LowerBitSets: Extend pass to support functions as bitset members.
authorPeter Collingbourne <peter@pcc.me.uk>
Tue, 8 Sep 2015 21:57:45 +0000 (21:57 +0000)
committerPeter Collingbourne <peter@pcc.me.uk>
Tue, 8 Sep 2015 21:57:45 +0000 (21:57 +0000)
This change extends the bitset lowering pass to support bitsets that may
contain either functions or global variables. A function bitset is lowered to
a jump table that is laid out before one of the functions in the bitset.

Also add support for non-string bitset identifier names. This allows for
distinct metadata nodes to stand in for names with internal linkage,
as done in D11857.

Differential Revision: http://reviews.llvm.org/D11856

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247080 91177308-0d34-0410-b5e6-96231b3b80d8

docs/BitSets.rst
docs/LangRef.rst
include/llvm/Transforms/IPO/LowerBitSets.h
lib/Transforms/IPO/LowerBitSets.cpp
test/Transforms/LowerBitSets/function-ext.ll [new file with mode: 0644]
test/Transforms/LowerBitSets/function.ll [new file with mode: 0644]
test/Transforms/LowerBitSets/nonstring.ll [new file with mode: 0644]
test/Transforms/LowerBitSets/simple.ll

index c6ffdbd..18dbf6d 100644 (file)
@@ -10,17 +10,41 @@ for the type of the class or its derived classes.
 
 To use the mechanism, a client creates a global metadata node named
 ``llvm.bitsets``.  Each element is a metadata node with three elements:
-the first is a metadata string containing an identifier for the bitset,
-the second is a global variable and the third is a byte offset into the
-global variable.
+
+1. a metadata object representing an identifier for the bitset
+2. either a global variable or a function
+3. a byte offset into the global (generally zero for functions)
+
+Each bitset must exclusively contain either global variables or functions.
+
+.. admonition:: Limitation
+
+  The current implementation only supports functions as members of bitsets on
+  the x86-32 and x86-64 architectures.
 
 This will cause a link-time optimization pass to generate bitsets from the
-memory addresses referenced from the elements of the bitset metadata. The pass
-will lay out the referenced globals consecutively, so their definitions must
-be available at LTO time. The `GlobalLayoutBuilder`_ class is responsible for
-laying out the globals efficiently to minimize the sizes of the underlying
-bitsets. An intrinsic, :ref:`llvm.bitset.test <bitset.test>`, generates code
-to test whether a given pointer is a member of a bitset.
+memory addresses referenced from the elements of the bitset metadata. The
+pass will lay out referenced global variables consecutively, so their
+definitions must be available at LTO time.
+
+A bit set containing functions is transformed into a jump table, which
+is a block of code consisting of one branch instruction for each of the
+functions in the bit set that branches to the target function, and redirect
+any taken function addresses to the corresponding jump table entry. In the
+object file's symbol table, the jump table entries take the identities of
+the original functions, so that addresses taken outside the module will pass
+any verification done inside the module.
+
+Jump tables may call external functions, so their definitions need not
+be available at LTO time. Note that if an externally defined function is a
+member of a bitset, there is no guarantee that its identity within the module
+will be the same as its identity outside of the module, as the former will
+be the jump table entry if a jump table is necessary.
+
+The `GlobalLayoutBuilder`_ class is responsible for laying out the globals
+efficiently to minimize the sizes of the underlying bitsets. An intrinsic,
+:ref:`llvm.bitset.test <bitset.test>`, generates code to test whether a
+given pointer is a member of a bitset.
 
 :Example:
 
@@ -33,13 +57,25 @@ to test whether a given pointer is a member of a bitset.
     @c = internal global i32 0
     @d = internal global [2 x i32] [i32 0, i32 0]
 
-    !llvm.bitsets = !{!0, !1, !2, !3, !4}
+    define void @e() {
+      ret void
+    }
+
+    define void @f() {
+      ret void
+    }
+
+    declare void @g()
+
+    !llvm.bitsets = !{!0, !1, !2, !3, !4, !5, !6}
 
     !0 = !{!"bitset1", i32* @a, i32 0}
     !1 = !{!"bitset1", i32* @b, i32 0}
     !2 = !{!"bitset2", i32* @b, i32 0}
     !3 = !{!"bitset2", i32* @c, i32 0}
     !4 = !{!"bitset2", i32* @d, i32 4}
+    !5 = !{!"bitset3", void ()* @e, i32 0}
+    !6 = !{!"bitset3", void ()* @g, i32 0}
 
     declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
 
@@ -55,6 +91,12 @@ to test whether a given pointer is a member of a bitset.
       ret i1 %x
     }
 
+    define i1 @baz(void ()* %p) {
+      %pi8 = bitcast void ()* %p to i8*
+      %x = call i1 @llvm.bitset.test(i8* %pi8, metadata !"bitset3")
+      ret i1 %x
+    }
+
     define void @main() {
       %a1 = call i1 @foo(i32* @a) ; returns 1
       %b1 = call i1 @foo(i32* @b) ; returns 1
@@ -64,6 +106,9 @@ to test whether a given pointer is a member of a bitset.
       %c2 = call i1 @bar(i32* @c) ; returns 1
       %d02 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 0)) ; returns 0
       %d12 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 1)) ; returns 1
+      %e = call i1 @baz(void ()* @e) ; returns 1
+      %f = call i1 @baz(void ()* @f) ; returns 0
+      %g = call i1 @baz(void ()* @g) ; returns 1
       ret void
     }
 
index fd41eb9..5e63dac 100644 (file)
@@ -11837,7 +11837,7 @@ Arguments:
 """"""""""
 
 The first argument is a pointer to be tested. The second argument is a
-metadata string containing the name of a :doc:`bitset <BitSets>`.
+metadata object representing an identifier for a :doc:`bitset <BitSets>`.
 
 Overview:
 """""""""
index f678e86..e5fb7b9 100644 (file)
@@ -26,7 +26,7 @@
 namespace llvm {
 
 class DataLayout;
-class GlobalVariable;
+class GlobalObject;
 class Value;
 class raw_ostream;
 
@@ -56,7 +56,7 @@ struct BitSetInfo {
   bool containsGlobalOffset(uint64_t Offset) const;
 
   bool containsValue(const DataLayout &DL,
-                     const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout,
+                     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout,
                      Value *V, uint64_t COffset = 0) const;
 
   void print(raw_ostream &OS) const;
index bf386a6..786c9cb 100644 (file)
@@ -19,6 +19,8 @@
 #include "llvm/ADT/Triple.h"
 #include "llvm/IR/Constant.h"
 #include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalObject.h"
 #include "llvm/IR/GlobalVariable.h"
 #include "llvm/IR/IRBuilder.h"
 #include "llvm/IR/Instructions.h"
@@ -61,9 +63,9 @@ bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
 
 bool BitSetInfo::containsValue(
     const DataLayout &DL,
-    const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout, Value *V,
+    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
     uint64_t COffset) const {
-  if (auto GV = dyn_cast<GlobalVariable>(V)) {
+  if (auto GV = dyn_cast<GlobalObject>(V)) {
     auto I = GlobalLayout.find(GV);
     if (I == GlobalLayout.end())
       return false;
@@ -211,34 +213,48 @@ struct LowerBitSets : public ModulePass {
   Module *M;
 
   bool LinkerSubsectionsViaSymbols;
+  Triple::ArchType Arch;
+  Triple::ObjectFormatType ObjectFormat;
   IntegerType *Int1Ty;
   IntegerType *Int8Ty;
   IntegerType *Int32Ty;
   Type *Int32PtrTy;
   IntegerType *Int64Ty;
-  Type *IntPtrTy;
+  IntegerType *IntPtrTy;
 
   // The llvm.bitsets named metadata.
   NamedMDNode *BitSetNM;
 
-  // Mapping from bitset mdstrings to the call sites that test them.
-  DenseMap<MDString *, std::vector<CallInst *>> BitSetTestCallSites;
+  // Mapping from bitset identifiers to the call sites that test them.
+  DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites;
 
   std::vector<ByteArrayInfo> ByteArrayInfos;
 
   BitSetInfo
-  buildBitSet(MDString *BitSet,
-              const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout);
+  buildBitSet(Metadata *BitSet,
+              const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
   ByteArrayInfo *createByteArray(BitSetInfo &BSI);
   void allocateByteArrays();
   Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
                           Value *BitOffset);
+  void lowerBitSetCalls(ArrayRef<Metadata *> BitSets,
+                        Constant *CombinedGlobalAddr,
+                        const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
   Value *
   lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
-                  GlobalVariable *CombinedGlobal,
-                  const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout);
-  void buildBitSetsFromGlobals(const std::vector<MDString *> &BitSets,
-                               const std::vector<GlobalVariable *> &Globals);
+                  Constant *CombinedGlobal,
+                  const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
+  void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets,
+                                       ArrayRef<GlobalVariable *> Globals);
+  unsigned getJumpTableEntrySize();
+  Type *getJumpTableEntryType();
+  Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
+                                 unsigned Distance);
+  void verifyBitSetMDNode(MDNode *Op);
+  void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
+                                 ArrayRef<Function *> Functions);
+  void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets,
+                                   ArrayRef<GlobalObject *> Globals);
   bool buildBitSets();
   bool eraseBitSetMetadata();
 
@@ -262,6 +278,8 @@ bool LowerBitSets::doInitialization(Module &Mod) {
 
   Triple TargetTriple(M->getTargetTriple());
   LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
+  Arch = TargetTriple.getArch();
+  ObjectFormat = TargetTriple.getObjectFormat();
 
   Int1Ty = Type::getInt1Ty(M->getContext());
   Int8Ty = Type::getInt8Ty(M->getContext());
@@ -280,8 +298,8 @@ bool LowerBitSets::doInitialization(Module &Mod) {
 /// Build a bit set for BitSet using the object layouts in
 /// GlobalLayout.
 BitSetInfo LowerBitSets::buildBitSet(
-    MDString *BitSet,
-    const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) {
+    Metadata *BitSet,
+    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
   BitSetBuilder BSB;
 
   // Compute the byte offset of each element of this bitset.
@@ -289,8 +307,11 @@ BitSetInfo LowerBitSets::buildBitSet(
     for (MDNode *Op : BitSetNM->operands()) {
       if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
         continue;
-      auto OpGlobal = dyn_cast<GlobalVariable>(
-          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
+      Constant *OpConst =
+          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue();
+      if (auto GA = dyn_cast<GlobalAlias>(OpConst))
+        OpConst = GA->getAliasee();
+      auto OpGlobal = dyn_cast<GlobalObject>(OpConst);
       if (!OpGlobal)
         continue;
       uint64_t Offset =
@@ -439,17 +460,16 @@ Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
 /// replace the call with.
 Value *LowerBitSets::lowerBitSetCall(
     CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
-    GlobalVariable *CombinedGlobal,
-    const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) {
+    Constant *CombinedGlobalIntAddr,
+    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
   Value *Ptr = CI->getArgOperand(0);
   const DataLayout &DL = M->getDataLayout();
 
   if (BSI.containsValue(DL, GlobalLayout, Ptr))
-    return ConstantInt::getTrue(CombinedGlobal->getParent()->getContext());
+    return ConstantInt::getTrue(M->getContext());
 
-  Constant *GlobalAsInt = ConstantExpr::getPtrToInt(CombinedGlobal, IntPtrTy);
   Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
-      GlobalAsInt, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
+      CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
 
   BasicBlock *InitialBB = CI->getParent();
 
@@ -508,18 +528,19 @@ Value *LowerBitSets::lowerBitSetCall(
 
 /// Given a disjoint set of bitsets and globals, layout the globals, build the
 /// bit sets and lower the llvm.bitset.test calls.
-void LowerBitSets::buildBitSetsFromGlobals(
-    const std::vector<MDString *> &BitSets,
-    const std::vector<GlobalVariable *> &Globals) {
+void LowerBitSets::buildBitSetsFromGlobalVariables(
+    ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) {
   // Build a new global with the combined contents of the referenced globals.
+  // This global is a struct whose even-indexed elements contain the original
+  // contents of the referenced globals and whose odd-indexed elements contain
+  // any padding required to align the next element to the next power of 2.
   std::vector<Constant *> GlobalInits;
   const DataLayout &DL = M->getDataLayout();
   for (GlobalVariable *G : Globals) {
     GlobalInits.push_back(G->getInitializer());
     uint64_t InitSize = DL.getTypeAllocSize(G->getInitializer()->getType());
 
-    // Compute the amount of padding required to align the next element to the
-    // next power of 2.
+    // Compute the amount of padding required.
     uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
 
     // Cap at 128 was found experimentally to have a good data/instruction
@@ -541,30 +562,12 @@ void LowerBitSets::buildBitSetsFromGlobals(
       DL.getStructLayout(cast<StructType>(NewInit->getType()));
 
   // Compute the offsets of the original globals within the new global.
-  DenseMap<GlobalVariable *, uint64_t> GlobalLayout;
+  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
   for (unsigned I = 0; I != Globals.size(); ++I)
     // Multiply by 2 to account for padding elements.
     GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
 
-  // For each bitset in this disjoint set...
-  for (MDString *BS : BitSets) {
-    // Build the bitset.
-    BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
-    DEBUG({
-      dbgs() << BS->getString() << ": ";
-      BSI.print(dbgs());
-    });
-
-    ByteArrayInfo *BAI = 0;
-
-    // Lower each call to llvm.bitset.test for this bitset.
-    for (CallInst *CI : BitSetTestCallSites[BS]) {
-      ++NumBitSetCallsLowered;
-      Value *Lowered = lowerBitSetCall(CI, BSI, BAI, CombinedGlobal, GlobalLayout);
-      CI->replaceAllUsesWith(Lowered);
-      CI->eraseFromParent();
-    }
-  }
+  lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout);
 
   // Build aliases pointing to offsets into the combined global for each
   // global from which we built the combined global, and replace references
@@ -581,6 +584,7 @@ void LowerBitSets::buildBitSetsFromGlobals(
       GlobalAlias *GAlias =
           GlobalAlias::create(Globals[I]->getType(), Globals[I]->getLinkage(),
                               "", CombinedGlobalElemPtr, M);
+      GAlias->setVisibility(Globals[I]->getVisibility());
       GAlias->takeName(Globals[I]);
       Globals[I]->replaceAllUsesWith(GAlias);
     }
@@ -588,6 +592,330 @@ void LowerBitSets::buildBitSetsFromGlobals(
   }
 }
 
+void LowerBitSets::lowerBitSetCalls(
+    ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr,
+    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
+  Constant *CombinedGlobalIntAddr =
+      ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);
+
+  // For each bitset in this disjoint set...
+  for (Metadata *BS : BitSets) {
+    // Build the bitset.
+    BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
+    DEBUG({
+      if (auto BSS = dyn_cast<MDString>(BS))
+        dbgs() << BSS->getString() << ": ";
+      else
+        dbgs() << "<unnamed>: ";
+      BSI.print(dbgs());
+    });
+
+    ByteArrayInfo *BAI = 0;
+
+    // Lower each call to llvm.bitset.test for this bitset.
+    for (CallInst *CI : BitSetTestCallSites[BS]) {
+      ++NumBitSetCallsLowered;
+      Value *Lowered =
+          lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
+      CI->replaceAllUsesWith(Lowered);
+      CI->eraseFromParent();
+    }
+  }
+}
+
+void LowerBitSets::verifyBitSetMDNode(MDNode *Op) {
+  if (Op->getNumOperands() != 3)
+    report_fatal_error(
+        "All operands of llvm.bitsets metadata must have 3 elements");
+  if (!Op->getOperand(1))
+    return;
+
+  auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
+  if (!OpConstMD)
+    report_fatal_error("Bit set element must be a constant");
+  auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue());
+  if (!OpGlobal)
+    return;
+
+  if (OpGlobal->isThreadLocal())
+    report_fatal_error("Bit set element may not be thread-local");
+  if (OpGlobal->hasSection())
+    report_fatal_error("Bit set element may not have an explicit section");
+
+  if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker())
+    report_fatal_error("Bit set global var element must be a definition");
+
+  auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
+  if (!OffsetConstMD)
+    report_fatal_error("Bit set element offset must be a constant");
+  auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
+  if (!OffsetInt)
+    report_fatal_error("Bit set element offset must be an integer constant");
+}
+
+static const unsigned kX86JumpTableEntrySize = 8;
+
+unsigned LowerBitSets::getJumpTableEntrySize() {
+  if (Arch != Triple::x86 && Arch != Triple::x86_64)
+    report_fatal_error("Unsupported architecture for jump tables");
+
+  return kX86JumpTableEntrySize;
+}
+
+// Create a constant representing a jump table entry for the target. This
+// consists of an instruction sequence containing a relative branch to Dest. The
+// constant will be laid out at address Src+(Len*Distance) where Len is the
+// target-specific jump table entry size.
+Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest,
+                                             unsigned Distance) {
+  if (Arch != Triple::x86 && Arch != Triple::x86_64)
+    report_fatal_error("Unsupported architecture for jump tables");
+
+  const unsigned kJmpPCRel32Code = 0xe9;
+  const unsigned kInt3Code = 0xcc;
+
+  ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);
+
+  // Build a constant representing the displacement between the constant's
+  // address and Dest. This will resolve to a PC32 relocation referring to Dest.
+  Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
+  Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
+  Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
+  ConstantInt *DispOffset =
+      ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
+  Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
+  OffsetedDisp = ConstantExpr::getTrunc(OffsetedDisp, Int32Ty);
+
+  ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);
+
+  Constant *Fields[] = {
+      Jmp, OffsetedDisp, Int3, Int3, Int3,
+  };
+  return ConstantStruct::getAnon(Fields, /*Packed=*/true);
+}
+
+Type *LowerBitSets::getJumpTableEntryType() {
+  if (Arch != Triple::x86 && Arch != Triple::x86_64)
+    report_fatal_error("Unsupported architecture for jump tables");
+
+  return StructType::get(M->getContext(),
+                         {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
+                         /*Packed=*/true);
+}
+
+/// Given a disjoint set of bitsets and functions, build a jump table for the
+/// functions, build the bit sets and lower the llvm.bitset.test calls.
+void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
+                                             ArrayRef<Function *> Functions) {
+  // Unlike the global bitset builder, the function bitset builder cannot
+  // re-arrange functions in a particular order and base its calculations on the
+  // layout of the functions' entry points, as we have no idea how large a
+  // particular function will end up being (the size could even depend on what
+  // this pass does!) Instead, we build a jump table, which is a block of code
+  // consisting of one branch instruction for each of the functions in the bit
+  // set that branches to the target function, and redirect any taken function
+  // addresses to the corresponding jump table entry. In the object file's
+  // symbol table, the symbols for the target functions also refer to the jump
+  // table entries, so that addresses taken outside the module will pass any
+  // verification done inside the module.
+  //
+  // In more concrete terms, suppose we have three functions f, g, h which are
+  // members of a single bitset, and a function foo that returns their
+  // addresses:
+  //
+  // f:
+  // mov 0, %eax
+  // ret
+  //
+  // g:
+  // mov 1, %eax
+  // ret
+  //
+  // h:
+  // mov 2, %eax
+  // ret
+  //
+  // foo:
+  // mov f, %eax
+  // mov g, %edx
+  // mov h, %ecx
+  // ret
+  //
+  // To create a jump table for these functions, we instruct the LLVM code
+  // generator to output a jump table in the .text section. This is done by
+  // representing the instructions in the jump table as an LLVM constant and
+  // placing them in a global variable in the .text section. The end result will
+  // (conceptually) look like this:
+  //
+  // f:
+  // jmp .Ltmp0 ; 5 bytes
+  // int3       ; 1 byte
+  // int3       ; 1 byte
+  // int3       ; 1 byte
+  //
+  // g:
+  // jmp .Ltmp1 ; 5 bytes
+  // int3       ; 1 byte
+  // int3       ; 1 byte
+  // int3       ; 1 byte
+  //
+  // h:
+  // jmp .Ltmp2 ; 5 bytes
+  // int3       ; 1 byte
+  // int3       ; 1 byte
+  // int3       ; 1 byte
+  //
+  // .Ltmp0:
+  // mov 0, %eax
+  // ret
+  //
+  // .Ltmp1:
+  // mov 1, %eax
+  // ret
+  //
+  // .Ltmp2:
+  // mov 2, %eax
+  // ret
+  //
+  // foo:
+  // mov f, %eax
+  // mov g, %edx
+  // mov h, %ecx
+  // ret
+  //
+  // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
+  // normal case the check can be carried out using the same kind of simple
+  // arithmetic that we normally use for globals.
+
+  assert(!Functions.empty());
+
+  // Build a simple layout based on the regular layout of jump tables.
+  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
+  unsigned EntrySize = getJumpTableEntrySize();
+  for (unsigned I = 0; I != Functions.size(); ++I)
+    GlobalLayout[Functions[I]] = I * EntrySize;
+
+  // Create a constant to hold the jump table.
+  ArrayType *JumpTableType =
+      ArrayType::get(getJumpTableEntryType(), Functions.size());
+  auto JumpTable = new GlobalVariable(*M, JumpTableType,
+                                      /*isConstant=*/true,
+                                      GlobalValue::PrivateLinkage, nullptr);
+  JumpTable->setSection(ObjectFormat == Triple::MachO
+                            ? "__TEXT,__text,regular,pure_instructions"
+                            : ".text");
+  lowerBitSetCalls(BitSets, JumpTable, GlobalLayout);
+
+  // Build aliases pointing to offsets into the jump table, and replace
+  // references to the original functions with references to the aliases.
+  for (unsigned I = 0; I != Functions.size(); ++I) {
+    Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
+        ConstantExpr::getGetElementPtr(
+            JumpTableType, JumpTable,
+            ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
+                                 ConstantInt::get(IntPtrTy, I)}),
+        Functions[I]->getType());
+    if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
+      Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
+    } else {
+      GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getType(),
+                                                Functions[I]->getLinkage(), "",
+                                                CombinedGlobalElemPtr, M);
+      GAlias->setVisibility(Functions[I]->getVisibility());
+      GAlias->takeName(Functions[I]);
+      Functions[I]->replaceAllUsesWith(GAlias);
+    }
+    if (!Functions[I]->isDeclarationForLinker())
+      Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
+  }
+
+  // Build and set the jump table's initializer.
+  std::vector<Constant *> JumpTableEntries;
+  for (unsigned I = 0; I != Functions.size(); ++I)
+    JumpTableEntries.push_back(
+        createJumpTableEntry(JumpTable, Functions[I], I));
+  JumpTable->setInitializer(
+      ConstantArray::get(JumpTableType, JumpTableEntries));
+}
+
+void LowerBitSets::buildBitSetsFromDisjointSet(
+    ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) {
+  llvm::DenseMap<Metadata *, uint64_t> BitSetIndices;
+  llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices;
+  for (auto B : BitSets)
+    BitSetIndices[B] = BitSetIndices.size();
+  for (auto G : Globals)
+    GlobalIndices[G] = GlobalIndices.size();
+
+  // For each bitset, build a set of indices that refer to globals referenced by
+  // the bitset.
+  std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
+  if (BitSetNM) {
+    for (MDNode *Op : BitSetNM->operands()) {
+      // Op = { bitset name, global, offset }
+      if (!Op->getOperand(1))
+        continue;
+      auto I = BitSetIndices.find(Op->getOperand(0));
+      if (I == BitSetIndices.end())
+        continue;
+
+      auto OpGlobal = dyn_cast<GlobalObject>(
+          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
+      if (!OpGlobal)
+        continue;
+      BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
+    }
+  }
+
+  // Order the sets of indices by size. The GlobalLayoutBuilder works best
+  // when given small index sets first.
+  std::stable_sort(
+      BitSetMembers.begin(), BitSetMembers.end(),
+      [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
+        return O1.size() < O2.size();
+      });
+
+  // Create a GlobalLayoutBuilder and provide it with index sets as layout
+  // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
+  // close together as possible.
+  GlobalLayoutBuilder GLB(Globals.size());
+  for (auto &&MemSet : BitSetMembers)
+    GLB.addFragment(MemSet);
+
+  // Build the bitsets from this disjoint set.
+  if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
+    // Build a vector of global variables with the computed layout.
+    std::vector<GlobalVariable *> OrderedGVs(Globals.size());
+    auto OGI = OrderedGVs.begin();
+    for (auto &&F : GLB.Fragments) {
+      for (auto &&Offset : F) {
+        auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
+        if (!GV)
+          report_fatal_error(
+              "Bit set may not contain both global variables and functions");
+        *OGI++ = GV;
+      }
+    }
+
+    buildBitSetsFromGlobalVariables(BitSets, OrderedGVs);
+  } else {
+    // Build a vector of functions with the computed layout.
+    std::vector<Function *> OrderedFns(Globals.size());
+    auto OFI = OrderedFns.begin();
+    for (auto &&F : GLB.Fragments) {
+      for (auto &&Offset : F) {
+        auto Fn = dyn_cast<Function>(Globals[Offset]);
+        if (!Fn)
+          report_fatal_error(
+              "Bit set may not contain both global variables and functions");
+        *OFI++ = Fn;
+      }
+    }
+
+    buildBitSetsFromFunctions(BitSets, OrderedFns);
+  }
+}
+
 /// Lower all bit sets in this module.
 bool LowerBitSets::buildBitSets() {
   Function *BitSetTestFunc =
@@ -598,24 +926,36 @@ bool LowerBitSets::buildBitSets() {
   // Equivalence class set containing bitsets and the globals they reference.
   // This is used to partition the set of bitsets in the module into disjoint
   // sets.
-  typedef EquivalenceClasses<PointerUnion<GlobalVariable *, MDString *>>
+  typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
       GlobalClassesTy;
   GlobalClassesTy GlobalClasses;
 
+  // Verify the bitset metadata and build a mapping from bitset identifiers to
+  // their last observed index in BitSetNM. This will used later to
+  // deterministically order the list of bitset identifiers.
+  llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices;
+  if (BitSetNM) {
+    for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) {
+      MDNode *Op = BitSetNM->getOperand(I);
+      verifyBitSetMDNode(Op);
+      BitSetIdIndices[Op] = I;
+    }
+  }
+
   for (const Use &U : BitSetTestFunc->uses()) {
     auto CI = cast<CallInst>(U.getUser());
 
     auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
-    if (!BitSetMDVal || !isa<MDString>(BitSetMDVal->getMetadata()))
+    if (!BitSetMDVal)
       report_fatal_error(
-          "Second argument of llvm.bitset.test must be metadata string");
-    auto BitSet = cast<MDString>(BitSetMDVal->getMetadata());
+          "Second argument of llvm.bitset.test must be metadata");
+    auto BitSet = BitSetMDVal->getMetadata();
 
     // Add the call site to the list of call sites for this bit set. We also use
     // BitSetTestCallSites to keep track of whether we have seen this bit set
     // before. If we have, we don't need to re-add the referenced globals to the
     // equivalence class.
-    std::pair<DenseMap<MDString *, std::vector<CallInst *>>::iterator,
+    std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator,
               bool> Ins =
         BitSetTestCallSites.insert(
             std::make_pair(BitSet, std::vector<CallInst *>()));
@@ -630,31 +970,16 @@ bool LowerBitSets::buildBitSets() {
     if (!BitSetNM)
       continue;
 
-    // Verify the bitset metadata and add the referenced globals to the bitset's
-    // equivalence class.
+    // Add the referenced globals to the bitset's equivalence class.
     for (MDNode *Op : BitSetNM->operands()) {
-      if (Op->getNumOperands() != 3)
-        report_fatal_error(
-            "All operands of llvm.bitsets metadata must have 3 elements");
-
       if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
         continue;
 
-      auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
-      if (!OpConstMD)
-        report_fatal_error("Bit set element must be a constant");
-      auto OpGlobal = dyn_cast<GlobalVariable>(OpConstMD->getValue());
+      auto OpGlobal = dyn_cast<GlobalObject>(
+          cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
       if (!OpGlobal)
         continue;
 
-      auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
-      if (!OffsetConstMD)
-        report_fatal_error("Bit set element offset must be a constant");
-      auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
-      if (!OffsetInt)
-        report_fatal_error(
-            "Bit set element offset must be an integer constant");
-
       CurSet = GlobalClasses.unionSets(
           CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
     }
@@ -671,71 +996,25 @@ bool LowerBitSets::buildBitSets() {
 
     ++NumBitSetDisjointSets;
 
-    // Build the list of bitsets and referenced globals in this disjoint set.
-    std::vector<MDString *> BitSets;
-    std::vector<GlobalVariable *> Globals;
-    llvm::DenseMap<MDString *, uint64_t> BitSetIndices;
-    llvm::DenseMap<GlobalVariable *, uint64_t> GlobalIndices;
+    // Build the list of bitsets in this disjoint set.
+    std::vector<Metadata *> BitSets;
+    std::vector<GlobalObject *> Globals;
     for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
          MI != GlobalClasses.member_end(); ++MI) {
-      if ((*MI).is<MDString *>()) {
-        BitSetIndices[MI->get<MDString *>()] = BitSets.size();
-        BitSets.push_back(MI->get<MDString *>());
-      } else {
-        GlobalIndices[MI->get<GlobalVariable *>()] = Globals.size();
-        Globals.push_back(MI->get<GlobalVariable *>());
-      }
-    }
-
-    // For each bitset, build a set of indices that refer to globals referenced
-    // by the bitset.
-    std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
-    if (BitSetNM) {
-      for (MDNode *Op : BitSetNM->operands()) {
-        // Op = { bitset name, global, offset }
-        if (!Op->getOperand(1))
-          continue;
-        auto I = BitSetIndices.find(cast<MDString>(Op->getOperand(0)));
-        if (I == BitSetIndices.end())
-          continue;
-
-        auto OpGlobal = dyn_cast<GlobalVariable>(
-            cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
-        if (!OpGlobal)
-          continue;
-        BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
-      }
+      if ((*MI).is<Metadata *>())
+        BitSets.push_back(MI->get<Metadata *>());
+      else
+        Globals.push_back(MI->get<GlobalObject *>());
     }
 
-    // Order the sets of indices by size. The GlobalLayoutBuilder works best
-    // when given small index sets first.
-    std::stable_sort(
-        BitSetMembers.begin(), BitSetMembers.end(),
-        [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
-          return O1.size() < O2.size();
-        });
-
-    // Create a GlobalLayoutBuilder and provide it with index sets as layout
-    // fragments. The GlobalLayoutBuilder tries to lay out members of fragments
-    // as close together as possible.
-    GlobalLayoutBuilder GLB(Globals.size());
-    for (auto &&MemSet : BitSetMembers)
-      GLB.addFragment(MemSet);
-
-    // Build a vector of globals with the computed layout.
-    std::vector<GlobalVariable *> OrderedGlobals(Globals.size());
-    auto OGI = OrderedGlobals.begin();
-    for (auto &&F : GLB.Fragments)
-      for (auto &&Offset : F)
-        *OGI++ = Globals[Offset];
-
-    // Order bitsets by name for determinism.
-    std::sort(BitSets.begin(), BitSets.end(), [](MDString *S1, MDString *S2) {
-      return S1->getString() < S2->getString();
+    // Order bitsets by BitSetNM index for determinism. This ordering is stable
+    // as there is a one-to-one mapping between metadata and indices.
+    std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) {
+      return BitSetIdIndices[M1] < BitSetIdIndices[M2];
     });
 
-    // Build the bitsets from this disjoint set.
-    buildBitSetsFromGlobals(BitSets, OrderedGlobals);
+    // Lower the bitsets in this disjoint set.
+    buildBitSetsFromDisjointSet(BitSets, Globals);
   }
 
   allocateByteArrays();
diff --git a/test/Transforms/LowerBitSets/function-ext.ll b/test/Transforms/LowerBitSets/function-ext.ll
new file mode 100644 (file)
index 0000000..2a83bef
--- /dev/null
@@ -0,0 +1,22 @@
+; RUN: opt -S -lowerbitsets < %s | FileCheck %s
+
+; Tests that we correctly handle external references, including the case where
+; all functions in a bitset are external references.
+
+target triple = "x86_64-unknown-linux-gnu"
+
+declare void @foo()
+
+; CHECK: @[[JT:.*]] = private constant [1 x <{ i8, i32, i8, i8, i8 }>] [<{ i8, i32, i8, i8, i8 }> <{ i8 -23, i32 trunc (i64 sub (i64 sub (i64 ptrtoint (void ()* @foo to i64), i64 ptrtoint ([1 x <{ i8, i32, i8, i8, i8 }>]* @[[JT]] to i64)), i64 5) to i32), i8 -52, i8 -52, i8 -52 }>], section ".text"
+
+define i1 @bar(i8* %ptr) {
+  ; CHECK: icmp eq i64 {{.*}}, ptrtoint ([1 x <{ i8, i32, i8, i8, i8 }>]* @[[JT]] to i64)
+  %p = call i1 @llvm.bitset.test(i8* %ptr, metadata !"void")
+  ret i1 %p
+}
+
+declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
+
+!0 = !{!"void", void ()* @foo, i64 0}
+
+!llvm.bitsets = !{!0}
diff --git a/test/Transforms/LowerBitSets/function.ll b/test/Transforms/LowerBitSets/function.ll
new file mode 100644 (file)
index 0000000..0aa947e
--- /dev/null
@@ -0,0 +1,35 @@
+; RUN: opt -S -lowerbitsets < %s | FileCheck %s
+
+; Tests that we correctly create a jump table for bitsets containing 2 or more
+; functions.
+
+target triple = "x86_64-unknown-linux-gnu"
+target datalayout = "e-p:64:64"
+
+; CHECK: @[[JT:.*]] = private constant [2 x <{ i8, i32, i8, i8, i8 }>] [<{ i8, i32, i8, i8, i8 }> <{ i8 -23, i32 trunc (i64 sub (i64 sub (i64 ptrtoint (void ()* @[[FNAME:.*]] to i64), i64 ptrtoint ([2 x <{ i8, i32, i8, i8, i8 }>]* @[[JT]] to i64)), i64 5) to i32), i8 -52, i8 -52, i8 -52 }>, <{ i8, i32, i8, i8, i8 }> <{ i8 -23, i32 trunc (i64 sub (i64 sub (i64 ptrtoint (void ()* @[[GNAME:.*]] to i64), i64 ptrtoint ([2 x <{ i8, i32, i8, i8, i8 }>]* @[[JT]] to i64)), i64 13) to i32), i8 -52, i8 -52, i8 -52 }>], section ".text"
+
+; CHECK: @f = alias bitcast ([2 x <{ i8, i32, i8, i8, i8 }>]* @[[JT]] to void ()*)
+; CHECK: @g = alias bitcast (<{ i8, i32, i8, i8, i8 }>* getelementptr inbounds ([2 x <{ i8, i32, i8, i8, i8 }>], [2 x <{ i8, i32, i8, i8, i8 }>]* @[[JT]], i64 0, i64 1) to void ()*)
+
+; CHECK: define private void @[[FNAME]]() {
+define void @f() {
+  ret void
+}
+
+; CHECK: define private void @[[GNAME]]() {
+define void @g() {
+  ret void
+}
+
+!0 = !{!"bitset1", void ()* @f, i32 0}
+!1 = !{!"bitset1", void ()* @g, i32 0}
+
+!llvm.bitsets = !{ !0, !1 }
+
+declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
+
+define i1 @foo(i8* %p) {
+  ; CHECK: sub i64 {{.*}}, ptrtoint ([2 x <{ i8, i32, i8, i8, i8 }>]* @[[JT]] to i64)
+  %x = call i1 @llvm.bitset.test(i8* %p, metadata !"bitset1")
+  ret i1 %x
+}
diff --git a/test/Transforms/LowerBitSets/nonstring.ll b/test/Transforms/LowerBitSets/nonstring.ll
new file mode 100644 (file)
index 0000000..0d655da
--- /dev/null
@@ -0,0 +1,34 @@
+; RUN: opt -S -lowerbitsets < %s | FileCheck %s
+
+; Tests that non-string metadata nodes may be used as bitset identifiers.
+
+target datalayout = "e-p:32:32"
+
+; CHECK: @[[BNAME:.*]] = private constant { [2 x i32] }
+; CHECK: @[[ANAME:.*]] = private constant { i32 }
+
+@a = constant i32 1
+@b = constant [2 x i32] [i32 2, i32 3]
+
+!0 = !{!2, i32* @a, i32 0}
+!1 = !{!3, [2 x i32]* @b, i32 0}
+!2 = distinct !{}
+!3 = distinct !{}
+
+!llvm.bitsets = !{ !0, !1 }
+
+declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
+
+; CHECK-LABEL: @foo
+define i1 @foo(i8* %p) {
+  ; CHECK: icmp eq i32 {{.*}}, ptrtoint ({ i32 }* @[[ANAME]] to i32)
+  %x = call i1 @llvm.bitset.test(i8* %p, metadata !2)
+  ret i1 %x
+}
+
+; CHECK-LABEL: @bar
+define i1 @bar(i8* %p) {
+  ; CHECK: icmp eq i32 {{.*}}, ptrtoint ({ [2 x i32] }* @[[BNAME]] to i32)
+  %x = call i1 @llvm.bitset.test(i8* %p, metadata !3)
+  ret i1 %x
+}
index 0fcdf0b..df2ccf9 100644 (file)
@@ -6,8 +6,8 @@ target datalayout = "e-p:32:32"
 
 ; CHECK: [[G:@[^ ]*]] = private constant { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] } { i32 1, [0 x i8] zeroinitializer, [63 x i32] zeroinitializer, [4 x i8] zeroinitializer, i32 3, [0 x i8] zeroinitializer, [2 x i32] [i32 4, i32 5] }
 @a = constant i32 1
-@b = constant [63 x i32] zeroinitializer
-@c = constant i32 3
+@b = hidden constant [63 x i32] zeroinitializer
+@c = protected constant i32 3
 @d = constant [2 x i32] [i32 4, i32 5]
 
 ; CHECK: [[BA:@[^ ]*]] = private constant [68 x i8] c"\03\01\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\02\00\01"
@@ -43,8 +43,8 @@ target datalayout = "e-p:32:32"
 ; CHECK: @bits_use.{{[0-9]*}} = private alias i8* @bits{{[0-9]*}}
 
 ; CHECK: @a = alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }, { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 0)
-; CHECK: @b = alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }, { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 2)
-; CHECK: @c = alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }, { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 4)
+; CHECK: @b = hidden alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }, { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 2)
+; CHECK: @c = protected alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }, { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 4)
 ; CHECK: @d = alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }, { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 6)
 
 ; CHECK-DARWIN: @aptr = constant i32* getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }, { i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G:@[^ ]*]], i32 0, i32 0)