
Efficient CNF Encoding for Selecting 1 from N Objects

Will Klieber1, Gihwon Kwon2

Department of Computer Science, Carnegie Mellon University1
wklieber@andrew.cmu.edu

Department of Computer Science, Kyonggi University2

khkwon@kyonggi.ac.kr

Abstract. In many boolean-satisfiability problems, one must encode the
constraint that at most one of n propositional variables is true. With a naïve
encoding, this requires O(n2) CNF clauses. We present a flexible alternative
encoding that only requires O(n) clauses, at the expense of O(n) extra variables.
The proposed encoding technique also allows efficient encoding of canonical-
ordering constraints that can aid in the determination of unsatisfiable problem
instances. Sample applications are given for the pigeon-hole problem and
Sudoku puzzles.

1 Introduction

In many boolean-satisfiability (SAT) problems, one must encode the constraint that
exactly one of n propositional variables is true. This constraint is usually broken down
into two constraints: (1) At least one variable is true, and (2) At most one variable is
true. The “at least one” constraint is simple to encode as a single clause in CNF form,
but the “at most one” constraint is more difficult. The traditional way of handling the
“at most one” constraint, if performance is not an issue, to explicitly require that
every pair of variables have at least one false variable. However, this requires
enumerating all possible pairs of variables, leading to O(n2) clauses.

This paper presents a flexible and efficient encoding for “at most one” constraints.
If there are a large number of variables, our approach requires O(n) clauses and O(n)
extra variables. Even for a small number of variables, our approach never performs
worse than the naive encoding; it will automatically and naturally reduces to the naïve
encoding if there are too few variables (less than 6) to overcome the overhead of our
approach.

This technique is applied to a variant of the pigeon-hole problem and to the solving
of Sudoku puzzles. For the pigeon-hole problem, our approach additionally allows for
the efficient encoding of canonical ordering constraints, which greatly reduce the time
needed to determine unsatisfiable instances. For the Sudoku application, our approach,
combined with a preprocessing step that quickly eliminates a large class of variables
and clauses, is able to handle board sizes up to at least 144×144.

The rest of the paper is organized as follows. First, we describe our approach,
which we call “commander-variable encoding”, in Section 2. Next, we describe the
applications to the pigeon-hole problem and to Sudoku puzzles in Sections 3 and 4.

We discuss related work in Section 5, and we conclude in Section 6.

2 Commander-Variable Encoding

Suppose that we have a set of propositional variables X = {x1, …, xn}, and we desire
exactly one of them to be true. In the naïve encoding, each variable must ‘talk’ with
every other variable. That is, each variable must appear in a clause with every other
variable. We can formalize this with the following functions that return a set of
clauses:

NaïveAtLeastOne(X) = /\
1

n

i=
xi

NaïveAtMostOne(X) = \/\/
1

1

1

n

ij

n

i +=

−

=
(¬xi ∨ ¬xj)

NaïveExactlyOne(X) = NaïveAtLeastOne(X) ∧ NaïveAtMostOne(X)

To reduce the number of clauses, we can divide the variables into groups. We assign a
new variable, called “a commander variable”, to each group. This commander
variable is to be true if (at least) one of the variables in its group is true; otherwise it is
to be false. In the commander-variable method, the original variables do not need to
‘talk’ directly to any other variables that are not in the same group; instead, the
commander variables act as proxies between original variables in different groups.

To describe the commander-variable encoding more precisely, let us introduce
additional notation. Let the set of propositional variables X = {x1,…,xn} be divided
into m disjoint subsets G1 through Gm. The commander node of group Gi is labeled
“ci”. Using this notation, the logic for the commander method can be encoded in CNF
form as follows; a running example is given for the case where the variables
{ x1, x2, x3} are grouped together and their commander variable is c1:

1. At most one variable in a group can be true. This is encoded by the
traditional pair-wise method that was mentioned earlier. For each group Gi,
we encode the following clauses:

\/\/
, jkGxGx ikij <∈∈

(¬xj ∨ ¬xk)

Example: (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3).

2. If the commander variable of a group is true, then at least one of the
variables in the group must be true. (To encode the “at most one” rather
than the “exactly one” constraint, omit this step.) For each group Gi, we
encode the following clause:

¬ci ∨ /\
n

Gx ij∈
xj

Example: c1 ⇒ (x1 ∨ x2 ∨ x3), which reduces to ¬c1 ∨ x1 ∨ x2 ∨ x3 in CNF.

3. If the commander variable of a group is false, then none of the
variables in the group can be true. For each group Gi, we encode the
following clauses:

\/
ij Gx ∈
(ci ∨ ¬xj)

Example: ¬c1 ⇒ (¬x1 ∧ ¬x2 ∧ ¬x3), which reduces to (c1 ∨ ¬x1) ∧ (c1 ∨
¬x2) ∧ (c1 ∨ ¬x3) in CNF.

4. Exactly one of the commander variables is true. This can be encoded
either by the pair-wise method or by a recursive application of the
commander method. For the pair-wise method, we encode the following
clauses, where m is the number of groups:

 (c1 ∨ c2 ∨ … ∨ cm) ∧ \/\/
ijmi <<
(¬ci ∨ ¬cj)

In the case of a recursive application, a hierarchy of commander variables is
formed, as depicted in Fig. 1.

Figure 1. Hierarchy of commander variables

Let’s consider how many clauses are required for each group. Note that Constraint 1
above requires n∗(n-1)/2, where n is the number of variables in the group.
Constraint 2 requires 1 clause, and Constraint 3 requires n clauses. (A commander
variable is not considered to be ‘in’ the group that it commands.) Thus, the total
number of clauses per group is (n∗(n+1)/2)+1. (This does not include the clauses
required by Constraint 4 to ensure that exactly one of the commander variables is
true.)

2.1 Analysis

The commander encoding is flexible in that any method can be used to group the
variables. However, to analyze the performance of the commander approach (in terms
of many clauses and extra variables are required), let us consider a grouping method
wherein the variables are, at each stage of the hierarchy, divided into groups of k
variables. For example, k=2, we get binary tree shown in Fig. 2. From the diagram, it
is clear that the number of groups, in the asymptotic limit of a large number of
variables n, is:

n
k

k

n
k

nknkk

knknknkn
i

−
=

 −
−

=

+++=

+++=∑
∞

=

/11

/1

1
/11

1

) //1/1(

)/()/()/()/(

32

1

32

L

L

The number of extra variables is equal to the number of groups. To get the number of
clauses, we multiply this by the number of clauses per group ((k∗(k+1)/2)+1 from the
previous section), getting a total of

n
k

kk

−
++
/11

)/1(2/)1(

clauses. It turns out that the best choice for minimizing the number of clauses is k=3.
In this case, the number of clauses is 3.5n and the number of extra variables is n/2.

Now, let us examine the case in which there are a small number of variables. In
order to benefit from the commander method, we need at least 6 variables. In that case,
we divide the variables into 2 groups of 3 variables. Each group requires
(1/2)(3+1)(3)+1 = 7 clauses. Normally, to ensure that exactly one of the two
commander variables is true, we would need 2 additional clauses, bringing the total to
16. However, since there are only two top-level commander variables, we can encode
the second as the negation of the first, so that it is automatically true that exactly one
of commander variables is true. Thus, we only need 14 clauses. This compares to 16
clauses for the naïve encoding NaïveExactlyOne({ x1,…,x6}).

n vars

n/k groups

n/k2 groups

n/k3 groups

Figure 2. Binary tree of groups

2.2 Algorithm Details

Fig. 3 shows an algorithm for the commander-variable encoding. The function is
passed a nested list of propositional variables (or literals). The nesting determines
how the variables are grouped the under the commander nodes. Since there is the
wrapper function, an application may just call the function CmdrExactlyOne with the
set of propositional variables and receives the set of clauses in CNF from the function.
The grouping function is defined in Fig. 4 and called from CmdrExactlyOne.

Algorithm CmdrExactlyOne(Subords, CmdrVar) =
input

Subords; -- a nested list of subordinates.
 -- a subordinate is a variable or a list of subordinates.
CmdrVar; -- the variable number for the commander variable.

begin
 φ = []; -- clauses to be returned.

ClauseVars = []; -- variables in the clauses (2D array).
for i = 0 to len(Subords)
 if (IsPropVar(Subord[i])) then -- if the subord is a propositional variable.
 ClauseVars[i] = Subord[i];
 else
 assert(IsList(Subord[i])); -- here the subord must be a list of subords.
 ClauseVars[i] = VarAlloc();
 φ = φ ∧ CmdrExactlyOne(Subord[i], ClauseVars[i]);
 endif
endfor
if (CmdrVar != 0) then

ClauseVars += Negate(CmdrVar);
endif
φ = φ ∧ NaïveExactlyOne(ClauseVars);
return φ;

end

-- Wrapper Function
Algorithm CmdrExactlyOne(Subords) =
input

Subords; -- a set (or list) of subordinates.
begin

return CmdrExactlyOne(GroupVars(Subords), VarAlloc());
end

Figure 3. Commander encoding algorithm

Algorithm GroupVars(Vars, MaxSize) =
input

Vars; -- a list of variables to be grouped into a hierarchy.
begin

NumVars = len(Vars);
if (NumVars <= MaxSize) then

return Vars;
endif
ret = []; -- group to be returned.
NumGr = NumVars / MaxSize; -- truncating integer division.
for i = 0 to NumGr – 1

ret[i] = Vars[i∗NumVars / NumGr .. (i+1)∗NumVars / NumGr – 1]
-- Note: “SomeList[first .. last]” denotes a slice of the list.

endfor
return GroupVars(ret, MaxSize);

end

Figure 4. Grouping function

3 Pigeon-hole Problem with Proposed Encoding

This section applies the commander encoding to the pigeon-hole problem and aims to
show its efficiency in handling the problem “select one from a certain set of objects”.
Another purpose is to show its flexibility because the commander encoding is easily
combined with other techniques, such as a canonical ordering in this case, and putting
the two together results in better performance in solving the pigeon-hole problem with
SAT solvers.

The pigeon-hole problem asks whether n pigeons can fit in m holes [1]. The
constraints for this problem can be written as follows:

� Each pigeon must be in exactly one hole.
� Each hole must have at most one pigeon.

To express the above rules as CNF clauses for SAT solvers, they must be expanded

out for each particular pigeon and hole. Let xi,j be a propositional variable that
represents whether pigeon i occupies hole j. Using this notation, the constraints can be
rewritten as follows:

� Given a pigeon i, there is exactly one hole j for which xi,j is true.
� Given a hole j, there is at most one pigeon i for which xi,j is true.

These constraints can be encoded as a set φ of CNF clauses whose conjunction is

unsatisfiable if and only if at least one hole must contain more than one pigeon in
order for each pigeon to be in a hole. The naïve encoding in Fig. 5 can be used for
encoding the problem into CNF clauses. It takes an n-in-m problem and generates
CNF clauses with the naïve functions NaïveAtMostOne, NaïveExactlyOne defined in
the previous section:

Algorithm PigeonholeToCNF(n, m) =
input

n; -- number of pigeons.
m; -- number of holes.

begin
 φ = []; -- clauses to be returned.
 X = {xi,j 1 ≤ i ≤ n, 1 ≤ j ≤ m};

for i = 1 to n
 φ = φ ∧ NaïveExactlyOne({ xi,j∈X 1 ≤ j ≤ m});
endfor
for j = 1 to m
 φ = φ ∧ NaïveAtMostOne({ xi,j∈X 1 ≤ i ≤ n});
endfor
return φ;

end

Figure 5. Naïve encoding for the n-in-m pigeonhole problem

where the notation {x∈X cond1, cond2, …} designates the subset of propositional
variables x∈X for which every condition holds true. If there are more pigeons than
holes, then the problem is unsatisfiable. Table 1 shows experimental results with the
naïve encoding on differently-sized unsatisfiable problems. The experiments were
done with MiniSAT [2] and performed on a 1.10GHz Intel Pentium M with 1.25 GB
of memory. In our experiments, the naïve encoding just handled up to the 11-in-10
problem in which 140 seconds were taken. However, the SAT solver failed for the 12-
in-11 problem within the pre-defined time limitation of 600 seconds.

Table 1. Experimental results for unsatisfiable pigeon-hole problems (n > m)

The commander encoding was used to solve the large problems by replacing the naïve
functions NaiveExactlyOne and NaiveAtMostOne with the commander ones
CmdrExactlyOne and CmdrAtMostOne, respectively. As you see from the second
column in Table 1, with the commander encoding, the SAT solver resolved the 11-in-
10 problem within 2 seconds. In addition, it could solve the larger problems up to the

13-in-12 problem.
For large values of n and m, however, it takes a long time for SAT solvers to

ascertain that the problem is unsatisfiable, due to the large search space. In contrast,
we as human beings can immediately see that the problem is unsatisfiable by using
the symmetry:

� We arbitrarily place 12 of the pigeons in the 12 holes. Then there is no room
for the 13th pigeon.

� Since the pigeons are interchangeable from the viewpoint of the problem
constraints, we can immediately see that no permutation of the 12 placed
pigeons will leave room for the 13th pigeon.

SAT solvers, on the other hand, do not have the ability to use this symmetry.

However, if we can detect the symmetry in a problem instance, then we can reduce
the state space that needs to be explored. We do this by imposing a canonical ordering
on the pigeons. Any decision branch that violates the canonical ordering is abandoned
as soon as the SAT solver realizes that the canonical ordering is violated.

An example of a canonical ordering used here is as follows: Pigeon i must be
placed in a hole in front of the hole of pigeon i+1 (i.e., the pigeon in hole j must have
a smaller number than that of the pigeon in hole j+1). With the proposed commander
encoding, however, it is easy to efficiently encode inequality relations such as
less than and greater than. The commander encoding and the canonical ordering are
combined in Fig. 6 which makes MiniSAT work efficiently. Due to space limitations,
we do not explicitly describe in detail the canonical-ordering encoding, but the
number of clauses generated is of order O(n log n).

Algorithm PigeonholeToCNF(n, m) =
input

n; -- number of pigeons.
m; -- number of holes.

begin
 φ = []; -- clauses to be returned.
 X = {xi,j 1 ≤ i ≤ n, 1 ≤ j ≤ m};

for i = 1 to n
 φ = φ ∧ CmdrExactlyOne({ xi,j∈X 1 ≤ j ≤ m});
endfor
for j = 1 to m
 φ = φ ∧ CmdrAtMostOne({ xi,j∈X 1 ≤ i ≤ n});
endfor
for i = 1 to n-1
 φ = φ ∧ CanonicalOrder(i);
endfor
return φ;

end

Figure 6. The commander encoding with the canonical ordering

The last column in Table 1 shows the 13-in-12 problem was solved in a millisecond.

(Note that the commander encoding alone took 41 seconds.) Even the 130-in-129
problem was solved in under 2 seconds. The commander encoding with the canonical
ordering also showed good performance for satisfiable cases (n < m) shown in Table 2.

In summary, the commander encoding with the canonical ordering shows much
better performance than the standard naïve encoding used for pigeon-hole CNF files
in SATLIB [3] in terms of both the number of clauses and SAT solving time.

Table 2. Experimental results for satisfiable pigeon-hole problems (n < m)

4 Sudoku Puzzle with Efficient Encoding

This section also applies the commander encoding to Sudoku puzzles and shows its
efficiency in handling the problem of selecting exactly one object out of a set of n
objects. The rules of Sudoku can be written as follows [4]:

� Each cell has exactly one digit.
� Each row has exactly one of each digit.
� Each column has exactly one of each digit.
� Each block has exactly one of each digit.

As explained in Section 2, the condition “exactly one” is translated as “at least one
and at most one” for CNF-based SAT solvers. Due to the symmetry in Sudoku, it is
not logically necessary to explicitly encode both the “at least one” and the “at most
one” conditions for each of the 4 rules above. However, in order for SAT solvers to
work efficiently, in practice it is necessary to explicitly encode all 8 conditions [5].

To express the above rules as CNF clauses for SAT solvers, they must be expanded
out for each particular cell, row, column, block, and/or digit. Let xr,c,d be the
propositional variable that denotes whether the cell in row r and column c contains
the digit d. Using this notation, the above rules can be rewritten as follows:

� Given a row r and a column c, there is exactly one digit d for which xr,c,d is true.
� Given a row r and a digit d, there is exactly one column c for which xr,c,d is true.
� Given a column c and a digit d, there is exactly one row r for which xr,c,d is true.

� Given a block b and a digit d, there is exactly one index i for which xr,c,d is true,
where r and c are the row and column numbers of i th cell of block b.

Notice that each instance of the above expansions corresponds to the following

form: “out of a certain set of n propositional variables, exactly one is true”. It would
be easy to write a naïve encoding algorithm that takes a Sudoku puzzle represented by
a 2D matrix M and generates a set φ of CNF clauses which is satisfiable if and only if
the puzzle has a solution:

Algorithm SudokuToCNF(M) =
input

M[n][n]; -- 2D matrix of pre-assigned cells; 0 for unassigned,
begin
 φ = []; -- clauses to be returned.
 S = { }; -- set of pre-assigned cells.
 X = {xr,c,d 1 ≤ r ≤ n, 1 ≤ c ≤ n, 1 ≤ d ≤ n};

 for i = 1 to n
 for j = 1 to n
 φ = φ ∧ NaïveExactlyOne({ xr,c,d∈X r = i, c = j, 1 ≤ d ≤ n})
 ∧ NaïveExactlyOne({ xr,c,d∈X r = i, d = j, 1 ≤ c ≤ n})
 ∧ NaïveExactlyOne({ xr,c,d∈X c = i, d = j, 1 ≤ r ≤ n})
 ∧ NaïveExactlyOne({ xr,c,d∈X r = br(b,j), c = bc(b,j), 1 ≤ b ≤ n});
 S = S ∪ {xr,c,d∈X r = i, c = j, d = M[i][j], 1 ≤ M[i][j] ≤ n});

endfor
endfor

φ = φ ∧ \/
1

u

i=
Si;

return φ;
end

Figure 7. Naïve encoding algorithm for Sudoku

The functions br(b,j) and bc(b,j) return the row and column of the j th cell in a block b.1
The first four set of clauses refers to each cell, each row, each column and each block
having exactly one digit from 1 to n. In addition to these sets, the last one is a set of
unit clauses to represent pre-assigned cells; i.e., the pre-assigned cell in row i and
column i has a digit from 1 to n; in other words, 1 ≤ M[i][j] ≤ n.

Table 3 shows our experimental results with the naïve encoding on different sized
puzzles. It is easy to see that the naive encoding works for small puzzles such as 9×9.
Using these encodings for large Sudoku such as 81×81, however, generates huge CNF

1 The function br and bc can be implemented as follows:
 br(b,j) = (b / n) * n + (j / n)
 bc(b,j) = (b % n) * n + (j % n)
where “/” designates truncating integer division, and “%” designates the modulo operation
(remainder after integer division).

files which lead to stack overflow errors during SAT solving. Even the encoding
phase was not completed for 100×100 on our machine due to tremendous number of
clauses (over 100 million clauses).

Table 3. Experimental results on Sudoku puzzles with different encodings

The runtime of a SAT solver is highly usually unmanagble if the input formula size
is on the order of gigabytes. An optimized encoding removes the obvious
redundancies when encoding a given problem in CNF. Using an optimized CNF
encoding can speed up SAT solving significantly [6,7]. In the case of Sudoku, it is
easy to see that a pre-assigned cell implies obvious redundancies in the encodings
presented. Since an assigned number at a pre-assigned cell is never changed, all
variables representing other numbers associated with a pre-assigned cell can be
removed. In addition, variables whose value is duplicated in the same row or column
or block are eliminated because duplicated numbers are not allowed within the same
region in Sudoku. This optimization idea was given by our previous work [8]. Here,
the algorithm is revised to work it in the current context:

Algorithm Optimize(X, M) =
begin
 X’ = { }; -- set of redundant variables .

 for i = 1 to n
 for j = 1 to n
 X’ = X’ ∪ {xr,c,d∈X r = i, c = j, 1 ≤ d ≤ n, 1 ≤ M[i][j] ≤ n})
 ∪ {xr,c,d∈X r = i, j+1 ≤ c ≤ n, d = M[i][j], 1 ≤ M[i][j] ≤ n})

∪ {xr,c,d∈X i+1 ≤ r ≤ n, c = j, d = M[i][j], 1 ≤ M[i][j] ≤ n})
 ∪ {xr,c,d∈X r = br(b,j), c = bc(b,j), d = M[i][j], 1 ≤ M[i][j] ≤ n
 1 ≤ b ≤ n });

endfor
endfor
 return X − X’;

end
Figure 8. Optimized algorithm

As shown in Fig. 9, the commander encoding calls the function Optimize to eliminate

redundant variables before generating CNF clauses. Compared to the naïve encoding,
the set of unit clauses to represent pre-assigned cells exists no longer.

Algorithm SudokuToCNF(M) =
input

M[n][n]; -- 2D matrix of pre-assigned cells.
begin
 φ = []; -- clauses to be returned.
 X = {xr,c,d 1 ≤ r ≤ n, 1 ≤ c ≤ n, 1 ≤ d ≤ n};
 X’ = Optimize(X, M); -- reduced set of variables.

 for i = 1 to n
 for j = 1 to n
 φ = φ ∧ CmdrExactlyOne({ xr,c,d∈X’ r = i, c = j, 1 ≤ d ≤ n})
 ∧ CmdrExactlyOne({ xr,c,d∈X’ r = i, d = j, 1 ≤ c ≤ n})
 ∧ CmdrExactlyOne({ xr,c,d∈X’ c = i, d = j, 1 ≤ r ≤ n})
 ∧ CmdrExactlyOne({ xr,c,d∈X’ r = br(b,j), c = bc(b,j), 1 ≤ b ≤ n});

endfor
endfor
return φ;

end
Figure 9. Commander encoding with the optimization

The same puzzles were used to evaluate the commander encoding with the

optimization technique. Compared to the naive encoding, the number of variables and
clauses is significantly reduced. For instance, the proposed encoding generates 27,021
variables and 189,426 clauses for the 81×81 puzzle; however, the naïve one generates
531,441 variables and 85,060,787 clauses. Since the number of variables and clauses
are significantly reduced, MiniSAT solves the puzzle in 0.66 second. Even the largest
puzzle (144×144) in our experimental settings was solved in 1.43 seconds.

In summary, the commander encoding with the optimization shows much better
performance than the previous naïve encodings used for solving Sudoku with SAT
solvers [5,9] in terms of both the number of clauses and SAT solving time. In addition,
our combined approach works more efficiently compared to the optimization used
alone [8].

5 Related Works

Apart from the pigeon-hole problem and Sudoku puzzle, boolean cardinality selection
problems such as “at most one”, “at least one”, and “exactly one” have wide
application areas such as production management [10], discrete tomography [11], etc.
There has been work done to efficiently encode these constraints in CNF clauses
[11,12,13]. In the literature [13], these encodings are compared in terms of 3 criteria
(the number of clauses, the number of variables, and decision method).

Compared to the encodings of Warners [12] and LTPAR [13], which require
searching the state space, our encoding works by unit propagation. Although the
encoding of Baileux & Boufkhad [11] requires no search, it generates more clauses

than ours. And the encoding LTSEQ [13] also requires no search and is close to ours in
terms of all the 3 criteria above. However, LTSEQ and others mentioned here are
devised for “at most many” rather than “at most one”. In the problem of “at most one
from x1 through x100”, LT SEQ generated 296 clauses, whereas ours generated 294
clauses. Thus, we believe that our technique is better than any others in the problem
“select one from a certain set of propositional variables”. Apart from the efficiency,
our method is flexible so that it can be combined with other techniques to make SAT
solvers work fast.

Let us recap our experimental results on the pigeon-hole problem. Our commander
encoding with the canonical ordering shows much better performance than the
standard naïve encoding for both unsatisfiable cases and satisfiable cases. In Section 3,
we used the constraint “each pigeon must be in exactly one hole”. It is stronger than
the original constraint “each pigeon must be in some hole” used in benchmark test
CNF files from SATLIB. We compared our technique with the benchmark test set
and our technique resulted in better performance in both the number of clauses and
SAT solving time shown in Table 4.

Table 4. The commander encoding with the canonical ordering shows much better
performance than the naïve encoding used in SATLIB benchmark test set.

Recently, various encodings were proposed to formulate Sudoku into a set of CNF

clauses [5,9]. The number of clauses generated from these encodings for n×n Sudoku
puzzle is O(n4). In fact, the extended encoding in [5] is the same as the naïve one
described in Section 4. These encodings allow us to solve small instances of Sudoku
puzzle such as 9×9 with SAT solvers. However, they generate too many clauses for
large size puzzles. This in turn makes the satisfiability checking of the generated CNF
clauses difficult. In contrast, the commander encoding with optimization generates
very compact CNF, with only O(n3) clauses, and makes SAT solvers work efficiently.
(In Table 3 we observed a reduction of 450X in the size of the CNF encoding for the
81×81 puzzle.)

6 Conclusions

Our contributions can be summarized as follows:
� This paper presents a flexible and efficient encoding for selecting at most one

from a certain set of propositional variables. Since our work focuses on the
one-object-selection problem, our work can show better performance in the
encoding of boolean cardinality constraints such as “at most one” and “exactly
one”.

� We demonstrate the effectiveness of our techniques in solving the pigeon-hole
problem and Sudoku puzzles. Apart from two applications, we believe that
there are many applications needed our techniques such as Hamiltonian path
finding [14].

In the future, we plan to implement the LTSEQ encoding and compare it with ours

using the same applications mentioned in this paper.

References

1. http://en.wikipedia.org/wiki/Pigeonhole_principle
2. N. Een and N. Sorensson, An Extensible SAT Solver, in The Proceedings of SAT'03, 2003.
3. SAT instances of the Pigeon Hole Problem.

(http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/DIMACS/PHOLE/descr.html)
4. http://en.wikipedia.org/wiki/Sudoku
5. I. Lynce and J. Ouaknine, Sudoku as a SAT problem, in The Proceedings of AIMATH’06,

2006.
6. S. Subbarayan and D. Pradhan, NiVER: Non increasing Variable Elimination Resolution

for Preprocessing SAT Instances, in The Proceedings of SAT'04, 2004.
7. N. Een and A. Biere, Effective Preprocessing in SAT through Variable and Clause

Elimination, in the Proceedings of SAT'05, 2005.
8. G. Kwon and H. Jain, Optimized CNF Encoding for Sudoku Puzzles, in The Proceedings of

LPAR’06, 2006.
9. T. Weber, A SAT-based Sudoku Solver, in The Proceedings of LPAR’05, 2005.
10. W. Kuchlin and C. Sinz, Proving Consistency Assertions for Automotive Product Data

Management, Journal of Automated Reasoning, Vol.24, pp.45-163, 2000.
11. O. Baileux and Y. Boufkhad, Efficient CNF Encoding of Boolean Cardinality Constraints,

in Proceedings of CP 2003, pp.108-122, 2003.
12. J.P. Warners, A Linear-time Transformation of Linear Inequalities into Conjunctive

Normal Form, Information Processing Letter, Vol.68, pp.63-69, 1998.
13. C. Sinz, Towards an Optimal CNF Encoding of Boolean Cardinality Constraints, in

Proceedings of CP 2005, pp.827-831, 2005.
14. D. Kroning, Hamiltonian Path Finding as SAT, 2005-2006 Lecture on Formal Verification.

(From http://people.inf.ethz.ch/daniekro/classes/251-0247-00/ws2005-2006/)

