From 32aaee684d3fd24a7fb6e385877f113f2bd41ed6 Mon Sep 17 00:00:00 2001 From: Tanya Lattner Date: Thu, 22 Jan 2009 20:09:20 +0000 Subject: [PATCH] Revert r62553 and r62616 due to issues with portability. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62777 91177308-0d34-0410-b5e6-96231b3b80d8 --- autoconf/configure.ac | 9 - .../Interpreter/ExternalFunctions.cpp | 702 +++++++++++++----- 2 files changed, 496 insertions(+), 215 deletions(-) diff --git a/autoconf/configure.ac b/autoconf/configure.ac index 5d551a70699..3a218eaeb9c 100644 --- a/autoconf/configure.ac +++ b/autoconf/configure.ac @@ -717,11 +717,6 @@ AC_SEARCH_LIBS(dlopen,dl,AC_DEFINE([HAVE_DLOPEN],[1], [Define if dlopen() is available on this platform.]), AC_MSG_WARN([dlopen() not found - disabling plugin support])) -dnl libffi is optional; used to call external functions from the interpreter -AC_SEARCH_LIBS(ffi_call,ffi,AC_DEFINE([HAVE_LIBFFI],[1], - [Define to 1 if you have the libffi library (-lffi).]), - AC_MSG_WARN([libffi not found - disabling external calls from interpreter])) - dnl mallinfo is optional; the code can compile (minus features) without it AC_SEARCH_LIBS(mallinfo,malloc,AC_DEFINE([HAVE_MALLINFO],[1], [Define if mallinfo() is available on this platform.])) @@ -784,10 +779,6 @@ else AC_SUBST(HAVE_PTHREAD, 0) fi -dnl Debian vs. the world. -AC_CHECK_HEADER(ffi/ffi.h, AC_DEFINE(FFI_HEADER, ["ffi/ffi.h"], [Path to ffi.h])) -AC_CHECK_HEADER(ffi.h, AC_DEFINE(FFI_HEADER, ["ffi.h"], [Path to ffi.h])) - dnl===-----------------------------------------------------------------------=== dnl=== dnl=== SECTION 7: Check for types and structures diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp index 9f44a63654c..66a26cff3c6 100644 --- a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp +++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp @@ -10,19 +10,18 @@ // This file contains both code to deal with invoking "external" functions, but // also contains code that implements "exported" external functions. // -// There are currently two mechanisms for handling external functions in the -// Interpreter. The first is to implement lle_* wrapper functions that are -// specific to well-known library functions which manually translate the -// arguments from GenericValues and make the call. If such a wrapper does -// not exist, and libffi is available, then the Interpreter will attempt to -// invoke the function using libffi, after finding its address. +// External functions in the interpreter are implemented by +// using the system's dynamic loader to look up the address of the function +// we want to invoke. If a function is found, then one of the +// many lle_* wrapper functions in this file will translate its arguments from +// GenericValues to the types the function is actually expecting, before the +// function is called. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" -#include "llvm/Config/config.h" // Detect libffi #include "llvm/Support/Streams.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/Target/TargetData.h" @@ -33,22 +32,18 @@ #include #include -#ifdef HAVE_LIBFFI -#include FFI_HEADER +#ifdef __linux__ +#include #endif +using std::vector; + using namespace llvm; -typedef GenericValue (*ExFunc)(const FunctionType *, - const std::vector &); -static ManagedStatic > ExportedFunctions; +typedef GenericValue (*ExFunc)(FunctionType *, const vector &); +static ManagedStatic > Functions; static std::map FuncNames; -#ifdef HAVE_LIBFFI -typedef void (*RawFunc)(void); -static ManagedStatic > RawFunctions; -#endif // HAVE_LIBFFI - static Interpreter *TheInterpreter; static char getTypeID(const Type *Ty) { @@ -94,181 +89,34 @@ static ExFunc lookupFunction(const Function *F) { if (FnPtr == 0) // Try calling a generic function... if it exists... FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( ("lle_X_"+F->getName()).c_str()); + if (FnPtr == 0) + FnPtr = (ExFunc)(intptr_t) + sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); if (FnPtr != 0) - ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later + Functions->insert(std::make_pair(F, FnPtr)); // Cache for later return FnPtr; } -#ifdef HAVE_LIBFFI -static ffi_type *ffiTypeFor(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::VoidTyID: return &ffi_type_void; - case Type::IntegerTyID: - switch (cast(Ty)->getBitWidth()) { - case 8: return &ffi_type_sint8; - case 16: return &ffi_type_sint16; - case 32: return &ffi_type_sint32; - case 64: return &ffi_type_sint64; - } - case Type::FloatTyID: return &ffi_type_float; - case Type::DoubleTyID: return &ffi_type_double; - case Type::PointerTyID: return &ffi_type_pointer; - default: break; - } - // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. - cerr << "Type could not be mapped for use with libffi.\n"; - abort(); - return NULL; -} - -static void *ffiValueFor(const Type *Ty, const GenericValue &AV, - void *ArgDataPtr) { - switch (Ty->getTypeID()) { - case Type::IntegerTyID: - switch (cast(Ty)->getBitWidth()) { - case 8: { - int8_t *I8Ptr = (int8_t *) ArgDataPtr; - *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - case 16: { - int16_t *I16Ptr = (int16_t *) ArgDataPtr; - *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - case 32: { - int32_t *I32Ptr = (int32_t *) ArgDataPtr; - *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - case 64: { - int64_t *I64Ptr = (int64_t *) ArgDataPtr; - *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); - return ArgDataPtr; - } - } - case Type::FloatTyID: { - float *FloatPtr = (float *) ArgDataPtr; - *FloatPtr = AV.FloatVal; - return ArgDataPtr; - } - case Type::DoubleTyID: { - double *DoublePtr = (double *) ArgDataPtr; - *DoublePtr = AV.DoubleVal; - return ArgDataPtr; - } - case Type::PointerTyID: { - void **PtrPtr = (void **) ArgDataPtr; - *PtrPtr = GVTOP(AV); - return ArgDataPtr; - } - default: break; - } - // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. - cerr << "Type value could not be mapped for use with libffi.\n"; - abort(); - return NULL; -} - -static bool ffiInvoke(RawFunc Fn, Function *F, - const std::vector &ArgVals, - const TargetData *TD, GenericValue &Result) { - ffi_cif cif; - const FunctionType *FTy = F->getFunctionType(); - const unsigned NumArgs = F->arg_size(); - - // TODO: We don't have type information about the remaining arguments, because - // this information is never passed into ExecutionEngine::runFunction(). - if (ArgVals.size() > NumArgs && F->isVarArg()) { - cerr << "Calling external var arg function '" << F->getName() - << "' is not supported by the Interpreter.\n"; - abort(); - } - - unsigned ArgBytes = 0; - - std::vector args(NumArgs); - for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); - A != E; ++A) { - const unsigned ArgNo = A->getArgNo(); - const Type *ArgTy = FTy->getParamType(ArgNo); - args[ArgNo] = ffiTypeFor(ArgTy); - ArgBytes += TD->getTypeStoreSize(ArgTy); - } - - uint8_t *ArgData = (uint8_t*) alloca(ArgBytes); - uint8_t *ArgDataPtr = ArgData; - std::vector values(NumArgs); - for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); - A != E; ++A) { - const unsigned ArgNo = A->getArgNo(); - const Type *ArgTy = FTy->getParamType(ArgNo); - values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); - ArgDataPtr += TD->getTypeStoreSize(ArgTy); - } - - const Type *RetTy = FTy->getReturnType(); - ffi_type *rtype = ffiTypeFor(RetTy); - - if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { - void *ret = NULL; - if (RetTy->getTypeID() != Type::VoidTyID) - ret = alloca(TD->getTypeStoreSize(RetTy)); - ffi_call(&cif, Fn, ret, &values[0]); - switch (RetTy->getTypeID()) { - case Type::IntegerTyID: - switch (cast(RetTy)->getBitWidth()) { - case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break; - case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break; - case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break; - case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break; - } - break; - case Type::FloatTyID: Result.FloatVal = *(float *) ret; break; - case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break; - case Type::PointerTyID: Result.PointerVal = *(void **) ret; break; - default: break; - } - return true; - } - - return false; -} -#endif // HAVE_LIBFFI - GenericValue Interpreter::callExternalFunction(Function *F, const std::vector &ArgVals) { TheInterpreter = this; // Do a lookup to see if the function is in our cache... this should just be a // deferred annotation! - std::map::iterator FI = ExportedFunctions->find(F); - if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) - : FI->second) - return Fn(F->getFunctionType(), ArgVals); - -#ifdef HAVE_LIBFFI - std::map::iterator RF = RawFunctions->find(F); - RawFunc RawFn; - if (RF == RawFunctions->end()) { - RawFn = (RawFunc)(intptr_t) - sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); - if (RawFn != 0) - RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later - } else { - RawFn = RF->second; + std::map::iterator FI = Functions->find(F); + ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second; + if (Fn == 0) { + cerr << "Tried to execute an unknown external function: " + << F->getType()->getDescription() << " " << F->getName() << "\n"; + if (F->getName() == "__main") + return GenericValue(); + abort(); } - GenericValue Result; - if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result)) - return Result; -#endif // HAVE_LIBFFI - - cerr << "Tried to execute an unknown external function: " - << F->getType()->getDescription() << " " << F->getName() << "\n"; - if (F->getName() != "__main") - abort(); - return GenericValue(); + // TODO: FIXME when types are not const! + GenericValue Result = Fn(const_cast(F->getFunctionType()), + ArgVals); + return Result; } @@ -277,9 +125,24 @@ GenericValue Interpreter::callExternalFunction(Function *F, // extern "C" { // Don't add C++ manglings to llvm mangling :) +// void putchar(ubyte) +GenericValue lle_X_putchar(FunctionType *FT, const vector &Args){ + cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush; + return Args[0]; +} + +// void _IO_putc(int c, FILE* fp) +GenericValue lle_X__IO_putc(FunctionType *FT, const vector &Args){ +#ifdef __linux__ + _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal); +#else + assert(0 && "Can't call _IO_putc on this platform"); +#endif + return Args[0]; +} + // void atexit(Function*) -GenericValue lle_X_atexit(const FunctionType *FT, - const std::vector &Args) { +GenericValue lle_X_atexit(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); GenericValue GV; @@ -288,23 +151,163 @@ GenericValue lle_X_atexit(const FunctionType *FT, } // void exit(int) -GenericValue lle_X_exit(const FunctionType *FT, - const std::vector &Args) { +GenericValue lle_X_exit(FunctionType *FT, const vector &Args) { TheInterpreter->exitCalled(Args[0]); return GenericValue(); } // void abort(void) -GenericValue lle_X_abort(const FunctionType *FT, - const std::vector &Args) { +GenericValue lle_X_abort(FunctionType *FT, const vector &Args) { raise (SIGABRT); return GenericValue(); } -// int sprintf(char *, const char *, ...) - a very rough implementation to make +// void *malloc(uint) +GenericValue lle_X_malloc(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1 && "Malloc expects one argument!"); + assert(isa(FT->getReturnType()) && "malloc must return pointer"); + return PTOGV(malloc(Args[0].IntVal.getZExtValue())); +} + +// void *calloc(uint, uint) +GenericValue lle_X_calloc(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2 && "calloc expects two arguments!"); + assert(isa(FT->getReturnType()) && "calloc must return pointer"); + return PTOGV(calloc(Args[0].IntVal.getZExtValue(), + Args[1].IntVal.getZExtValue())); +} + +// void *calloc(uint, uint) +GenericValue lle_X_realloc(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2 && "calloc expects two arguments!"); + assert(isa(FT->getReturnType()) &&"realloc must return pointer"); + return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue())); +} + +// void free(void *) +GenericValue lle_X_free(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + free(GVTOP(Args[0])); + return GenericValue(); +} + +// int atoi(char *) +GenericValue lle_X_atoi(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0]))); + return GV; +} + +// double pow(double, double) +GenericValue lle_X_pow(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); + return GV; +} + +// double sin(double) +GenericValue lle_X_sin(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = sin(Args[0].DoubleVal); + return GV; +} + +// double cos(double) +GenericValue lle_X_cos(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = cos(Args[0].DoubleVal); + return GV; +} + +// double exp(double) +GenericValue lle_X_exp(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = exp(Args[0].DoubleVal); + return GV; +} + +// double sqrt(double) +GenericValue lle_X_sqrt(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = sqrt(Args[0].DoubleVal); + return GV; +} + +// double log(double) +GenericValue lle_X_log(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = log(Args[0].DoubleVal); + return GV; +} + +// double floor(double) +GenericValue lle_X_floor(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.DoubleVal = floor(Args[0].DoubleVal); + return GV; +} + +#ifdef HAVE_RAND48 + +// double drand48() +GenericValue lle_X_drand48(FunctionType *FT, const vector &Args) { + assert(Args.empty()); + GenericValue GV; + GV.DoubleVal = drand48(); + return GV; +} + +// long lrand48() +GenericValue lle_X_lrand48(FunctionType *FT, const vector &Args) { + assert(Args.empty()); + GenericValue GV; + GV.IntVal = APInt(32, lrand48()); + return GV; +} + +// void srand48(long) +GenericValue lle_X_srand48(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + srand48(Args[0].IntVal.getZExtValue()); + return GenericValue(); +} + +#endif + +// int rand() +GenericValue lle_X_rand(FunctionType *FT, const vector &Args) { + assert(Args.empty()); + GenericValue GV; + GV.IntVal = APInt(32, rand()); + return GV; +} + +// void srand(uint) +GenericValue lle_X_srand(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + srand(Args[0].IntVal.getZExtValue()); + return GenericValue(); +} + +// int puts(const char*) +GenericValue lle_X_puts(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0]))); + return GV; +} + +// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make // output useful. -GenericValue lle_X_sprintf(const FunctionType *FT, - const std::vector &Args) { +GenericValue lle_X_sprintf(FunctionType *FT, const vector &Args) { char *OutputBuffer = (char *)GVTOP(Args[0]); const char *FmtStr = (const char *)GVTOP(Args[1]); unsigned ArgNo = 2; @@ -381,12 +384,10 @@ GenericValue lle_X_sprintf(const FunctionType *FT, return GV; } -// int printf(const char *, ...) - a very rough implementation to make output -// useful. -GenericValue lle_X_printf(const FunctionType *FT, - const std::vector &Args) { +// int printf(sbyte *, ...) - a very rough implementation to make output useful. +GenericValue lle_X_printf(FunctionType *FT, const vector &Args) { char Buffer[10000]; - std::vector NewArgs; + vector NewArgs; NewArgs.push_back(PTOGV((void*)&Buffer[0])); NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); GenericValue GV = lle_X_sprintf(FT, NewArgs); @@ -471,8 +472,7 @@ static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, } // int sscanf(const char *format, ...); -GenericValue lle_X_sscanf(const FunctionType *FT, - const std::vector &args) { +GenericValue lle_X_sscanf(FunctionType *FT, const vector &args) { assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); char *Args[10]; @@ -488,8 +488,7 @@ GenericValue lle_X_sscanf(const FunctionType *FT, } // int scanf(const char *format, ...); -GenericValue lle_X_scanf(const FunctionType *FT, - const std::vector &args) { +GenericValue lle_X_scanf(FunctionType *FT, const vector &args) { assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); char *Args[10]; @@ -504,33 +503,324 @@ GenericValue lle_X_scanf(const FunctionType *FT, return GV; } -// int fprintf(FILE *, const char *, ...) - a very rough implementation to make -// output useful. -GenericValue lle_X_fprintf(const FunctionType *FT, - const std::vector &Args) { + +// int clock(void) - Profiling implementation +GenericValue lle_i_clock(FunctionType *FT, const vector &Args) { + extern unsigned int clock(void); + GenericValue GV; + GV.IntVal = APInt(32, clock()); + return GV; +} + + +//===----------------------------------------------------------------------===// +// String Functions... +//===----------------------------------------------------------------------===// + +// int strcmp(const char *S1, const char *S2); +GenericValue lle_X_strcmp(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2); + GenericValue Ret; + Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); + return Ret; +} + +// char *strcat(char *Dest, const char *src); +GenericValue lle_X_strcat(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2); + assert(isa(FT->getReturnType()) &&"strcat must return pointer"); + return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); +} + +// char *strcpy(char *Dest, const char *src); +GenericValue lle_X_strcpy(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2); + assert(isa(FT->getReturnType()) &&"strcpy must return pointer"); + return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); +} + +static GenericValue size_t_to_GV (size_t n) { + GenericValue Ret; + if (sizeof (size_t) == sizeof (uint64_t)) { + Ret.IntVal = APInt(64, n); + } else { + assert (sizeof (size_t) == sizeof (unsigned int)); + Ret.IntVal = APInt(32, n); + } + return Ret; +} + +static size_t GV_to_size_t (GenericValue GV) { + size_t count; + if (sizeof (size_t) == sizeof (uint64_t)) { + count = (size_t)GV.IntVal.getZExtValue(); + } else { + assert (sizeof (size_t) == sizeof (unsigned int)); + count = (size_t)GV.IntVal.getZExtValue(); + } + return count; +} + +// size_t strlen(const char *src); +GenericValue lle_X_strlen(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + size_t strlenResult = strlen ((char *) GVTOP (Args[0])); + return size_t_to_GV (strlenResult); +} + +// char *strdup(const char *src); +GenericValue lle_X_strdup(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + assert(isa(FT->getReturnType()) && "strdup must return pointer"); + return PTOGV(strdup((char*)GVTOP(Args[0]))); +} + +// char *__strdup(const char *src); +GenericValue lle_X___strdup(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + assert(isa(FT->getReturnType()) &&"_strdup must return pointer"); + return PTOGV(strdup((char*)GVTOP(Args[0]))); +} + +// void *memset(void *S, int C, size_t N) +GenericValue lle_X_memset(FunctionType *FT, const vector &Args) { + assert(Args.size() == 3); + size_t count = GV_to_size_t (Args[2]); + assert(isa(FT->getReturnType()) && "memset must return pointer"); + return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()), + count)); +} + +// void *memcpy(void *Dest, void *src, size_t Size); +GenericValue lle_X_memcpy(FunctionType *FT, const vector &Args) { + assert(Args.size() == 3); + assert(isa(FT->getReturnType()) && "memcpy must return pointer"); + size_t count = GV_to_size_t (Args[2]); + return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); +} + +// void *memcpy(void *Dest, void *src, size_t Size); +GenericValue lle_X_memmove(FunctionType *FT, const vector &Args) { + assert(Args.size() == 3); + assert(isa(FT->getReturnType()) && "memmove must return pointer"); + size_t count = GV_to_size_t (Args[2]); + return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); +} + +//===----------------------------------------------------------------------===// +// IO Functions... +//===----------------------------------------------------------------------===// + +// getFILE - Turn a pointer in the host address space into a legit pointer in +// the interpreter address space. This is an identity transformation. +#define getFILE(ptr) ((FILE*)ptr) + +// FILE *fopen(const char *filename, const char *mode); +GenericValue lle_X_fopen(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2); + assert(isa(FT->getReturnType()) && "fopen must return pointer"); + return PTOGV(fopen((const char *)GVTOP(Args[0]), + (const char *)GVTOP(Args[1]))); +} + +// int fclose(FILE *F); +GenericValue lle_X_fclose(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0])))); + return GV; +} + +// int feof(FILE *stream); +GenericValue lle_X_feof(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + + GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0])))); + return GV; +} + +// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); +GenericValue lle_X_fread(FunctionType *FT, const vector &Args) { + assert(Args.size() == 4); + size_t result; + + result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), + GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); + return size_t_to_GV (result); +} + +// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); +GenericValue lle_X_fwrite(FunctionType *FT, const vector &Args) { + assert(Args.size() == 4); + size_t result; + + result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), + GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); + return size_t_to_GV (result); +} + +// char *fgets(char *s, int n, FILE *stream); +GenericValue lle_X_fgets(FunctionType *FT, const vector &Args) { + assert(Args.size() == 3); + return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(), + getFILE(GVTOP(Args[2])))); +} + +// FILE *freopen(const char *path, const char *mode, FILE *stream); +GenericValue lle_X_freopen(FunctionType *FT, const vector &Args) { + assert(Args.size() == 3); + assert(isa(FT->getReturnType()) &&"freopen must return pointer"); + return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), + getFILE(GVTOP(Args[2])))); +} + +// int fflush(FILE *stream); +GenericValue lle_X_fflush(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0])))); + return GV; +} + +// int getc(FILE *stream); +GenericValue lle_X_getc(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0])))); + return GV; +} + +// int _IO_getc(FILE *stream); +GenericValue lle_X__IO_getc(FunctionType *F, const vector &Args) { + return lle_X_getc(F, Args); +} + +// int fputc(int C, FILE *stream); +GenericValue lle_X_fputc(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(), + getFILE(GVTOP(Args[1])))); + return GV; +} + +// int ungetc(int C, FILE *stream); +GenericValue lle_X_ungetc(FunctionType *FT, const vector &Args) { + assert(Args.size() == 2); + GenericValue GV; + GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(), + getFILE(GVTOP(Args[1])))); + return GV; +} + +// int ferror (FILE *stream); +GenericValue lle_X_ferror(FunctionType *FT, const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; + GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0])))); + return GV; +} + +// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output +// useful. +GenericValue lle_X_fprintf(FunctionType *FT, const vector &Args) { assert(Args.size() >= 2); char Buffer[10000]; - std::vector NewArgs; + vector NewArgs; NewArgs.push_back(PTOGV(Buffer)); NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); GenericValue GV = lle_X_sprintf(FT, NewArgs); - fputs(Buffer, (FILE *) GVTOP(Args[0])); + fputs(Buffer, getFILE(GVTOP(Args[0]))); return GV; } +// int __cxa_guard_acquire (__guard *g); +GenericValue lle_X___cxa_guard_acquire(FunctionType *FT, + const vector &Args) { + assert(Args.size() == 1); + GenericValue GV; +#ifdef __linux__ + GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire ( + (__cxxabiv1::__guard*)GVTOP(Args[0]))); +#else + assert(0 && "Can't call __cxa_guard_acquire on this platform"); +#endif + return GV; +} + +// void __cxa_guard_release (__guard *g); +GenericValue lle_X___cxa_guard_release(FunctionType *FT, + const vector &Args) { + assert(Args.size() == 1); +#ifdef __linux__ + __cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0])); +#else + assert(0 && "Can't call __cxa_guard_release on this platform"); +#endif + return GenericValue(); +} + } // End extern "C" void Interpreter::initializeExternalFunctions() { - FuncNames["lle_X_atexit"] = lle_X_atexit; + FuncNames["lle_X_putchar"] = lle_X_putchar; + FuncNames["lle_X__IO_putc"] = lle_X__IO_putc; FuncNames["lle_X_exit"] = lle_X_exit; FuncNames["lle_X_abort"] = lle_X_abort; - + FuncNames["lle_X_malloc"] = lle_X_malloc; + FuncNames["lle_X_calloc"] = lle_X_calloc; + FuncNames["lle_X_realloc"] = lle_X_realloc; + FuncNames["lle_X_free"] = lle_X_free; + FuncNames["lle_X_atoi"] = lle_X_atoi; + FuncNames["lle_X_pow"] = lle_X_pow; + FuncNames["lle_X_sin"] = lle_X_sin; + FuncNames["lle_X_cos"] = lle_X_cos; + FuncNames["lle_X_exp"] = lle_X_exp; + FuncNames["lle_X_log"] = lle_X_log; + FuncNames["lle_X_floor"] = lle_X_floor; + FuncNames["lle_X_srand"] = lle_X_srand; + FuncNames["lle_X_rand"] = lle_X_rand; +#ifdef HAVE_RAND48 + FuncNames["lle_X_drand48"] = lle_X_drand48; + FuncNames["lle_X_srand48"] = lle_X_srand48; + FuncNames["lle_X_lrand48"] = lle_X_lrand48; +#endif + FuncNames["lle_X_sqrt"] = lle_X_sqrt; + FuncNames["lle_X_puts"] = lle_X_puts; FuncNames["lle_X_printf"] = lle_X_printf; FuncNames["lle_X_sprintf"] = lle_X_sprintf; FuncNames["lle_X_sscanf"] = lle_X_sscanf; FuncNames["lle_X_scanf"] = lle_X_scanf; + FuncNames["lle_i_clock"] = lle_i_clock; + + FuncNames["lle_X_strcmp"] = lle_X_strcmp; + FuncNames["lle_X_strcat"] = lle_X_strcat; + FuncNames["lle_X_strcpy"] = lle_X_strcpy; + FuncNames["lle_X_strlen"] = lle_X_strlen; + FuncNames["lle_X___strdup"] = lle_X___strdup; + FuncNames["lle_X_memset"] = lle_X_memset; + FuncNames["lle_X_memcpy"] = lle_X_memcpy; + FuncNames["lle_X_memmove"] = lle_X_memmove; + + FuncNames["lle_X_fopen"] = lle_X_fopen; + FuncNames["lle_X_fclose"] = lle_X_fclose; + FuncNames["lle_X_feof"] = lle_X_feof; + FuncNames["lle_X_fread"] = lle_X_fread; + FuncNames["lle_X_fwrite"] = lle_X_fwrite; + FuncNames["lle_X_fgets"] = lle_X_fgets; + FuncNames["lle_X_fflush"] = lle_X_fflush; + FuncNames["lle_X_fgetc"] = lle_X_getc; + FuncNames["lle_X_getc"] = lle_X_getc; + FuncNames["lle_X__IO_getc"] = lle_X__IO_getc; + FuncNames["lle_X_fputc"] = lle_X_fputc; + FuncNames["lle_X_ungetc"] = lle_X_ungetc; FuncNames["lle_X_fprintf"] = lle_X_fprintf; + FuncNames["lle_X_freopen"] = lle_X_freopen; + + FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire; + FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release; } -- 2.34.1