 105 L
[}
w
=
=
Qe S e Binary ,
--- Binomial
10° R Commander |4
— Dimensional
10? —— LTseq i
Il | | -
100 200 300 400 500

Holes

Fig. 3: Pigeonhole problem with symmetry breaking, one pigeon per hole

result as for one pigeon per hole, with binomial significantly worse than the other
methods which perform similarly.

As the number of pigeons per hole increases past 2, however, binary and LTsgq
break away from product and commander, with the effect increasing in severity
until our experiments end at five pigeons per hole (Fig. 4). Product begins to
perform worse than even binomial around this point.

4.2 Experiments Measuring Propagation Speed

The goal of this benchmark is to determine how quickly an encoding propagates
to detect unsatisfiability. To test this, large instances of <j are encoded, and then
k + 1 variables are randomly selected and set to true by appending the necessary
k41 clauses to the end of the expression. To push the encodings to their extreme,
problem instances for n < 1,000,000/k were tested for k = 1..5,10,15,20. Pre-

T
500F R Binary 4
--- Binomial
400 N Commander ||
— Dimensional
D —— LTse
= 300 a i
® T T 1\
= y Loy
5 / oo ST
200 l,‘ N l| / ’ ‘/’\f
R ALY / !
INIYiR
100 IITRYRY]
[\/’ ‘ \l \/ v
Il Il
100 120 140
l.ii --------- Binary
6,000,000 - 7 --- Binomial
5,000,000 | i,." e Commander | |
7 — Dimensional

4,000,000 |- | —— LTseq |

2 i ,_;"

o 3,000,000 | / i
2,000,000 ‘ |
1,000,000 | S e =TT i

e - " _.———-——y—'— T .
20 40 60 80 100 120 140

Fig. 4: Pigeonhole problem with symmetry breaking, five pigeons per hole

liminary experiments on the binomial encoding showed it to be significantly worse
than the other methods, so it is not included in the comparison that follows.

As shown in Fig. 5, the product encoding propagates <; the quickest, detect-
ing unsatisfiability between 1.5 and 2 times as quickly as its nearest competitor,
LTggq. Similarly, the product method is the fastest at propagating <, for all
tested values of n.

However, as in the pigeonhole problem with symmetry breaking, the product
encoding is not the fastest for £ > 3. In all these test cases LTsgq is the fastest
followed by binary, a trend which continues for all k£ with which we experimented.
For example, Fig. 6 shows the results for <;, where only LTsgq and binary could
successfully run for n into the hundreds.

5 Conclusion

We have presented some existing methods and introduced some new methods of
encoding the <;(Xy,...,X,) and <(X,...,X,) constraints. We have examined

Solve (s)

""""" Binary
N Commander | |
— Dimensional
—— LTseq
L L L L
200,000 400,000 600,000 800,000
n
T T
106 b Binary
- Commander
10° f| — Dimensional
—— LTseq
» 104 F
(5]
a2
z
— 3
@) 10
102 L
10 f 25
100 I I I I I

10t 10? 103 10* 10°
n

Fig. 5: Propagation problem, <;

the size of the encodings and their ability to achieve arc consistency through unit
propagation.

Experiments presented here compare the performance of the methods on three
benchmarks. As expected from previously reported experiments and from it’s large
size, the binomial encoding performs poorly overall and is a reasonable performer
only if £ =1 and n is small.

We expected the binary encoding to be competitive for £k = 1 because of
compact size, but to be poor for k > 2 because unit propagation does not enforce
arc consistency. That turned out be roughly the case although, for pigeon hole
problems with symmetry breaking and more than one pigeon per hole, the binary
encoding was out-performed by only the sequential counter encoding.

The relative performance of the three recent encodings — sequential counter,
commander and product — shows no clear pattern. In terms of pure propagation
speed, the product encoding is slightly faster than the other two for k£ = 1, but
for £ > 2, the sequential counter encoding is the clear winner as k grows. In

¥ T
100 f T Binary E
] e Commander
. — Dimensional
—— LTseq
R U
4 1F P e E
Uc} -~ -
i
o1F i , |
4
4
i/
;"//
0.01 E: E
? L L L L L L L
500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

n

Fig. 6: Propagation problem, <io, n = 11,511,1011, ...

solving the pigeon hole problem propagation speed is not all that matters as the
encoding effects both the search heuristic and the conflict-directed clause learning.
For one pigeon per hole, the three methods had roughly similar performance.
However with more pigeons per hole the methods differ greatly. When symmetry-
breaking constraints are used, the sequential counter encoding is clearly the best,
the commander encoding is poor (worse than binary) and the product encoding
is terrible. When symmetry-breaking constraints are not used, and hence only
smaller problems could be solved, the commander encoding is the best followed
by the sequential counter encoding.

In general, we noticed that smaller encodings tend to be faster encodings.

We consider this work to be the start of a larger effort and there are many
possible directions to pursue. The conjecture that the commander encoding is
smallest when the group size is k£ + 2 could be proved or disproved. We think that
further work on the binary encoding for £ > 2 could yield improvements.

The experiments could be extended by considering more encoding methods,
more benchmark problems, and other SAT solvers. In addition, further experi-
ments on propagation times could measure the time it takes to propagate a <y
constraint when exactly k variables are set to TRUE. Other experiments could be
used to understand better why some encodings perform better than others.

References

1. Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinal-
ity constraints. In Principles and Practice of Constraint Programming - CP 2003,
9th International Conference, volume 2833 of Lecture Notes in Computer Science,
pages 108-122. Springer, 2003.

2. Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of pseudo-
Boolean constraints into CNF. In SAT ’09: Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing, pages 181-194,
Berlin, Heidelberg, 2009. Springer-Verlag.

10.

Jing-Chao Chen. A new SAT encoding of the at-most-one constraint. In Proc. of the
Tenth Int. Workshop of Constraint Modelling and Reformulation, September 2010.
N. Eén and N. Sorensson. Minisat v2.0 (Beta). http://fmv.jku.at/sat-race-
2006/descriptions/27-minisat2.pdf, 2006.

Niklas Eén and Niklas Sorensson. Translating pseudo-Boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006.
Alan M. Frisch and Timothy J. Peugniez. Solving non-Boolean satisfiability prob-
lems with stochastic local search. In Proc. of the Seventeenth Int. Joint Conf. on
Artificial Intelligence, pages 282-288, Seattle, Washington, August 2001.

Alan M. Frisch, Timothy J. Peugniez, Anthony J. Doggett, and Peter Nightingale.
Solving non-Boolean satisfiability problems with stochastic local search: A study of
encodings. Journal of Automated Reasoning, 35:143-179, 2005.

. Will Klieber and Gihwon Kwon. Efficient CNF encoding for selecting 1 from N

objects. In Fourth Workshop on Constraints in Formal Verification (CFV 07),
July 2007.

Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints.
In Proc. of the 11th Intl. Conf. on Principles and Practice of Constraint Program-
ming (CP 2005), pages 827-831, Sitges, Spain, October 2005.

Joost P. Warners. A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett., 68(2):63-69, 1998.

