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Abstract. In many boolean-satisfiability problems, one must encode the 
constraint that at most one of n propositional variables is true. With a naïve 
encoding, this requires O(n2) CNF clauses. We present a flexible alternative 
encoding that only requires O(n) clauses, at the expense of O(n) extra variables.  
The proposed encoding technique also allows efficient encoding of canonical-
ordering constraints that can aid in the determination of unsatisfiable problem 
instances. Sample applications are given for the pigeon-hole problem and 
Sudoku puzzles. 

1  Introduction 

In many boolean-satisfiability (SAT) problems, one must encode the constraint that 
exactly one of n propositional variables is true. This constraint is usually broken down 
into two constraints: (1) At least one variable is true, and (2) At most one variable is 
true. The “at least one” constraint is simple to encode as a single clause in CNF form, 
but the “at most one” constraint is more difficult. The traditional way of handling the 
“at most one” constraint, if performance is not an issue, to explicitly require that 
every pair of variables have at least one false variable. However, this requires 
enumerating all possible pairs of variables, leading to O(n2) clauses. 

This paper presents a flexible and efficient encoding for “at most one” constraints.  
If there are a large number of variables, our approach requires O(n) clauses and O(n) 
extra variables. Even for a small number of variables, our approach never performs 
worse than the naive encoding; it will automatically and naturally reduces to the naïve 
encoding if there are too few variables (less than 6) to overcome the overhead of our 
approach. 

This technique is applied to a variant of the pigeon-hole problem and to the solving 
of Sudoku puzzles. For the pigeon-hole problem, our approach additionally allows for 
the efficient encoding of canonical ordering constraints, which greatly reduce the time 
needed to determine unsatisfiable instances. For the Sudoku application, our approach, 
combined with a preprocessing step that quickly eliminates a large class of variables 
and clauses, is able to handle board sizes up to at least 144×144. 

The rest of the paper is organized as follows. First, we describe our approach, 
which we call “commander-variable encoding”, in Section 2. Next, we describe the 
applications to the pigeon-hole problem and to Sudoku puzzles in Sections 3 and 4.  



We discuss related work in Section 5, and we conclude in Section 6. 

2  Commander-Variable Encoding 

Suppose that we have a set of propositional variables X = {x1, …, xn}, and we desire 
exactly one of them to be true. In the naïve encoding, each variable must ‘talk’ with 
every other variable. That is, each variable must appear in a clause with every other 
variable. We can formalize this with the following functions that return a set of 
clauses:  

NaïveAtLeastOne(X) = /\
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NaïveExactlyOne(X) = NaïveAtLeastOne(X) ∧ NaïveAtMostOne(X) 
  
To reduce the number of clauses, we can divide the variables into groups. We assign a 
new variable, called “a commander variable”, to each group. This commander 
variable is to be true if (at least) one of the variables in its group is true; otherwise it is 
to be false. In the commander-variable method, the original variables do not need to 
‘talk’ directly to any other variables that are not in the same group; instead, the 
commander variables act as proxies between original variables in different groups. 

To describe the commander-variable encoding more precisely, let us introduce 
additional notation. Let the set of propositional variables X = {x1,…,xn} be divided 
into m disjoint subsets G1 through Gm. The commander node of group Gi is labeled 
“ci”. Using this notation, the logic for the commander method can be encoded in CNF 
form as follows; a running example is given for the case where the variables 
{ x1, x2, x3} are grouped together and their commander variable is c1: 
 

1. At most one variable in a group can be true. This is encoded by the 
traditional pair-wise method that was mentioned earlier. For each group Gi, 
we encode the following clauses: 

\/\/
, jkGxGx ikij <∈∈

(¬xj ∨ ¬xk) 

 
Example: (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3).  
 
2. If the commander variable of a group is true, then at least one of the 
variables in the group must be true.  (To encode the “at most one” rather 
than the “exactly one” constraint, omit this step.)  For each group Gi, we 
encode the following clause: 

¬ci ∨ /\
n

Gx ij∈
xj 

 
Example: c1 ⇒ (x1 ∨ x2 ∨ x3), which reduces to ¬c1 ∨ x1 ∨ x2 ∨ x3 in CNF.  



 
3. If the commander variable of a group is false, then none of the 
variables in the group can be true. For each group Gi, we encode the 
following clauses: 

\/
ij Gx ∈
(ci ∨ ¬xj) 

 
Example: ¬c1 ⇒ (¬x1 ∧ ¬x2 ∧ ¬x3), which reduces to (c1 ∨ ¬x1) ∧ (c1 ∨ 
¬x2) ∧ (c1 ∨ ¬x3) in CNF.  
 
4. Exactly one of the commander variables is true. This can be encoded 
either by the pair-wise method or by a recursive application of the 
commander method. For the pair-wise method, we encode the following 
clauses, where m is the number of groups: 

 (c1 ∨ c2 ∨ … ∨ cm) ∧ \/\/
ijmi <<
(¬ci ∨ ¬cj) 

 
In the case of a recursive application, a hierarchy of commander variables is 
formed, as depicted in Fig. 1. 

 
 

 
Figure 1. Hierarchy of commander variables 

 
Let’s consider how many clauses are required for each group. Note that Constraint 1 
above requires n∗(n-1)/2, where n is the number of variables in the group. 
Constraint 2 requires 1 clause, and Constraint 3 requires n clauses. (A commander 
variable is not considered to be ‘in’ the group that it commands.) Thus, the total 
number of clauses per group is (n∗(n+1)/2)+1. (This does not include the clauses 
required by Constraint 4 to ensure that exactly one of the commander variables is 
true.) 
 



2.1 Analysis 
 
The commander encoding is flexible in that any method can be used to group the 
variables. However, to analyze the performance of the commander approach (in terms 
of many clauses and extra variables are required), let us consider a grouping method 
wherein the variables are, at each stage of the hierarchy, divided into groups of k 
variables. For example, k=2, we get binary tree shown in Fig. 2. From the diagram, it 
is clear that the number of groups, in the asymptotic limit of a large number of 
variables n, is: 
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The number of extra variables is equal to the number of groups. To get the number of 
clauses, we multiply this by the number of clauses per group ((k∗(k+1)/2)+1 from the 
previous section), getting a total of 
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clauses. It turns out that the best choice for minimizing the number of clauses is k=3. 
In this case, the number of clauses is 3.5n and the number of extra variables is n/2.  

Now, let us examine the case in which there are a small number of variables. In 
order to benefit from the commander method, we need at least 6 variables. In that case, 
we divide the variables into 2 groups of 3 variables. Each group requires 
(1/2)(3+1)(3)+1 = 7 clauses. Normally, to ensure that exactly one of the two 
commander variables is true, we would need 2 additional clauses, bringing the total to 
16. However, since there are only two top-level commander variables, we can encode 
the second as the negation of the first, so that it is automatically true that exactly one 
of commander variables is true. Thus, we only need 14 clauses. This compares to 16 
clauses for the naïve encoding NaïveExactlyOne({ x1,…,x6}). 

n vars

n/k groups

n/k2 groups

n/k3 groups

 
Figure 2. Binary tree of groups 



2.2 Algorithm Details 
 
Fig. 3 shows an algorithm for the commander-variable encoding. The function is 
passed a nested list of propositional variables (or literals). The nesting determines 
how the variables are grouped the under the commander nodes. Since there is the 
wrapper function, an application may just call the function CmdrExactlyOne with the 
set of propositional variables and receives the set of clauses in CNF from the function. 
The grouping function is defined in Fig. 4 and called from CmdrExactlyOne. 
  

Algorithm CmdrExactlyOne(Subords, CmdrVar) = 
input 

Subords;   -- a nested list of subordinates. 
 -- a subordinate is a variable or a list of subordinates. 
CmdrVar;   -- the variable number for the commander variable. 

begin 
     φ = [ ];    -- clauses to be returned. 

ClauseVars = [ ]; -- variables in the clauses (2D array). 
for i = 0 to len(Subords)  
    if (IsPropVar(Subord[i])) then   -- if the subord is a propositional variable. 
        ClauseVars[i] = Subord[i]; 
    else 
        assert(IsList(Subord[i]));   -- here the subord must be a list of subords. 
        ClauseVars[i] = VarAlloc(); 
        φ  = φ  ∧ CmdrExactlyOne(Subord[i], ClauseVars[i]); 
    endif 
endfor 
if (CmdrVar != 0) then 

ClauseVars += Negate(CmdrVar); 
endif 
φ  = φ  ∧ NaïveExactlyOne(ClauseVars); 
return φ; 

end  
 
-- Wrapper Function 
Algorithm CmdrExactlyOne(Subords) = 
input 

Subords;   -- a set (or list) of subordinates. 
begin 

return CmdrExactlyOne(GroupVars(Subords), VarAlloc()); 
end 

Figure 3. Commander encoding algorithm 



Algorithm GroupVars(Vars, MaxSize) = 
input 

Vars;   -- a list of variables to be grouped into a hierarchy. 
begin 

NumVars = len(Vars); 
if (NumVars <= MaxSize) then 

return Vars; 
endif 
ret = [ ]; -- group to be returned. 
NumGr = NumVars / MaxSize;    -- truncating integer division. 
for i = 0 to NumGr – 1 

ret[i] = Vars[ i∗NumVars / NumGr  ..  (i+1)∗NumVars / NumGr – 1] 
-- Note: “SomeList[first .. last]” denotes a slice of the list. 

endfor 
return GroupVars(ret, MaxSize); 

end 
 

Figure 4. Grouping function 

3  Pigeon-hole Problem with Proposed Encoding 

This section applies the commander encoding to the pigeon-hole problem and aims to 
show its efficiency in handling the problem “select one from a certain set of objects”. 
Another purpose is to show its flexibility because the commander encoding is easily 
combined with other techniques, such as a canonical ordering in this case, and putting 
the two together results in better performance in solving the pigeon-hole problem with 
SAT solvers. 

The pigeon-hole problem asks whether n pigeons can fit in m holes [1]. The 
constraints for this problem can be written as follows: 

� Each pigeon must be in exactly one hole. 
� Each hole must have at most one pigeon.  

 
To express the above rules as CNF clauses for SAT solvers, they must be expanded 

out for each particular pigeon and hole. Let xi,j be a propositional variable that 
represents whether pigeon i occupies hole j. Using this notation, the constraints can be 
rewritten as follows: 

� Given a pigeon i, there is exactly one hole j for which xi,j is true. 
� Given a hole j, there is at most one pigeon i for which xi,j is true. 

 
These constraints can be encoded as a set φ of CNF clauses whose conjunction is 

unsatisfiable if and only if at least one hole must contain more than one pigeon in 
order for each pigeon to be in a hole. The naïve encoding in Fig. 5 can be used for 
encoding the problem into CNF clauses. It takes an n-in-m problem and generates 
CNF clauses with the naïve functions NaïveAtMostOne, NaïveExactlyOne defined in 
the previous section: 
 



Algorithm PigeonholeToCNF(n, m) = 
input 

n;   -- number of pigeons. 
m;  -- number of holes. 

begin 
    φ = [ ];   -- clauses to be returned. 
    X = {xi,j  1 ≤ i ≤ n, 1 ≤ j ≤ m}; 

for i = 1 to n  
     φ = φ ∧ NaïveExactlyOne({ xi,j∈X  1 ≤ j ≤ m}); 
endfor 
for j = 1 to m  
     φ = φ ∧ NaïveAtMostOne({ xi,j∈X  1 ≤ i ≤ n}); 
endfor 
return φ; 

end  
 

Figure 5. Naïve encoding for the n-in-m pigeonhole problem 
 

where the notation {x∈X  cond1, cond2, …} designates the subset of propositional 
variables x∈X for which every condition holds true. If there are more pigeons than 
holes, then the problem is unsatisfiable. Table 1 shows experimental results with the 
naïve encoding on differently-sized unsatisfiable problems. The experiments were 
done with MiniSAT [2] and performed on a 1.10GHz Intel Pentium M with 1.25 GB 
of memory. In our experiments, the naïve encoding just handled up to the 11-in-10 
problem in which 140 seconds were taken. However, the SAT solver failed for the 12-
in-11 problem within the pre-defined time limitation of 600 seconds.  
 

 
 

Table 1. Experimental results for unsatisfiable pigeon-hole problems (n > m) 
 
The commander encoding was used to solve the large problems by replacing the naïve 
functions NaiveExactlyOne and NaiveAtMostOne with the commander ones 
CmdrExactlyOne and CmdrAtMostOne, respectively. As you see from the second 
column in Table 1, with the commander encoding, the SAT solver resolved the 11-in-
10 problem within 2 seconds. In addition, it could solve the larger problems up to the 



13-in-12 problem. 
For large values of n and m, however, it takes a long time for SAT solvers to 

ascertain that the problem is unsatisfiable, due to the large search space. In contrast, 
we as human beings can immediately see that the problem is unsatisfiable by using 
the symmetry: 

� We arbitrarily place 12 of the pigeons in the 12 holes. Then there is no room 
for the 13th pigeon. 

� Since the pigeons are interchangeable from the viewpoint of the problem 
constraints, we can immediately see that no permutation of the 12 placed 
pigeons will leave room for the 13th pigeon. 

 
SAT solvers, on the other hand, do not have the ability to use this symmetry. 

However, if we can detect the symmetry in a problem instance, then we can reduce 
the state space that needs to be explored. We do this by imposing a canonical ordering 
on the pigeons. Any decision branch that violates the canonical ordering is abandoned 
as soon as the SAT solver realizes that the canonical ordering is violated.  

An example of a canonical ordering used here is as follows: Pigeon i must be 
placed in a hole in front of the hole of pigeon i+1 (i.e., the pigeon in hole j must have 
a smaller number than that of the pigeon in hole j+1). With the proposed commander 
encoding, however, it is easy to efficiently encode inequality relations such as 
less than and greater than. The commander encoding and the canonical ordering are 
combined in Fig. 6 which makes MiniSAT work efficiently.  Due to space limitations, 
we do not explicitly describe in detail the canonical-ordering encoding, but the 
number of clauses generated is of order O(n log n). 
 

Algorithm PigeonholeToCNF(n, m) = 
input 

n;   -- number of pigeons. 
m;  -- number of holes. 

begin 
    φ = [ ];  -- clauses to be returned. 
    X = {xi,j  1 ≤ i ≤ n,  1 ≤ j ≤ m}; 

for i = 1 to n  
     φ = φ ∧ CmdrExactlyOne({ xi,j∈X  1 ≤ j ≤ m}); 
endfor 
for j = 1 to m  
     φ = φ ∧ CmdrAtMostOne({ xi,j∈X  1 ≤ i ≤ n}); 
endfor 
for i = 1 to n-1  
     φ = φ ∧ CanonicalOrder(i); 
endfor 
return φ; 

end  
 

Figure 6. The commander encoding with the canonical ordering 
 
The last column in Table 1 shows the 13-in-12 problem was solved in a millisecond. 



(Note that the commander encoding alone took 41 seconds.) Even the 130-in-129 
problem was solved in under 2 seconds. The commander encoding with the canonical 
ordering also showed good performance for satisfiable cases (n < m) shown in Table 2. 

In summary, the commander encoding with the canonical ordering shows much 
better performance than the standard naïve encoding used for pigeon-hole CNF files 
in SATLIB [3] in terms of both the number of clauses and SAT solving time. 
 

 
 

Table 2. Experimental results for satisfiable pigeon-hole problems (n < m) 

4  Sudoku Puzzle with Efficient Encoding 

This section also applies the commander encoding to Sudoku puzzles and shows its 
efficiency in handling the problem of selecting exactly one object out of a set of n 
objects. The rules of Sudoku can be written as follows [4]: 

� Each cell has exactly one digit. 
� Each row has exactly one of each digit. 
� Each column has exactly one of each digit. 
� Each block has exactly one of each digit. 

 
As explained in Section 2, the condition “exactly one” is translated as “at least one 
and at most one” for CNF-based SAT solvers. Due to the symmetry in Sudoku, it is 
not logically necessary to explicitly encode both the “at least one” and the “at most 
one” conditions for each of the 4 rules above. However, in order for SAT solvers to 
work efficiently, in practice it is necessary to explicitly encode all 8 conditions [5].  

To express the above rules as CNF clauses for SAT solvers, they must be expanded 
out for each particular cell, row, column, block, and/or digit. Let xr,c,d be the 
propositional variable that denotes whether the cell in row r and column c contains 
the digit d. Using this notation, the above rules can be rewritten as follows: 

� Given a row r and a column c, there is exactly one digit d for which xr,c,d is true. 
� Given a row r and a digit d, there is exactly one column c for which xr,c,d is true. 
� Given a column c and a digit d, there is exactly one row r for which xr,c,d is true. 



� Given a block b and a digit d, there is exactly one index i for which xr,c,d is true, 
where r and c are the row and column numbers of i th cell of block b. 

 
Notice that each instance of the above expansions corresponds to the following 

form: “out of a certain set of n propositional variables, exactly one is true”. It would 
be easy to write a naïve encoding algorithm that takes a Sudoku puzzle represented by 
a 2D matrix M and generates a set φ of CNF clauses which is satisfiable if and only if 
the puzzle has a solution: 
 

Algorithm SudokuToCNF(M) = 
input 

M[n][n];   -- 2D matrix of pre-assigned cells;  0 for unassigned, 
begin 
     φ = [ ];   -- clauses to be returned. 
     S = { };        -- set of pre-assigned cells. 
     X = {xr,c,d  1 ≤ r ≤ n, 1 ≤ c ≤ n, 1 ≤ d ≤ n};   

 for i = 1 to n 
      for j = 1 to n 
           φ = φ ∧ NaïveExactlyOne({ xr,c,d∈X  r = i,  c = j,  1 ≤ d ≤ n}) 
                     ∧ NaïveExactlyOne({ xr,c,d∈X  r = i,  d = j,  1 ≤ c ≤ n}) 
                     ∧ NaïveExactlyOne({ xr,c,d∈X  c = i,  d = j,  1 ≤ r ≤ n}) 
                     ∧ NaïveExactlyOne({ xr,c,d∈X  r = br(b,j),  c = bc(b,j),  1 ≤ b ≤ n});  
           S = S ∪ {xr,c,d∈X  r = i,  c = j,  d = M[i][ j],  1 ≤ M[i][ j] ≤ n}); 

endfor 
endfor 

φ = φ ∧  \/
1

u

i=
Si; 

return φ; 
end  

 
Figure 7. Naïve encoding algorithm for Sudoku 

 
The functions br(b,j) and bc(b,j) return the row and column of the j th cell in a block b.1 
The first four set of clauses refers to each cell, each row, each column and each block 
having exactly one digit from 1 to n. In addition to these sets, the last one is a set of 
unit clauses to represent pre-assigned cells; i.e., the pre-assigned cell in row i and 
column i has a digit from 1 to n; in other words, 1 ≤ M[i][ j] ≤ n.  

Table 3 shows our experimental results with the naïve encoding on different sized 
puzzles. It is easy to see that the naive encoding works for small puzzles such as 9×9. 
Using these encodings for large Sudoku such as 81×81, however, generates huge CNF 

                                                           
1 The function br and bc can be implemented as follows: 
  br(b,j) = (b / n ) * n  + (j / n ) 
  bc(b,j) = (b % n ) * n  + (j % n ) 
where “/” designates truncating integer division, and “%” designates the modulo operation 
(remainder after integer division). 



files which lead to stack overflow errors during SAT solving. Even the encoding 
phase was not completed for 100×100 on our machine due to tremendous number of 
clauses (over 100 million clauses). 

 

 
 

Table 3. Experimental results on Sudoku puzzles with different encodings 
 

The runtime of a SAT solver is highly usually unmanagble if the input formula size 
is on the order of gigabytes. An optimized encoding removes the obvious 
redundancies when encoding a given problem in CNF. Using an optimized CNF 
encoding can speed up SAT solving significantly [6,7]. In the case of Sudoku, it is 
easy to see that a pre-assigned cell implies obvious redundancies in the encodings 
presented. Since an assigned number at a pre-assigned cell is never changed, all 
variables representing other numbers associated with a pre-assigned cell can be 
removed. In addition, variables whose value is duplicated in the same row or column 
or block are eliminated because duplicated numbers are not allowed within the same 
region in Sudoku. This optimization idea was given by our previous work [8]. Here, 
the algorithm is revised to work it in the current context: 
 

Algorithm Optimize(X, M) = 
begin 
     X’ = { };  -- set of redundant variables . 

 for i = 1 to n 
      for j = 1 to n 
           X’ = X’ ∪ {xr,c,d∈X  r = i, c = j, 1 ≤ d ≤ n, 1 ≤ M[i][ j] ≤ n}) 
                        ∪ {xr,c,d∈X  r = i, j+1 ≤ c ≤ n, d = M[i][ j], 1 ≤ M[i][ j] ≤ n}) 

∪ {xr,c,d∈X  i+1 ≤ r ≤ n, c = j, d = M[i][ j], 1 ≤ M[i][ j] ≤ n}) 
                        ∪ {xr,c,d∈X  r = br(b,j), c = bc(b,j), d = M[i][ j], 1 ≤ M[i][ j] ≤ n 
          1 ≤ b ≤ n }); 

endfor 
endfor 
 return X − X’; 

end  
Figure 8. Optimized algorithm 

 
As shown in Fig. 9, the commander encoding calls the function Optimize to eliminate 



redundant variables before generating CNF clauses. Compared to the naïve encoding, 
the set of unit clauses to represent pre-assigned cells exists no longer. 
 

Algorithm SudokuToCNF(M) = 
input 

M[n][n];   -- 2D matrix of pre-assigned cells. 
begin 
     φ = [ ];         -- clauses to be returned. 
     X = {xr,c,d  1 ≤ r ≤ n,  1 ≤ c ≤ n,  1 ≤ d ≤ n};    
     X’ = Optimize(X, M); -- reduced set of variables. 

 for i = 1 to n 
      for j = 1 to n 
           φ  = φ  ∧ CmdrExactlyOne({ xr,c,d∈X’  r = i,  c = j,  1 ≤ d ≤ n}) 
                     ∧ CmdrExactlyOne({ xr,c,d∈X’  r = i,  d = j,  1 ≤ c ≤ n}) 
                     ∧ CmdrExactlyOne({ xr,c,d∈X’  c = i,  d = j,  1 ≤ r ≤ n}) 
                     ∧ CmdrExactlyOne({ xr,c,d∈X’  r = br(b,j), c = bc(b,j), 1 ≤ b ≤ n});  

endfor 
endfor 
return φ; 

end  
Figure 9. Commander encoding with the optimization 

 
The same puzzles were used to evaluate the commander encoding with the 

optimization technique. Compared to the naive encoding, the number of variables and 
clauses is significantly reduced. For instance, the proposed encoding generates 27,021 
variables and 189,426 clauses for the 81×81 puzzle; however, the naïve one generates 
531,441 variables and 85,060,787 clauses. Since the number of variables and clauses 
are significantly reduced, MiniSAT solves the puzzle in 0.66 second. Even the largest 
puzzle (144×144) in our experimental settings was solved in 1.43 seconds.  

In summary, the commander encoding with the optimization shows much better 
performance than the previous naïve encodings used for solving Sudoku with SAT 
solvers [5,9] in terms of both the number of clauses and SAT solving time. In addition, 
our combined approach works more efficiently compared to the optimization used 
alone [8]. 

5  Related Works 

Apart from the pigeon-hole problem and Sudoku puzzle, boolean cardinality selection 
problems such as “at most one”, “at least one”, and “exactly one” have wide 
application areas such as production management [10], discrete tomography [11], etc. 
There has been work done to efficiently encode these constraints in CNF clauses 
[11,12,13]. In the literature [13], these encodings are compared in terms of 3 criteria 
(the number of clauses, the number of variables, and decision method). 

Compared to the encodings of Warners [12] and LTPAR [13], which require 
searching the state space, our encoding works by unit propagation. Although the 
encoding of Baileux & Boufkhad [11] requires no search, it generates more clauses 



than ours. And the encoding LTSEQ [13] also requires no search and is close to ours in 
terms of all the 3 criteria above. However, LTSEQ and others mentioned here are 
devised for “at most many” rather than “at most one”. In the problem of “at most one 
from x1 through x100”, LT SEQ generated 296 clauses, whereas ours generated 294 
clauses. Thus, we believe that our technique is better than any others in the problem 
“select one from a certain set of propositional variables”. Apart from the efficiency, 
our method is flexible so that it can be combined with other techniques to make SAT 
solvers work fast. 

Let us recap our experimental results on the pigeon-hole problem. Our commander 
encoding with the canonical ordering shows much better performance than the 
standard naïve encoding for both unsatisfiable cases and satisfiable cases. In Section 3, 
we used the constraint “each pigeon must be in exactly one hole”. It is stronger than 
the original constraint “each pigeon must be in some hole” used in benchmark test 
CNF files from SATLIB.  We compared our technique with the benchmark test set 
and our technique resulted in better performance in both the number of clauses and 
SAT solving time shown in Table 4.  
 

 
 

Table 4. The commander encoding with the canonical ordering shows much better 
performance than the naïve encoding used in SATLIB benchmark test set. 

 
Recently, various encodings were proposed to formulate Sudoku into a set of CNF 

clauses [5,9]. The number of clauses generated from these encodings for n×n Sudoku 
puzzle is O(n4). In fact, the extended encoding in [5] is the same as the naïve one 
described in Section 4. These encodings allow us to solve small instances of Sudoku 
puzzle such as 9×9 with SAT solvers.  However, they generate too many clauses for 
large size puzzles. This in turn makes the satisfiability checking of the generated CNF 
clauses difficult. In contrast, the commander encoding with optimization generates 
very compact CNF, with only O(n3) clauses, and makes SAT solvers work efficiently. 
(In Table 3 we observed a reduction of 450X in the size of the CNF encoding for the 
81×81 puzzle.) 
 



6  Conclusions 

Our contributions can be summarized as follows: 
� This paper presents a flexible and efficient encoding for selecting at most one 

from a certain set of propositional variables. Since our work focuses on the 
one-object-selection problem, our work can show better performance in the 
encoding of boolean cardinality constraints such as “at most one” and “exactly 
one”.  

� We demonstrate the effectiveness of our techniques in solving the pigeon-hole 
problem and Sudoku puzzles. Apart from two applications, we believe that 
there are many applications needed our techniques such as Hamiltonian path 
finding [14].   

 
In the future, we plan to implement the LTSEQ encoding and compare it with ours 

using the same applications mentioned in this paper. 
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