3c6d331939075dc4dd9e7e47105b9daefeb135ee
[pingpong.git] / Code / Projects / PacketLevelSignatureExtractor / src / main / java / edu / uci / iotproject / detection / layer3 / Layer3SignatureDetector.java
1 package edu.uci.iotproject.detection.layer3;
2
3 import edu.uci.iotproject.analysis.TriggerTrafficExtractor;
4 import edu.uci.iotproject.analysis.UserAction;
5 import edu.uci.iotproject.detection.AbstractClusterMatcher;
6 import edu.uci.iotproject.detection.ClusterMatcherObserver;
7 import edu.uci.iotproject.io.PcapHandleReader;
8 import edu.uci.iotproject.io.PrintWriterUtils;
9 import edu.uci.iotproject.util.PcapPacketUtils;
10 import edu.uci.iotproject.util.PrintUtils;
11 import org.apache.commons.math3.distribution.AbstractRealDistribution;
12 import org.apache.commons.math3.distribution.NormalDistribution;
13 import org.jgrapht.GraphPath;
14 import org.jgrapht.alg.shortestpath.DijkstraShortestPath;
15 import org.jgrapht.graph.DefaultWeightedEdge;
16 import org.jgrapht.graph.SimpleDirectedWeightedGraph;
17 import org.pcap4j.core.*;
18
19 import java.io.File;
20 import java.io.FileWriter;
21 import java.io.IOException;
22 import java.io.PrintWriter;
23 import java.time.Duration;
24 import java.time.ZoneId;
25 import java.time.format.DateTimeFormatter;
26 import java.time.format.FormatStyle;
27 import java.util.*;
28 import java.util.function.Consumer;
29
30 /**
31  * Detects an event signature that spans one or multiple TCP connections.
32  *
33  * @author Janus Varmarken {@literal <jvarmark@uci.edu>}
34  * @author Rahmadi Trimananda {@literal <rtrimana@uci.edu>}
35  */
36 public class Layer3SignatureDetector implements PacketListener, ClusterMatcherObserver {
37
38     /**
39      * If set to {@code true}, output written to the results file is also dumped to standard out.
40      */
41     private static boolean DUPLICATE_OUTPUT_TO_STD_OUT = true;
42
43     /**
44      * Router's IP.
45      */
46     private static String ROUTER_WAN_IP = "128.195.205.105";
47
48     public static void main(String[] args) throws PcapNativeException, NotOpenException, IOException {
49         if (args.length < 8) {
50             String errMsg = String.format("Usage: %s inputPcapFile onAnalysisFile offAnalysisFile onSignatureFile offSignatureFile resultsFile" +
51                             "\n  inputPcapFile: the target of the detection" +
52                             "\n  onAnalysisFile: the file that contains the ON clusters analysis" +
53                             "\n  offAnalysisFile: the file that contains the OFF clusters analysis" +
54                             "\n  onSignatureFile: the file that contains the ON signature to search for" +
55                             "\n  offSignatureFile: the file that contains the OFF signature to search for" +
56                             "\n  resultsFile: where to write the results of the detection" +
57                             "\n  signatureDuration: the maximum duration of signature detection" +
58                             "\n  epsilon: the epsilon value for the DBSCAN algorithm",
59                     Layer3SignatureDetector.class.getSimpleName());
60             System.out.println(errMsg);
61             return;
62         }
63         final String pcapFile = args[0];
64         final String onClusterAnalysisFile = args[1];
65         final String offClusterAnalysisFile = args[2];
66         final String onSignatureFile = args[3];
67         final String offSignatureFile = args[4];
68         final String resultsFile = args[5];
69         final int signatureDuration = Integer.parseInt(args[6]);
70         final double eps = Double.parseDouble(args[7]);
71
72         // Prepare file outputter.
73         File outputFile = new File(resultsFile);
74         outputFile.getParentFile().mkdirs();
75         final PrintWriter resultsWriter = new PrintWriter(new FileWriter(outputFile));
76         // Include metadata as comments at the top
77         PrintWriterUtils.println("# Detection results for:", resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
78         PrintWriterUtils.println("# - inputPcapFile: " + pcapFile, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
79         PrintWriterUtils.println("# - onAnalysisFile: " + onClusterAnalysisFile, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
80         PrintWriterUtils.println("# - offAnalysisFile: " + offClusterAnalysisFile, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
81         PrintWriterUtils.println("# - onSignatureFile: " + onSignatureFile, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
82         PrintWriterUtils.println("# - offSignatureFile: " + offSignatureFile, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
83         resultsWriter.flush();
84
85         // Load signatures
86         List<List<List<PcapPacket>>> onSignature = PrintUtils.deserializeFromFile(onSignatureFile);
87         List<List<List<PcapPacket>>> offSignature = PrintUtils.deserializeFromFile(offSignatureFile);
88         // Load signature analyses
89         List<List<List<PcapPacket>>> onClusterAnalysis = PrintUtils.deserializeFromFile(onClusterAnalysisFile);
90         List<List<List<PcapPacket>>> offClusterAnalysis = PrintUtils.deserializeFromFile(offClusterAnalysisFile);
91
92         // TODO: FOR NOW WE DECIDE PER SIGNATURE AND THEN WE OR THE BOOLEANS
93         // TODO: SINCE WE ONLY HAVE 2 SIGNATURES FOR NOW (ON AND OFF), THEN IT IS USUALLY EITHER RANGE-BASED OR
94         // TODO: STRICT MATCHING
95         // Check if we should use range-based matching
96         boolean isRangeBasedForOn = PcapPacketUtils.isRangeBasedMatching(onSignature, eps, offSignature);
97         boolean isRangeBasedForOff = PcapPacketUtils.isRangeBasedMatching(offSignature, eps, onSignature);
98         // Update the signature with ranges if it is range-based
99         if (isRangeBasedForOn) {
100             onSignature = PcapPacketUtils.useRangeBasedMatching(onSignature, onClusterAnalysis);
101         }
102         if (isRangeBasedForOff) {
103             offSignature = PcapPacketUtils.useRangeBasedMatching(offSignature, offClusterAnalysis);
104         }
105         // WAN
106         Layer3SignatureDetector onDetector = new Layer3SignatureDetector(onSignature, ROUTER_WAN_IP,
107                 signatureDuration, isRangeBasedForOn, eps);
108         Layer3SignatureDetector offDetector = new Layer3SignatureDetector(offSignature, ROUTER_WAN_IP,
109                 signatureDuration, isRangeBasedForOff, eps);
110
111         final DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofLocalizedDateTime(FormatStyle.MEDIUM).
112                 withLocale(Locale.US).withZone(ZoneId.of("America/Los_Angeles"));
113
114         // Outputs information about a detected event to std.out
115         final Consumer<UserAction> outputter = ua -> {
116             String eventDescription;
117             switch (ua.getType()) {
118                 case TOGGLE_ON:
119                     eventDescription = "ON";
120                     break;
121                 case TOGGLE_OFF:
122                     eventDescription = "OFF";
123                     break;
124                 default:
125                     throw new AssertionError("unhandled event type");
126             }
127             // TODO: Uncomment the following if we want the old style print-out messages
128             // String output = String.format("%s",
129             // dateTimeFormatter.format(ua.getTimestamp()));
130             // System.out.println(output);
131             PrintWriterUtils.println(ua, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
132         };
133
134         // Let's create observers that construct a UserAction representing the detected event.
135         final List<UserAction> detectedEvents = new ArrayList<>();
136         onDetector.addObserver((searched, match) -> {
137             PcapPacket firstPkt = match.get(0).get(0);
138             UserAction event = new UserAction(UserAction.Type.TOGGLE_ON, firstPkt.getTimestamp());
139             detectedEvents.add(event);
140         });
141         offDetector.addObserver((searched, match) -> {
142             PcapPacket firstPkt = match.get(0).get(0);
143             UserAction event = new UserAction(UserAction.Type.TOGGLE_OFF, firstPkt.getTimestamp());
144             //PrintWriterUtils.println(event, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
145             detectedEvents.add(event);
146         });
147
148         PcapHandle handle;
149         try {
150             handle = Pcaps.openOffline(pcapFile, PcapHandle.TimestampPrecision.NANO);
151         } catch (PcapNativeException pne) {
152             handle = Pcaps.openOffline(pcapFile);
153         }
154         PcapHandleReader reader = new PcapHandleReader(handle, p -> true, onDetector, offDetector);
155         reader.readFromHandle();
156
157         // TODO: need a better way of triggering detection than this...
158         if (isRangeBasedForOn) {
159             onDetector.mClusterMatchers.forEach(cm -> cm.performDetectionRangeBased());
160         } else {
161             onDetector.mClusterMatchers.forEach(cm -> cm.performDetectionConservative());
162         }
163         if (isRangeBasedForOff) {
164             offDetector.mClusterMatchers.forEach(cm -> cm.performDetectionRangeBased());
165         } else {
166             offDetector.mClusterMatchers.forEach(cm -> cm.performDetectionConservative());
167         }
168
169         // Sort the list of detected events by timestamp to make it easier to compare it line-by-line with the trigger
170         // times file.
171         Collections.sort(detectedEvents, Comparator.comparing(UserAction::getTimestamp));
172
173         // Output the detected events
174         detectedEvents.forEach(outputter);
175
176         String resultOn = "Number of detected events of type " + UserAction.Type.TOGGLE_ON + ": " +
177                 detectedEvents.stream().filter(ua -> ua.getType() == UserAction.Type.TOGGLE_ON).count();
178         String resultOff = "Number of detected events of type " + UserAction.Type.TOGGLE_OFF + ": " +
179                 detectedEvents.stream().filter(ua -> ua.getType() == UserAction.Type.TOGGLE_OFF).count();
180         PrintWriterUtils.println(resultOn, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
181         PrintWriterUtils.println(resultOff, resultsWriter, DUPLICATE_OUTPUT_TO_STD_OUT);
182
183         // Flush output to results file and close it.
184         resultsWriter.flush();
185         resultsWriter.close();
186         // TODO: Temporary clean up until we clean the pipeline
187 //      List<UserAction> cleanedDetectedEvents = SignatureDetector.removeDuplicates(detectedEvents);
188 //      cleanedDetectedEvents.forEach(outputter);
189     }
190
191     /**
192      * The signature that this {@link Layer3SignatureDetector} is searching for.
193      */
194     private final List<List<List<PcapPacket>>> mSignature;
195
196     /**
197      * The {@link Layer3ClusterMatcher}s in charge of detecting each individual sequence of packets that together make up the
198      * the signature.
199      */
200     private final List<Layer3ClusterMatcher> mClusterMatchers;
201
202     /**
203      * For each {@code i} ({@code i >= 0 && i < pendingMatches.length}), {@code pendingMatches[i]} holds the matches
204      * found by the {@link Layer3ClusterMatcher} at {@code mClusterMatchers.get(i)} that have yet to be "consumed", i.e.,
205      * have yet to be included in a signature detected by this {@link Layer3SignatureDetector} (a signature can be encompassed
206      * of multiple packet sequences occurring shortly after one another on multiple connections).
207      */
208     private final List<List<PcapPacket>>[] pendingMatches;
209
210     /**
211      * Maps a {@link Layer3ClusterMatcher} to its corresponding index in {@link #pendingMatches}.
212      */
213     private final Map<Layer3ClusterMatcher, Integer> mClusterMatcherIds;
214
215     private final List<SignatureDetectionObserver> mObservers = new ArrayList<>();
216
217     private int mInclusionTimeMillis;
218
219     /**
220      * Remove duplicates in {@code List} of {@code UserAction} objects. We need to clean this up for user actions
221      * that appear multiple times.
222      * TODO: This static method is probably just for temporary and we could get rid of this after we clean up
223      * TODO:    the pipeline
224      *
225      * @param listUserAction A {@link List} of {@code UserAction}.
226      *
227      */
228     public static List<UserAction> removeDuplicates(List<UserAction> listUserAction) {
229
230         // Iterate and check for duplicates (check timestamps)
231         Set<Long> epochSecondSet = new HashSet<>();
232         // Create a target list for cleaned up list
233         List<UserAction> listUserActionClean = new ArrayList<>();
234         for(UserAction userAction : listUserAction) {
235             // Don't insert if any duplicate is found
236             if(!epochSecondSet.contains(userAction.getTimestamp().getEpochSecond())) {
237                 listUserActionClean.add(userAction);
238                 epochSecondSet.add(userAction.getTimestamp().getEpochSecond());
239             }
240         }
241         return listUserActionClean;
242     }
243
244     public Layer3SignatureDetector(List<List<List<PcapPacket>>> searchedSignature, String routerWanIp,
245                              int inclusionTimeMillis, boolean isRangeBased, double eps) {
246         // note: doesn't protect inner lists from changes :'(
247         mSignature = Collections.unmodifiableList(searchedSignature);
248         // Generate corresponding/appropriate ClusterMatchers based on the provided signature
249         List<Layer3ClusterMatcher> clusterMatchers = new ArrayList<>();
250         for (List<List<PcapPacket>> cluster : mSignature) {
251             clusterMatchers.add(new Layer3ClusterMatcher(cluster, routerWanIp, isRangeBased, eps, this));
252         }
253         mClusterMatchers = Collections.unmodifiableList(clusterMatchers);
254
255         // < exploratory >
256         pendingMatches = new List[mClusterMatchers.size()];
257         for (int i = 0; i < pendingMatches.length; i++) {
258             pendingMatches[i] = new ArrayList<>();
259         }
260         Map<Layer3ClusterMatcher, Integer> clusterMatcherIds = new HashMap<>();
261         for (int i = 0; i < mClusterMatchers.size(); i++) {
262             clusterMatcherIds.put(mClusterMatchers.get(i), i);
263         }
264         mClusterMatcherIds = Collections.unmodifiableMap(clusterMatcherIds);
265         mInclusionTimeMillis =
266                 inclusionTimeMillis == 0 ? TriggerTrafficExtractor.INCLUSION_WINDOW_MILLIS : inclusionTimeMillis;
267     }
268
269     public void addObserver(SignatureDetectionObserver observer) {
270         mObservers.add(observer);
271     }
272
273     public boolean removeObserver(SignatureDetectionObserver observer) {
274         return mObservers.remove(observer);
275     }
276
277     @Override
278     public void gotPacket(PcapPacket packet) {
279         // simply delegate packet reception to all ClusterMatchers.
280         mClusterMatchers.forEach(cm -> cm.gotPacket(packet));
281     }
282
283     @Override
284     public void onMatch(AbstractClusterMatcher clusterMatcher, List<PcapPacket> match) {
285         // Add the match at the corresponding index
286         pendingMatches[mClusterMatcherIds.get(clusterMatcher)].add(match);
287         checkSignatureMatch();
288     }
289
290     private void checkSignatureMatch() {
291         // << Graph-based approach using Balint's idea. >>
292         // This implementation assumes that the packets in the inner lists (the sequences) are ordered by asc timestamp.
293
294         // There cannot be a signature match until each Layer3ClusterMatcher has found a match of its respective sequence.
295         if (Arrays.stream(pendingMatches).noneMatch(l -> l.isEmpty())) {
296             // Construct the DAG
297             final SimpleDirectedWeightedGraph<Vertex, DefaultWeightedEdge> graph =
298                     new SimpleDirectedWeightedGraph<>(DefaultWeightedEdge.class);
299             // Add a vertex for each match found by all ClusterMatchers
300             // And maintain an array to keep track of what cluster matcher each vertex corresponds to
301             final List<Vertex>[] vertices = new List[pendingMatches.length];
302             for (int i = 0; i < pendingMatches.length; i++) {
303                 vertices[i] = new ArrayList<>();
304                 for (List<PcapPacket> sequence : pendingMatches[i]) {
305                     Vertex v = new Vertex(sequence);
306                     vertices[i].add(v); // retain reference for later when we are to add edges
307                     graph.addVertex(v); // add to vertex to graph
308                 }
309             }
310             // Add dummy source and sink vertices to facilitate search.
311             final Vertex source = new Vertex(null);
312             final Vertex sink = new Vertex(null);
313             graph.addVertex(source);
314             graph.addVertex(sink);
315             // The source is connected to all vertices that wrap the sequences detected by Layer3ClusterMatcher at index 0.
316             // Note: zero cost edges as this is just a dummy link to facilitate search from a common start node.
317             for (Vertex v : vertices[0]) {
318                 DefaultWeightedEdge edge = graph.addEdge(source, v);
319                 graph.setEdgeWeight(edge, 0.0);
320             }
321             // Similarly, all vertices that wrap the sequences detected by the last Layer3ClusterMatcher of the signature
322             // are connected to the sink node.
323             for (Vertex v : vertices[vertices.length-1]) {
324                 DefaultWeightedEdge edge = graph.addEdge(v, sink);
325                 graph.setEdgeWeight(edge, 0.0);
326             }
327             // Now link sequences detected by Layer3ClusterMatcher at index i to sequences detected by Layer3ClusterMatcher at index
328             // i+1 if they obey the timestamp constraint (i.e., that the latter is later in time than the former).
329             for (int i = 0; i < vertices.length; i++) {
330                 int j = i + 1;
331                 if (j < vertices.length) {
332                     for (Vertex iv : vertices[i]) {
333                         PcapPacket ivLast = iv.sequence.get(iv.sequence.size()-1);
334                         for (Vertex jv : vertices[j]) {
335                             PcapPacket jvFirst = jv.sequence.get(jv.sequence.size()-1);
336                             if (ivLast.getTimestamp().isBefore(jvFirst.getTimestamp())) {
337                                 DefaultWeightedEdge edge = graph.addEdge(iv, jv);
338                                 // The weight is the duration of the i'th sequence plus the duration between the i'th
339                                 // and i+1'th sequence.
340                                 Duration d = Duration.
341                                         between(iv.sequence.get(0).getTimestamp(), jvFirst.getTimestamp());
342                                 // Unfortunately weights are double values, so must convert from long to double.
343                                 // TODO: need nano second precision? If so, use d.toNanos().
344                                 // TODO: risk of overflow when converting from long to double..?
345                                 graph.setEdgeWeight(edge, Long.valueOf(d.toMillis()).doubleValue());
346                             }
347                             // Alternative version if we cannot assume that sequences are ordered by timestamp:
348 //                            if (iv.sequence.stream().max(Comparator.comparing(PcapPacket::getTimestamp)).get()
349 //                                    .getTimestamp().isBefore(jv.sequence.stream().min(
350 //                                            Comparator.comparing(PcapPacket::getTimestamp)).get().getTimestamp())) {
351 //
352 //                            }
353                         }
354                     }
355                 }
356             }
357             // Graph construction complete, run shortest-path to find a (potential) signature match.
358             DijkstraShortestPath<Vertex, DefaultWeightedEdge> dijkstra = new DijkstraShortestPath<>(graph);
359             GraphPath<Vertex, DefaultWeightedEdge> shortestPath = dijkstra.getPath(source, sink);
360             if (shortestPath != null) {
361                 // The total weight is the duration between the first packet of the first sequence and the last packet
362                 // of the last sequence, so we simply have to compare the weight against the timeframe that we allow
363                 // the signature to span. For now we just use the inclusion window we defined for training purposes.
364                 // Note however, that we must convert back from double to long as the weight is stored as a double in
365                 // JGraphT's API.
366                 if (((long)shortestPath.getWeight()) < mInclusionTimeMillis) {
367                     // There's a signature match!
368                     // Extract the match from the vertices
369                     List<List<PcapPacket>> signatureMatch = new ArrayList<>();
370                     for(Vertex v : shortestPath.getVertexList()) {
371                         if (v == source || v == sink) {
372                             // Skip the dummy source and sink nodes.
373                             continue;
374                         }
375                         signatureMatch.add(v.sequence);
376                         // As there is a one-to-one correspondence between vertices[] and pendingMatches[], we know that
377                         // the sequence we've "consumed" for index i of the matched signature is also at index i in
378                         // pendingMatches. We must remove it from pendingMatches so that we don't use it to construct
379                         // another signature match in a later call.
380                         pendingMatches[signatureMatch.size()-1].remove(v.sequence);
381                     }
382                     // Declare success: notify observers
383                     mObservers.forEach(obs -> obs.onSignatureDetected(mSignature,
384                             Collections.unmodifiableList(signatureMatch)));
385                 }
386             }
387         }
388     }
389
390     /**
391      * Used for registering for notifications of signatures detected by a {@link Layer3SignatureDetector}.
392      */
393     interface SignatureDetectionObserver {
394
395         /**
396          * Invoked when the {@link Layer3SignatureDetector} detects the presence of a signature in the traffic that it's
397          * examining.
398          * @param searchedSignature The signature that the {@link Layer3SignatureDetector} reporting the match is searching
399          *                          for.
400          * @param matchingTraffic The actual traffic trace that matches the searched signature.
401          */
402         void onSignatureDetected(List<List<List<PcapPacket>>> searchedSignature,
403                                  List<List<PcapPacket>> matchingTraffic);
404     }
405
406     /**
407      * Encapsulates a {@code List<PcapPacket>} so as to allow the list to be used as a vertex in a graph while avoiding
408      * the expensive {@link AbstractList#equals(Object)} calls when adding vertices to the graph.
409      * Using this wrapper makes the incurred {@code equals(Object)} calls delegate to {@link Object#equals(Object)}
410      * instead of {@link AbstractList#equals(Object)}. The net effect is a faster implementation, but the graph will not
411      * recognize two lists that contain the same items--from a value and not reference point of view--as the same
412      * vertex. However, this is fine for our purposes -- in fact restricting it to reference equality seems more
413      * appropriate.
414      */
415     private static class Vertex {
416         private final List<PcapPacket> sequence;
417         private Vertex(List<PcapPacket> wrappedSequence) {
418             sequence = wrappedSequence;
419         }
420     }
421 }