Delete VirtRegRewriter.
authorJakob Stoklund Olesen <stoklund@2pi.dk>
Sun, 13 Nov 2011 00:16:01 +0000 (00:16 +0000)
committerJakob Stoklund Olesen <stoklund@2pi.dk>
Sun, 13 Nov 2011 00:16:01 +0000 (00:16 +0000)
And there was much rejoicing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144480 91177308-0d34-0410-b5e6-96231b3b80d8

lib/CodeGen/CMakeLists.txt
lib/CodeGen/VirtRegRewriter.cpp [deleted file]
lib/CodeGen/VirtRegRewriter.h [deleted file]

index 1c39cd22f25e4967ff8087a3bde0a4d71b18cf73..c8d4dcf8398d3a390d949b704bec26e2332351c8 100644 (file)
@@ -97,7 +97,6 @@ add_llvm_library(LLVMCodeGen
   TwoAddressInstructionPass.cpp
   UnreachableBlockElim.cpp
   VirtRegMap.cpp
-  VirtRegRewriter.cpp
   )
 
 add_llvm_library_dependencies(LLVMCodeGen
diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp
deleted file mode 100644 (file)
index a5ec797..0000000
+++ /dev/null
@@ -1,2633 +0,0 @@
-//===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "virtregrewriter"
-#include "VirtRegRewriter.h"
-#include "VirtRegMap.h"
-#include "llvm/Function.h"
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/Statistic.h"
-using namespace llvm;
-
-STATISTIC(NumDSE     , "Number of dead stores elided");
-STATISTIC(NumDSS     , "Number of dead spill slots removed");
-STATISTIC(NumCommutes, "Number of instructions commuted");
-STATISTIC(NumDRM     , "Number of re-materializable defs elided");
-STATISTIC(NumStores  , "Number of stores added");
-STATISTIC(NumPSpills , "Number of physical register spills");
-STATISTIC(NumOmitted , "Number of reloads omitted");
-STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
-STATISTIC(NumCopified, "Number of available reloads turned into copies");
-STATISTIC(NumReMats  , "Number of re-materialization");
-STATISTIC(NumLoads   , "Number of loads added");
-STATISTIC(NumReused  , "Number of values reused");
-STATISTIC(NumDCE     , "Number of copies elided");
-STATISTIC(NumSUnfold , "Number of stores unfolded");
-STATISTIC(NumModRefUnfold, "Number of modref unfolded");
-
-namespace {
-  enum RewriterName { local, trivial };
-}
-
-static cl::opt<RewriterName>
-RewriterOpt("rewriter",
-            cl::desc("Rewriter to use (default=local)"),
-            cl::Prefix,
-            cl::values(clEnumVal(local,   "local rewriter"),
-                       clEnumVal(trivial, "trivial rewriter"),
-                       clEnumValEnd),
-            cl::init(local));
-
-static cl::opt<bool>
-ScheduleSpills("schedule-spills",
-               cl::desc("Schedule spill code"),
-               cl::init(false));
-
-VirtRegRewriter::~VirtRegRewriter() {}
-
-/// substitutePhysReg - Replace virtual register in MachineOperand with a
-/// physical register. Do the right thing with the sub-register index.
-/// Note that operands may be added, so the MO reference is no longer valid.
-static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
-                              const TargetRegisterInfo &TRI) {
-  if (MO.getSubReg()) {
-    MO.substPhysReg(Reg, TRI);
-
-    // Any kill flags apply to the full virtual register, so they also apply to
-    // the full physical register.
-    // We assume that partial defs have already been decorated with a super-reg
-    // <imp-def> operand by LiveIntervals.
-    MachineInstr &MI = *MO.getParent();
-    if (MO.isUse() && !MO.isUndef() &&
-        (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
-      MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
-  } else {
-    MO.setReg(Reg);
-  }
-}
-
-namespace {
-
-/// This class is intended for use with the new spilling framework only. It
-/// rewrites vreg def/uses to use the assigned preg, but does not insert any
-/// spill code.
-struct TrivialRewriter : public VirtRegRewriter {
-
-  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
-                            LiveIntervals* LIs) {
-    DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
-    DEBUG(dbgs() << "********** Function: "
-          << MF.getFunction()->getName() << '\n');
-    DEBUG(dbgs() << "**** Machine Instrs"
-          << "(NOTE! Does not include spills and reloads!) ****\n");
-    DEBUG(MF.dump());
-
-    MachineRegisterInfo *mri = &MF.getRegInfo();
-    const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
-
-    bool changed = false;
-
-    for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
-         liItr != liEnd; ++liItr) {
-
-      const LiveInterval *li = liItr->second;
-      unsigned reg = li->reg;
-
-      if (TargetRegisterInfo::isPhysicalRegister(reg)) {
-        if (!li->empty())
-          mri->setPhysRegUsed(reg);
-      }
-      else {
-        if (!VRM.hasPhys(reg))
-          continue;
-        unsigned pReg = VRM.getPhys(reg);
-        mri->setPhysRegUsed(pReg);
-        // Copy the register use-list before traversing it.
-        SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
-        for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
-               E = mri->reg_end(); I != E; ++I)
-          reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
-        for (unsigned N=0; N != reglist.size(); ++N)
-          substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
-                            pReg, *tri);
-        changed |= !reglist.empty();
-      }
-    }
-
-    DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
-    DEBUG(MF.dump());
-
-    return changed;
-  }
-
-};
-
-}
-
-// ************************************************************************ //
-
-namespace {
-
-/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
-/// from top down, keep track of which spill slots or remat are available in
-/// each register.
-///
-/// Note that not all physregs are created equal here.  In particular, some
-/// physregs are reloads that we are allowed to clobber or ignore at any time.
-/// Other physregs are values that the register allocated program is using
-/// that we cannot CHANGE, but we can read if we like.  We keep track of this
-/// on a per-stack-slot / remat id basis as the low bit in the value of the
-/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
-/// this bit and addAvailable sets it if.
-class AvailableSpills {
-  const TargetRegisterInfo *TRI;
-  const TargetInstrInfo *TII;
-
-  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
-  // or remat'ed virtual register values that are still available, due to
-  // being loaded or stored to, but not invalidated yet.
-  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
-
-  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
-  // indicating which stack slot values are currently held by a physreg.  This
-  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
-  // physreg is modified.
-  std::multimap<unsigned, int> PhysRegsAvailable;
-
-  void disallowClobberPhysRegOnly(unsigned PhysReg);
-
-  void ClobberPhysRegOnly(unsigned PhysReg);
-public:
-  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
-    : TRI(tri), TII(tii) {
-  }
-
-  /// clear - Reset the state.
-  void clear() {
-    SpillSlotsOrReMatsAvailable.clear();
-    PhysRegsAvailable.clear();
-  }
-
-  const TargetRegisterInfo *getRegInfo() const { return TRI; }
-
-  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
-  /// available in a physical register, return that PhysReg, otherwise
-  /// return 0.
-  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
-    std::map<int, unsigned>::const_iterator I =
-      SpillSlotsOrReMatsAvailable.find(Slot);
-    if (I != SpillSlotsOrReMatsAvailable.end()) {
-      return I->second >> 1;  // Remove the CanClobber bit.
-    }
-    return 0;
-  }
-
-  /// addAvailable - Mark that the specified stack slot / remat is available
-  /// in the specified physreg.  If CanClobber is true, the physreg can be
-  /// modified at any time without changing the semantics of the program.
-  void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
-    // If this stack slot is thought to be available in some other physreg,
-    // remove its record.
-    ModifyStackSlotOrReMat(SlotOrReMat);
-
-    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
-    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
-                                              (unsigned)CanClobber;
-
-    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
-      DEBUG(dbgs() << "Remembering RM#"
-                   << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
-    else
-      DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
-    DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
-          << (CanClobber ? " canclobber" : "") << "\n");
-  }
-
-  /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
-  /// the value of the specified stackslot register if it desires. The
-  /// specified stack slot must be available in a physreg for this query to
-  /// make sense.
-  bool canClobberPhysRegForSS(int SlotOrReMat) const {
-    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
-           "Value not available!");
-    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
-  }
-
-  /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
-  /// physical register where values for some stack slot(s) might be
-  /// available.
-  bool canClobberPhysReg(unsigned PhysReg) const {
-    std::multimap<unsigned, int>::const_iterator I =
-      PhysRegsAvailable.lower_bound(PhysReg);
-    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
-      int SlotOrReMat = I->second;
-      I++;
-      if (!canClobberPhysRegForSS(SlotOrReMat))
-        return false;
-    }
-    return true;
-  }
-
-  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
-  /// stackslot register. The register is still available but is no longer
-  /// allowed to be modifed.
-  void disallowClobberPhysReg(unsigned PhysReg);
-
-  /// ClobberPhysReg - This is called when the specified physreg changes
-  /// value.  We use this to invalidate any info about stuff that lives in
-  /// it and any of its aliases.
-  void ClobberPhysReg(unsigned PhysReg);
-
-  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
-  /// slot changes.  This removes information about which register the
-  /// previous value for this slot lives in (as the previous value is dead
-  /// now).
-  void ModifyStackSlotOrReMat(int SlotOrReMat);
-
-  /// ClobberSharingStackSlots - When a register mapped to a stack slot changes,
-  /// other stack slots sharing the same register are no longer valid.
-  void ClobberSharingStackSlots(int StackSlot);
-
-  /// AddAvailableRegsToLiveIn - Availability information is being kept coming
-  /// into the specified MBB. Add available physical registers as potential
-  /// live-in's. If they are reused in the MBB, they will be added to the
-  /// live-in set to make register scavenger and post-allocation scheduler.
-  void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
-                                std::vector<MachineOperand*> &KillOps);
-};
-
-}
-
-// ************************************************************************ //
-
-// Given a location where a reload of a spilled register or a remat of
-// a constant is to be inserted, attempt to find a safe location to
-// insert the load at an earlier point in the basic-block, to hide
-// latency of the load and to avoid address-generation interlock
-// issues.
-static MachineBasicBlock::iterator
-ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
-                 MachineBasicBlock::iterator const Begin,
-                 unsigned PhysReg,
-                 const TargetRegisterInfo *TRI,
-                 bool DoReMat,
-                 int SSorRMId,
-                 const TargetInstrInfo *TII,
-                 const MachineFunction &MF)
-{
-  if (!ScheduleSpills)
-    return InsertLoc;
-
-  // Spill backscheduling is of primary interest to addresses, so
-  // don't do anything if the register isn't in the register class
-  // used for pointers.
-
-  const TargetLowering *TL = MF.getTarget().getTargetLowering();
-
-  if (!TL->isTypeLegal(TL->getPointerTy()))
-    // Believe it or not, this is true on 16-bit targets like PIC16.
-    return InsertLoc;
-
-  const TargetRegisterClass *ptrRegClass =
-    TL->getRegClassFor(TL->getPointerTy());
-  if (!ptrRegClass->contains(PhysReg))
-    return InsertLoc;
-
-  // Scan upwards through the preceding instructions. If an instruction doesn't
-  // reference the stack slot or the register we're loading, we can
-  // backschedule the reload up past it.
-  MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
-  while (NewInsertLoc != Begin) {
-    MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
-    for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
-      MachineOperand &Op = Prev->getOperand(i);
-      if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
-        goto stop;
-    }
-    if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
-        Prev->findRegisterDefOperand(PhysReg))
-      goto stop;
-    for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
-      if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
-          Prev->findRegisterDefOperand(*Alias))
-        goto stop;
-    NewInsertLoc = Prev;
-  }
-stop:;
-
-  // If we made it to the beginning of the block, turn around and move back
-  // down just past any existing reloads. They're likely to be reloads/remats
-  // for instructions earlier than what our current reload/remat is for, so
-  // they should be scheduled earlier.
-  if (NewInsertLoc == Begin) {
-    int FrameIdx;
-    while (InsertLoc != NewInsertLoc &&
-           (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
-            TII->isTriviallyReMaterializable(NewInsertLoc)))
-      ++NewInsertLoc;
-  }
-
-  return NewInsertLoc;
-}
-
-namespace {
-
-// ReusedOp - For each reused operand, we keep track of a bit of information,
-// in case we need to rollback upon processing a new operand.  See comments
-// below.
-struct ReusedOp {
-  // The MachineInstr operand that reused an available value.
-  unsigned Operand;
-
-  // StackSlotOrReMat - The spill slot or remat id of the value being reused.
-  unsigned StackSlotOrReMat;
-
-  // PhysRegReused - The physical register the value was available in.
-  unsigned PhysRegReused;
-
-  // AssignedPhysReg - The physreg that was assigned for use by the reload.
-  unsigned AssignedPhysReg;
-
-  // VirtReg - The virtual register itself.
-  unsigned VirtReg;
-
-  ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
-           unsigned vreg)
-    : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
-      AssignedPhysReg(apr), VirtReg(vreg) {}
-};
-
-/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
-/// is reused instead of reloaded.
-class ReuseInfo {
-  MachineInstr &MI;
-  std::vector<ReusedOp> Reuses;
-  BitVector PhysRegsClobbered;
-public:
-  ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
-    PhysRegsClobbered.resize(tri->getNumRegs());
-  }
-
-  bool hasReuses() const {
-    return !Reuses.empty();
-  }
-
-  /// addReuse - If we choose to reuse a virtual register that is already
-  /// available instead of reloading it, remember that we did so.
-  void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
-                unsigned PhysRegReused, unsigned AssignedPhysReg,
-                unsigned VirtReg) {
-    // If the reload is to the assigned register anyway, no undo will be
-    // required.
-    if (PhysRegReused == AssignedPhysReg) return;
-
-    // Otherwise, remember this.
-    Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
-                              AssignedPhysReg, VirtReg));
-  }
-
-  void markClobbered(unsigned PhysReg) {
-    PhysRegsClobbered.set(PhysReg);
-  }
-
-  bool isClobbered(unsigned PhysReg) const {
-    return PhysRegsClobbered.test(PhysReg);
-  }
-
-  /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
-  /// is some other operand that is using the specified register, either pick
-  /// a new register to use, or evict the previous reload and use this reg.
-  unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
-                           MachineFunction &MF, MachineInstr *MI,
-                           AvailableSpills &Spills,
-                           std::vector<MachineInstr*> &MaybeDeadStores,
-                           SmallSet<unsigned, 8> &Rejected,
-                           BitVector &RegKills,
-                           std::vector<MachineOperand*> &KillOps,
-                           VirtRegMap &VRM);
-
-  /// GetRegForReload - Helper for the above GetRegForReload(). Add a
-  /// 'Rejected' set to remember which registers have been considered and
-  /// rejected for the reload. This avoids infinite looping in case like
-  /// this:
-  /// t1 := op t2, t3
-  /// t2 <- assigned r0 for use by the reload but ended up reuse r1
-  /// t3 <- assigned r1 for use by the reload but ended up reuse r0
-  /// t1 <- desires r1
-  ///       sees r1 is taken by t2, tries t2's reload register r0
-  ///       sees r0 is taken by t3, tries t3's reload register r1
-  ///       sees r1 is taken by t2, tries t2's reload register r0 ...
-  unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
-                           AvailableSpills &Spills,
-                           std::vector<MachineInstr*> &MaybeDeadStores,
-                           BitVector &RegKills,
-                           std::vector<MachineOperand*> &KillOps,
-                           VirtRegMap &VRM) {
-    SmallSet<unsigned, 8> Rejected;
-    MachineFunction &MF = *MI->getParent()->getParent();
-    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
-    return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
-                           Rejected, RegKills, KillOps, VRM);
-  }
-};
-
-}
-
-// ****************** //
-// Utility Functions  //
-// ****************** //
-
-/// findSinglePredSuccessor - Return via reference a vector of machine basic
-/// blocks each of which is a successor of the specified BB and has no other
-/// predecessor.
-static void findSinglePredSuccessor(MachineBasicBlock *MBB,
-                                   SmallVectorImpl<MachineBasicBlock *> &Succs){
-  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
-         SE = MBB->succ_end(); SI != SE; ++SI) {
-    MachineBasicBlock *SuccMBB = *SI;
-    if (SuccMBB->pred_size() == 1)
-      Succs.push_back(SuccMBB);
-  }
-}
-
-/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
-/// but not re-defined and it's being reused. Remove the kill flag for the
-/// register and unset the kill's marker and last kill operand.
-static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
-                                   BitVector &RegKills,
-                                   std::vector<MachineOperand*> &KillOps) {
-  DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");
-
-  MachineOperand *KillOp = KillOps[Reg];
-  KillOp->setIsKill(false);
-  // KillOps[Reg] might be a def of a super-register.
-  unsigned KReg = KillOp->getReg();
-  if (!RegKills[KReg])
-    return;
-
-  assert(KillOps[KReg]->getParent() == KillOp->getParent() &&
-         "invalid superreg kill flags");
-  KillOps[KReg] = NULL;
-  RegKills.reset(KReg);
-
-  // If it's a def of a super-register. Its other sub-regsters are no
-  // longer killed as well.
-  for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
-    DEBUG(dbgs() << "  Resurrect subreg " << TRI->getName(*SR) << "\n");
-
-    assert(KillOps[*SR]->getParent() == KillOp->getParent() &&
-           "invalid subreg kill flags");
-    KillOps[*SR] = NULL;
-    RegKills.reset(*SR);
-  }
-}
-
-/// ResurrectKill - Invalidate kill info associated with a previous MI. An
-/// optimization may have decided that it's safe to reuse a previously killed
-/// register. If we fail to erase the invalid kill flags, then the register
-/// scavenger may later clobber the register used by this MI. Note that this
-/// must be done even if this MI is being deleted! Consider:
-///
-/// USE $r1 (vreg1) <kill>
-/// ...
-/// $r1(vreg3) = COPY $r1 (vreg2)
-///
-/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
-/// vreg1's only use is a kill. The rewriter doesn't know it should be live
-/// until it rewrites vreg2. At that points it sees that the copy is dead and
-/// deletes it. However, deleting the copy implicitly forwards liveness of $r1
-/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
-/// vreg1 before deleting the copy.
-static void ResurrectKill(MachineInstr &MI, unsigned Reg,
-                          const TargetRegisterInfo* TRI, BitVector &RegKills,
-                          std::vector<MachineOperand*> &KillOps) {
-  if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
-    ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
-    return;
-  }
-  // No previous kill for this reg. Check for subreg kills as well.
-  // d4 =
-  // store d4, fi#0
-  // ...
-  //    = s8<kill>
-  // ...
-  //    = d4  <avoiding reload>
-  for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
-    unsigned SReg = *SR;
-    if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
-      ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
-  }
-}
-
-/// InvalidateKills - MI is going to be deleted. If any of its operands are
-/// marked kill, then invalidate the information.
-static void InvalidateKills(MachineInstr &MI,
-                            const TargetRegisterInfo* TRI,
-                            BitVector &RegKills,
-                            std::vector<MachineOperand*> &KillOps,
-                            SmallVector<unsigned, 2> *KillRegs = NULL) {
-  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI.getOperand(i);
-    if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
-      continue;
-    unsigned Reg = MO.getReg();
-    if (TargetRegisterInfo::isVirtualRegister(Reg))
-      continue;
-    if (KillRegs)
-      KillRegs->push_back(Reg);
-    assert(Reg < KillOps.size());
-    if (KillOps[Reg] == &MO) {
-      // This operand was the kill, now no longer.
-      KillOps[Reg] = NULL;
-      RegKills.reset(Reg);
-      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
-        if (RegKills[*SR]) {
-          assert(KillOps[*SR] == &MO && "bad subreg kill flags");
-          KillOps[*SR] = NULL;
-          RegKills.reset(*SR);
-        }
-      }
-    }
-    else {
-      // This operand may have reused a previously killed reg. Keep it live in
-      // case it continues to be used after erasing this instruction.
-      ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
-    }
-  }
-}
-
-/// InvalidateRegDef - If the def operand of the specified def MI is now dead
-/// (since its spill instruction is removed), mark it isDead. Also checks if
-/// the def MI has other definition operands that are not dead. Returns it by
-/// reference.
-static bool InvalidateRegDef(MachineBasicBlock::iterator I,
-                             MachineInstr &NewDef, unsigned Reg,
-                             bool &HasLiveDef,
-                             const TargetRegisterInfo *TRI) {
-  // Due to remat, it's possible this reg isn't being reused. That is,
-  // the def of this reg (by prev MI) is now dead.
-  MachineInstr *DefMI = I;
-  MachineOperand *DefOp = NULL;
-  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = DefMI->getOperand(i);
-    if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
-      continue;
-    if (MO.getReg() == Reg)
-      DefOp = &MO;
-    else if (!MO.isDead())
-      HasLiveDef = true;
-  }
-  if (!DefOp)
-    return false;
-
-  bool FoundUse = false, Done = false;
-  MachineBasicBlock::iterator E = &NewDef;
-  ++I; ++E;
-  for (; !Done && I != E; ++I) {
-    MachineInstr *NMI = I;
-    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
-      MachineOperand &MO = NMI->getOperand(j);
-      if (!MO.isReg() || MO.getReg() == 0 ||
-          (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
-        continue;
-      if (MO.isUse())
-        FoundUse = true;
-      Done = true; // Stop after scanning all the operands of this MI.
-    }
-  }
-  if (!FoundUse) {
-    // Def is dead!
-    DefOp->setIsDead();
-    return true;
-  }
-  return false;
-}
-
-/// UpdateKills - Track and update kill info. If a MI reads a register that is
-/// marked kill, then it must be due to register reuse. Transfer the kill info
-/// over.
-static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
-                        BitVector &RegKills,
-                        std::vector<MachineOperand*> &KillOps) {
-  // These do not affect kill info at all.
-  if (MI.isDebugValue())
-    return;
-  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI.getOperand(i);
-    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
-      continue;
-    unsigned Reg = MO.getReg();
-    if (Reg == 0)
-      continue;
-
-    // This operand may have reused a previously killed reg. Keep it live.
-    ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
-
-    if (MO.isKill()) {
-      RegKills.set(Reg);
-      KillOps[Reg] = &MO;
-      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
-        RegKills.set(*SR);
-        KillOps[*SR] = &MO;
-      }
-    }
-  }
-
-  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-    const MachineOperand &MO = MI.getOperand(i);
-    if (!MO.isReg() || !MO.getReg() || !MO.isDef())
-      continue;
-    unsigned Reg = MO.getReg();
-    RegKills.reset(Reg);
-    KillOps[Reg] = NULL;
-    // It also defines (or partially define) aliases.
-    for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
-      RegKills.reset(*SR);
-      KillOps[*SR] = NULL;
-    }
-    for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
-      RegKills.reset(*SR);
-      KillOps[*SR] = NULL;
-    }
-  }
-}
-
-/// ReMaterialize - Re-materialize definition for Reg targeting DestReg.
-///
-static void ReMaterialize(MachineBasicBlock &MBB,
-                          MachineBasicBlock::iterator &MII,
-                          unsigned DestReg, unsigned Reg,
-                          const TargetInstrInfo *TII,
-                          const TargetRegisterInfo *TRI,
-                          VirtRegMap &VRM) {
-  MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
-#ifndef NDEBUG
-  const MCInstrDesc &MCID = ReMatDefMI->getDesc();
-  assert(MCID.getNumDefs() == 1 &&
-         "Don't know how to remat instructions that define > 1 values!");
-#endif
-  TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
-  MachineInstr *NewMI = prior(MII);
-  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = NewMI->getOperand(i);
-    if (!MO.isReg() || MO.getReg() == 0)
-      continue;
-    unsigned VirtReg = MO.getReg();
-    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
-      continue;
-    assert(MO.isUse());
-    unsigned Phys = VRM.getPhys(VirtReg);
-    assert(Phys && "Virtual register is not assigned a register?");
-    substitutePhysReg(MO, Phys, *TRI);
-  }
-  ++NumReMats;
-}
-
-/// findSuperReg - Find the SubReg's super-register of given register class
-/// where its SubIdx sub-register is SubReg.
-static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
-                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
-  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
-       I != E; ++I) {
-    unsigned Reg = *I;
-    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
-      return Reg;
-  }
-  return 0;
-}
-
-// ******************************** //
-// Available Spills Implementation  //
-// ******************************** //
-
-/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
-/// stackslot register. The register is still available but is no longer
-/// allowed to be modifed.
-void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
-  std::multimap<unsigned, int>::iterator I =
-    PhysRegsAvailable.lower_bound(PhysReg);
-  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
-    int SlotOrReMat = I->second;
-    I++;
-    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
-           "Bidirectional map mismatch!");
-    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
-    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
-         << " copied, it is available for use but can no longer be modified\n");
-  }
-}
-
-/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
-/// stackslot register and its aliases. The register and its aliases may
-/// still available but is no longer allowed to be modifed.
-void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
-  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
-    disallowClobberPhysRegOnly(*AS);
-  disallowClobberPhysRegOnly(PhysReg);
-}
-
-/// ClobberPhysRegOnly - This is called when the specified physreg changes
-/// value.  We use this to invalidate any info about stuff we thing lives in it.
-void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
-  std::multimap<unsigned, int>::iterator I =
-    PhysRegsAvailable.lower_bound(PhysReg);
-  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
-    int SlotOrReMat = I->second;
-    PhysRegsAvailable.erase(I++);
-    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
-           "Bidirectional map mismatch!");
-    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
-    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
-          << " clobbered, invalidating ");
-    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
-      DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
-    else
-      DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
-  }
-}
-
-/// ClobberPhysReg - This is called when the specified physreg changes
-/// value.  We use this to invalidate any info about stuff we thing lives in
-/// it and any of its aliases.
-void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
-  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
-    ClobberPhysRegOnly(*AS);
-  ClobberPhysRegOnly(PhysReg);
-}
-
-/// AddAvailableRegsToLiveIn - Availability information is being kept coming
-/// into the specified MBB. Add available physical registers as potential
-/// live-in's. If they are reused in the MBB, they will be added to the
-/// live-in set to make register scavenger and post-allocation scheduler.
-void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
-                                        BitVector &RegKills,
-                                        std::vector<MachineOperand*> &KillOps) {
-  std::set<unsigned> NotAvailable;
-  for (std::multimap<unsigned, int>::iterator
-         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
-       I != E; ++I) {
-    unsigned Reg = I->first;
-    const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
-    // FIXME: A temporary workaround. We can't reuse available value if it's
-    // not safe to move the def of the virtual register's class. e.g.
-    // X86::RFP* register classes. Do not add it as a live-in.
-    if (!TII->isSafeToMoveRegClassDefs(RC))
-      // This is no longer available.
-      NotAvailable.insert(Reg);
-    else {
-      MBB.addLiveIn(Reg);
-      if (RegKills[Reg])
-        ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
-    }
-
-    // Skip over the same register.
-    std::multimap<unsigned, int>::iterator NI = llvm::next(I);
-    while (NI != E && NI->first == Reg) {
-      ++I;
-      ++NI;
-    }
-  }
-
-  for (std::set<unsigned>::iterator I = NotAvailable.begin(),
-         E = NotAvailable.end(); I != E; ++I) {
-    ClobberPhysReg(*I);
-    for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
-       *SubRegs; ++SubRegs)
-      ClobberPhysReg(*SubRegs);
-  }
-}
-
-/// ModifyStackSlotOrReMat - This method is called when the value in a stack
-/// slot changes.  This removes information about which register the previous
-/// value for this slot lives in (as the previous value is dead now).
-void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
-  std::map<int, unsigned>::iterator It =
-    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
-  if (It == SpillSlotsOrReMatsAvailable.end()) return;
-  unsigned Reg = It->second >> 1;
-  SpillSlotsOrReMatsAvailable.erase(It);
-
-  // This register may hold the value of multiple stack slots, only remove this
-  // stack slot from the set of values the register contains.
-  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
-  for (; ; ++I) {
-    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
-           "Map inverse broken!");
-    if (I->second == SlotOrReMat) break;
-  }
-  PhysRegsAvailable.erase(I);
-}
-
-void AvailableSpills::ClobberSharingStackSlots(int StackSlot) {
-  std::map<int, unsigned>::iterator It =
-    SpillSlotsOrReMatsAvailable.find(StackSlot);
-  if (It == SpillSlotsOrReMatsAvailable.end()) return;
-  unsigned Reg = It->second >> 1;
-
-  // Erase entries in PhysRegsAvailable for other stack slots.
-  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
-  while (I != PhysRegsAvailable.end() && I->first == Reg) {
-    std::multimap<unsigned, int>::iterator NextI = llvm::next(I);
-    if (I->second != StackSlot) {
-      DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in "
-                   << PrintReg(Reg, TRI) << '\n');
-      SpillSlotsOrReMatsAvailable.erase(I->second);
-      PhysRegsAvailable.erase(I);
-    }
-    I = NextI;
-  }
-}
-
-// ************************** //
-// Reuse Info Implementation  //
-// ************************** //
-
-/// GetRegForReload - We are about to emit a reload into PhysReg.  If there
-/// is some other operand that is using the specified register, either pick
-/// a new register to use, or evict the previous reload and use this reg.
-unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
-                         unsigned PhysReg,
-                         MachineFunction &MF,
-                         MachineInstr *MI, AvailableSpills &Spills,
-                         std::vector<MachineInstr*> &MaybeDeadStores,
-                         SmallSet<unsigned, 8> &Rejected,
-                         BitVector &RegKills,
-                         std::vector<MachineOperand*> &KillOps,
-                         VirtRegMap &VRM) {
-  const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
-  const TargetRegisterInfo *TRI = Spills.getRegInfo();
-
-  if (Reuses.empty()) return PhysReg;  // This is most often empty.
-
-  for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
-    ReusedOp &Op = Reuses[ro];
-    // If we find some other reuse that was supposed to use this register
-    // exactly for its reload, we can change this reload to use ITS reload
-    // register. That is, unless its reload register has already been
-    // considered and subsequently rejected because it has also been reused
-    // by another operand.
-    if (Op.PhysRegReused == PhysReg &&
-        Rejected.count(Op.AssignedPhysReg) == 0 &&
-        RC->contains(Op.AssignedPhysReg)) {
-      // Yup, use the reload register that we didn't use before.
-      unsigned NewReg = Op.AssignedPhysReg;
-      Rejected.insert(PhysReg);
-      return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
-                             Rejected, RegKills, KillOps, VRM);
-    } else {
-      // Otherwise, we might also have a problem if a previously reused
-      // value aliases the new register. If so, codegen the previous reload
-      // and use this one.
-      unsigned PRRU = Op.PhysRegReused;
-      if (TRI->regsOverlap(PRRU, PhysReg)) {
-        // Okay, we found out that an alias of a reused register
-        // was used.  This isn't good because it means we have
-        // to undo a previous reuse.
-        MachineBasicBlock *MBB = MI->getParent();
-        const TargetRegisterClass *AliasRC =
-          MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
-
-        // Copy Op out of the vector and remove it, we're going to insert an
-        // explicit load for it.
-        ReusedOp NewOp = Op;
-        Reuses.erase(Reuses.begin()+ro);
-
-        // MI may be using only a sub-register of PhysRegUsed.
-        unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
-        unsigned SubIdx = 0;
-        assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
-               "A reuse cannot be a virtual register");
-        if (PRRU != RealPhysRegUsed) {
-          // What was the sub-register index?
-          SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
-          assert(SubIdx &&
-                 "Operand physreg is not a sub-register of PhysRegUsed");
-        }
-
-        // Ok, we're going to try to reload the assigned physreg into the
-        // slot that we were supposed to in the first place.  However, that
-        // register could hold a reuse.  Check to see if it conflicts or
-        // would prefer us to use a different register.
-        unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
-                                              MF, MI, Spills, MaybeDeadStores,
-                                              Rejected, RegKills, KillOps, VRM);
-
-        bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
-        int SSorRMId = DoReMat
-          ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
-
-        // Back-schedule reloads and remats.
-        MachineBasicBlock::iterator InsertLoc =
-          ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
-                           DoReMat, SSorRMId, TII, MF);
-
-        if (DoReMat) {
-          ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
-                        TRI, VRM);
-        } else {
-          TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
-                                    NewOp.StackSlotOrReMat, AliasRC, TRI);
-          MachineInstr *LoadMI = prior(InsertLoc);
-          VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
-          // Any stores to this stack slot are not dead anymore.
-          MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
-          ++NumLoads;
-        }
-        Spills.ClobberPhysReg(NewPhysReg);
-        Spills.ClobberPhysReg(NewOp.PhysRegReused);
-
-        unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
-        MI->getOperand(NewOp.Operand).setReg(RReg);
-        MI->getOperand(NewOp.Operand).setSubReg(0);
-
-        Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
-        UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
-        DEBUG(dbgs() << '\t' << *prior(InsertLoc));
-
-        DEBUG(dbgs() << "Reuse undone!\n");
-        --NumReused;
-
-        // Finally, PhysReg is now available, go ahead and use it.
-        return PhysReg;
-      }
-    }
-  }
-  return PhysReg;
-}
-
-// ************************************************************************ //
-
-/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
-/// stack slot mod/ref. It also checks if it's possible to unfold the
-/// instruction by having it define a specified physical register instead.
-static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
-                                 const TargetInstrInfo *TII,
-                                 const TargetRegisterInfo *TRI,
-                                 VirtRegMap &VRM) {
-  if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
-    return false;
-
-  bool Found = false;
-  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
-  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
-    unsigned VirtReg = I->second.first;
-    VirtRegMap::ModRef MR = I->second.second;
-    if (MR & VirtRegMap::isModRef)
-      if (VRM.getStackSlot(VirtReg) == SS) {
-        Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
-        break;
-      }
-  }
-  if (!Found)
-    return false;
-
-  // Does the instruction uses a register that overlaps the scratch register?
-  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI.getOperand(i);
-    if (!MO.isReg() || MO.getReg() == 0)
-      continue;
-    unsigned Reg = MO.getReg();
-    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
-      if (!VRM.hasPhys(Reg))
-        continue;
-      Reg = VRM.getPhys(Reg);
-    }
-    if (TRI->regsOverlap(PhysReg, Reg))
-      return false;
-  }
-  return true;
-}
-
-/// FindFreeRegister - Find a free register of a given register class by looking
-/// at (at most) the last two machine instructions.
-static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
-                                 MachineBasicBlock &MBB,
-                                 const TargetRegisterClass *RC,
-                                 const TargetRegisterInfo *TRI,
-                                 BitVector &AllocatableRegs) {
-  BitVector Defs(TRI->getNumRegs());
-  BitVector Uses(TRI->getNumRegs());
-  SmallVector<unsigned, 4> LocalUses;
-  SmallVector<unsigned, 4> Kills;
-
-  // Take a look at 2 instructions at most.
-  unsigned Count = 0;
-  while (Count < 2) {
-    if (MII == MBB.begin())
-      break;
-    MachineInstr *PrevMI = prior(MII);
-    MII = PrevMI;
-
-    if (PrevMI->isDebugValue())
-      continue; // Skip over dbg_value instructions.
-    ++Count;
-
-    for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
-      MachineOperand &MO = PrevMI->getOperand(i);
-      if (!MO.isReg() || MO.getReg() == 0)
-        continue;
-      unsigned Reg = MO.getReg();
-      if (MO.isDef()) {
-        Defs.set(Reg);
-        for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
-          Defs.set(*AS);
-      } else  {
-        LocalUses.push_back(Reg);
-        if (MO.isKill() && AllocatableRegs[Reg])
-          Kills.push_back(Reg);
-      }
-    }
-
-    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
-      unsigned Kill = Kills[i];
-      if (!Defs[Kill] && !Uses[Kill] &&
-          RC->contains(Kill))
-        return Kill;
-    }
-    for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
-      unsigned Reg = LocalUses[i];
-      Uses.set(Reg);
-      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
-        Uses.set(*AS);
-    }
-  }
-
-  return 0;
-}
-
-static
-void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
-                         const TargetRegisterInfo &TRI) {
-  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI->getOperand(i);
-    if (MO.isReg() && MO.getReg() == VirtReg)
-      substitutePhysReg(MO, PhysReg, TRI);
-  }
-}
-
-namespace {
-
-struct RefSorter {
-  bool operator()(const std::pair<MachineInstr*, int> &A,
-                  const std::pair<MachineInstr*, int> &B) {
-    return A.second < B.second;
-  }
-};
-
-// ***************************** //
-// Local Spiller Implementation  //
-// ***************************** //
-
-class LocalRewriter : public VirtRegRewriter {
-  MachineRegisterInfo *MRI;
-  const TargetRegisterInfo *TRI;
-  const TargetInstrInfo *TII;
-  VirtRegMap *VRM;
-  LiveIntervals *LIs;
-  BitVector AllocatableRegs;
-  DenseMap<MachineInstr*, unsigned> DistanceMap;
-  DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
-
-  MachineBasicBlock *MBB;       // Basic block currently being processed.
-
-public:
-
-  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
-                            LiveIntervals* LIs);
-
-private:
-  void EraseInstr(MachineInstr *MI) {
-    VRM->RemoveMachineInstrFromMaps(MI);
-    LIs->RemoveMachineInstrFromMaps(MI);
-    MI->eraseFromParent();
-  }
-
-  bool OptimizeByUnfold2(unsigned VirtReg, int SS,
-                         MachineBasicBlock::iterator &MII,
-                         std::vector<MachineInstr*> &MaybeDeadStores,
-                         AvailableSpills &Spills,
-                         BitVector &RegKills,
-                         std::vector<MachineOperand*> &KillOps);
-
-  bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
-                        std::vector<MachineInstr*> &MaybeDeadStores,
-                        AvailableSpills &Spills,
-                        BitVector &RegKills,
-                        std::vector<MachineOperand*> &KillOps);
-
-  bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
-                           unsigned VirtReg, unsigned SrcReg, int SS,
-                           AvailableSpills &Spills,
-                           BitVector &RegKills,
-                           std::vector<MachineOperand*> &KillOps,
-                           const TargetRegisterInfo *TRI);
-
-  void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
-                           int Idx, unsigned PhysReg, int StackSlot,
-                           const TargetRegisterClass *RC,
-                           bool isAvailable, MachineInstr *&LastStore,
-                           AvailableSpills &Spills,
-                           SmallSet<MachineInstr*, 4> &ReMatDefs,
-                           BitVector &RegKills,
-                           std::vector<MachineOperand*> &KillOps);
-
-  void TransferDeadness(unsigned Reg, BitVector &RegKills,
-                        std::vector<MachineOperand*> &KillOps);
-
-  bool InsertEmergencySpills(MachineInstr *MI);
-
-  bool InsertRestores(MachineInstr *MI,
-                      AvailableSpills &Spills,
-                      BitVector &RegKills,
-                      std::vector<MachineOperand*> &KillOps);
-
-  bool InsertSpills(MachineInstr *MI);
-
-  void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
-                   std::vector<MachineInstr*> &MaybeDeadStores,
-                   BitVector &RegKills,
-                   ReuseInfo &ReusedOperands,
-                   std::vector<MachineOperand*> &KillOps);
-
-  void RewriteMBB(LiveIntervals *LIs,
-                  AvailableSpills &Spills, BitVector &RegKills,
-                  std::vector<MachineOperand*> &KillOps);
-};
-}
-
-bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
-                                         LiveIntervals* lis) {
-  MRI = &MF.getRegInfo();
-  TRI = MF.getTarget().getRegisterInfo();
-  TII = MF.getTarget().getInstrInfo();
-  VRM = &vrm;
-  LIs = lis;
-  AllocatableRegs = TRI->getAllocatableSet(MF);
-  DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
-        << MF.getFunction()->getName() << "':\n");
-  DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
-        " reloads!) ****\n");
-  DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
-
-  // Spills - Keep track of which spilled values are available in physregs
-  // so that we can choose to reuse the physregs instead of emitting
-  // reloads. This is usually refreshed per basic block.
-  AvailableSpills Spills(TRI, TII);
-
-  // Keep track of kill information.
-  BitVector RegKills(TRI->getNumRegs());
-  std::vector<MachineOperand*> KillOps;
-  KillOps.resize(TRI->getNumRegs(), NULL);
-
-  // SingleEntrySuccs - Successor blocks which have a single predecessor.
-  SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
-  SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
-
-  // Traverse the basic blocks depth first.
-  MachineBasicBlock *Entry = MF.begin();
-  SmallPtrSet<MachineBasicBlock*,16> Visited;
-  for (df_ext_iterator<MachineBasicBlock*,
-         SmallPtrSet<MachineBasicBlock*,16> >
-         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
-       DFI != E; ++DFI) {
-    MBB = *DFI;
-    if (!EarlyVisited.count(MBB))
-      RewriteMBB(LIs, Spills, RegKills, KillOps);
-
-    // If this MBB is the only predecessor of a successor. Keep the
-    // availability information and visit it next.
-    do {
-      // Keep visiting single predecessor successor as long as possible.
-      SinglePredSuccs.clear();
-      findSinglePredSuccessor(MBB, SinglePredSuccs);
-      if (SinglePredSuccs.empty())
-        MBB = 0;
-      else {
-        // FIXME: More than one successors, each of which has MBB has
-        // the only predecessor.
-        MBB = SinglePredSuccs[0];
-        if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
-          Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
-          RewriteMBB(LIs, Spills, RegKills, KillOps);
-        }
-      }
-    } while (MBB);
-
-    // Clear the availability info.
-    Spills.clear();
-  }
-
-  DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
-  DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
-
-  // Mark unused spill slots.
-  MachineFrameInfo *MFI = MF.getFrameInfo();
-  int SS = VRM->getLowSpillSlot();
-  if (SS != VirtRegMap::NO_STACK_SLOT) {
-    for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
-      SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
-      if (!VRM->isSpillSlotUsed(SS)) {
-        MFI->RemoveStackObject(SS);
-        for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
-          MachineInstr *DVMI = DbgValues[j];
-          DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
-          EraseInstr(DVMI);
-        }
-        ++NumDSS;
-      }
-      DbgValues.clear();
-    }
-  }
-  Slot2DbgValues.clear();
-
-  return true;
-}
-
-/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
-/// a scratch register is available.
-///     xorq  %r12<kill>, %r13
-///     addq  %rax, -184(%rbp)
-///     addq  %r13, -184(%rbp)
-/// ==>
-///     xorq  %r12<kill>, %r13
-///     movq  -184(%rbp), %r12
-///     addq  %rax, %r12
-///     addq  %r13, %r12
-///     movq  %r12, -184(%rbp)
-bool LocalRewriter::
-OptimizeByUnfold2(unsigned VirtReg, int SS,
-                  MachineBasicBlock::iterator &MII,
-                  std::vector<MachineInstr*> &MaybeDeadStores,
-                  AvailableSpills &Spills,
-                  BitVector &RegKills,
-                  std::vector<MachineOperand*> &KillOps) {
-
-  MachineBasicBlock::iterator NextMII = llvm::next(MII);
-  // Skip over dbg_value instructions.
-  while (NextMII != MBB->end() && NextMII->isDebugValue())
-    NextMII = llvm::next(NextMII);
-  if (NextMII == MBB->end())
-    return false;
-
-  if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
-    return false;
-
-  // Now let's see if the last couple of instructions happens to have freed up
-  // a register.
-  const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
-  unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
-  if (!PhysReg)
-    return false;
-
-  MachineFunction &MF = *MBB->getParent();
-  TRI = MF.getTarget().getRegisterInfo();
-  MachineInstr &MI = *MII;
-  if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
-    return false;
-
-  // If the next instruction also folds the same SS modref and can be unfoled,
-  // then it's worthwhile to issue a load from SS into the free register and
-  // then unfold these instructions.
-  if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
-    return false;
-
-  // Back-schedule reloads and remats.
-  ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
-
-  // Load from SS to the spare physical register.
-  TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
-  // This invalidates Phys.
-  Spills.ClobberPhysReg(PhysReg);
-  // Remember it's available.
-  Spills.addAvailable(SS, PhysReg);
-  MaybeDeadStores[SS] = NULL;
-
-  // Unfold current MI.
-  SmallVector<MachineInstr*, 4> NewMIs;
-  if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
-    llvm_unreachable("Unable unfold the load / store folding instruction!");
-  assert(NewMIs.size() == 1);
-  AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
-  VRM->transferRestorePts(&MI, NewMIs[0]);
-  MII = MBB->insert(MII, NewMIs[0]);
-  InvalidateKills(MI, TRI, RegKills, KillOps);
-  EraseInstr(&MI);
-  ++NumModRefUnfold;
-
-  // Unfold next instructions that fold the same SS.
-  do {
-    MachineInstr &NextMI = *NextMII;
-    NextMII = llvm::next(NextMII);
-    NewMIs.clear();
-    if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
-      llvm_unreachable("Unable unfold the load / store folding instruction!");
-    assert(NewMIs.size() == 1);
-    AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
-    VRM->transferRestorePts(&NextMI, NewMIs[0]);
-    MBB->insert(NextMII, NewMIs[0]);
-    InvalidateKills(NextMI, TRI, RegKills, KillOps);
-    EraseInstr(&NextMI);
-    ++NumModRefUnfold;
-    // Skip over dbg_value instructions.
-    while (NextMII != MBB->end() && NextMII->isDebugValue())
-      NextMII = llvm::next(NextMII);
-    if (NextMII == MBB->end())
-      break;
-  } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
-
-  // Store the value back into SS.
-  TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
-  MachineInstr *StoreMI = prior(NextMII);
-  VRM->addSpillSlotUse(SS, StoreMI);
-  VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
-
-  return true;
-}
-
-/// OptimizeByUnfold - Turn a store folding instruction into a load folding
-/// instruction. e.g.
-///     xorl  %edi, %eax
-///     movl  %eax, -32(%ebp)
-///     movl  -36(%ebp), %eax
-///     orl   %eax, -32(%ebp)
-/// ==>
-///     xorl  %edi, %eax
-///     orl   -36(%ebp), %eax
-///     mov   %eax, -32(%ebp)
-/// This enables unfolding optimization for a subsequent instruction which will
-/// also eliminate the newly introduced store instruction.
-bool LocalRewriter::
-OptimizeByUnfold(MachineBasicBlock::iterator &MII,
-                 std::vector<MachineInstr*> &MaybeDeadStores,
-                 AvailableSpills &Spills,
-                 BitVector &RegKills,
-                 std::vector<MachineOperand*> &KillOps) {
-  MachineFunction &MF = *MBB->getParent();
-  MachineInstr &MI = *MII;
-  unsigned UnfoldedOpc = 0;
-  unsigned UnfoldPR = 0;
-  unsigned UnfoldVR = 0;
-  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
-  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
-  for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
-    // Only transform a MI that folds a single register.
-    if (UnfoldedOpc)
-      return false;
-    UnfoldVR = I->second.first;
-    VirtRegMap::ModRef MR = I->second.second;
-    // MI2VirtMap be can updated which invalidate the iterator.
-    // Increment the iterator first.
-    ++I;
-    if (VRM->isAssignedReg(UnfoldVR))
-      continue;
-    // If this reference is not a use, any previous store is now dead.
-    // Otherwise, the store to this stack slot is not dead anymore.
-    FoldedSS = VRM->getStackSlot(UnfoldVR);
-    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
-    if (DeadStore && (MR & VirtRegMap::isModRef)) {
-      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
-      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
-        continue;
-      UnfoldPR = PhysReg;
-      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
-                                                    false, true);
-    }
-  }
-
-  if (!UnfoldedOpc) {
-    if (!UnfoldVR)
-      return false;
-
-    // Look for other unfolding opportunities.
-    return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
-                             RegKills, KillOps);
-  }
-
-  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI.getOperand(i);
-    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
-      continue;
-    unsigned VirtReg = MO.getReg();
-    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
-      continue;
-    if (VRM->isAssignedReg(VirtReg)) {
-      unsigned PhysReg = VRM->getPhys(VirtReg);
-      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
-        return false;
-    } else if (VRM->isReMaterialized(VirtReg))
-      continue;
-    int SS = VRM->getStackSlot(VirtReg);
-    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
-    if (PhysReg) {
-      if (TRI->regsOverlap(PhysReg, UnfoldPR))
-        return false;
-      continue;
-    }
-    if (VRM->hasPhys(VirtReg)) {
-      PhysReg = VRM->getPhys(VirtReg);
-      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
-        continue;
-    }
-
-    // Ok, we'll need to reload the value into a register which makes
-    // it impossible to perform the store unfolding optimization later.
-    // Let's see if it is possible to fold the load if the store is
-    // unfolded. This allows us to perform the store unfolding
-    // optimization.
-    SmallVector<MachineInstr*, 4> NewMIs;
-    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
-      assert(NewMIs.size() == 1);
-      MachineInstr *NewMI = NewMIs.back();
-      MBB->insert(MII, NewMI);
-      NewMIs.clear();
-      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
-      assert(Idx != -1);
-      SmallVector<unsigned, 1> Ops;
-      Ops.push_back(Idx);
-      MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
-      NewMI->eraseFromParent();
-      if (FoldedMI) {
-        VRM->addSpillSlotUse(SS, FoldedMI);
-        if (!VRM->hasPhys(UnfoldVR))
-          VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
-        VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
-        MII = FoldedMI;
-        InvalidateKills(MI, TRI, RegKills, KillOps);
-        EraseInstr(&MI);
-        return true;
-      }
-    }
-  }
-
-  return false;
-}
-
-/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
-/// where SrcReg is r1 and it is tied to r0. Return true if after
-/// commuting this instruction it will be r0 = op r2, r1.
-static bool CommuteChangesDestination(MachineInstr *DefMI,
-                                      const MCInstrDesc &MCID,
-                                      unsigned SrcReg,
-                                      const TargetInstrInfo *TII,
-                                      unsigned &DstIdx) {
-  if (MCID.getNumDefs() != 1 && MCID.getNumOperands() != 3)
-    return false;
-  if (!DefMI->getOperand(1).isReg() ||
-      DefMI->getOperand(1).getReg() != SrcReg)
-    return false;
-  unsigned DefIdx;
-  if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
-    return false;
-  unsigned SrcIdx1, SrcIdx2;
-  if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
-    return false;
-  if (SrcIdx1 == 1 && SrcIdx2 == 2) {
-    DstIdx = 2;
-    return true;
-  }
-  return false;
-}
-
-/// CommuteToFoldReload -
-/// Look for
-/// r1 = load fi#1
-/// r1 = op r1, r2<kill>
-/// store r1, fi#1
-///
-/// If op is commutable and r2 is killed, then we can xform these to
-/// r2 = op r2, fi#1
-/// store r2, fi#1
-bool LocalRewriter::
-CommuteToFoldReload(MachineBasicBlock::iterator &MII,
-                    unsigned VirtReg, unsigned SrcReg, int SS,
-                    AvailableSpills &Spills,
-                    BitVector &RegKills,
-                    std::vector<MachineOperand*> &KillOps,
-                    const TargetRegisterInfo *TRI) {
-  if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
-    return false;
-
-  MachineInstr &MI = *MII;
-  MachineBasicBlock::iterator DefMII = prior(MII);
-  MachineInstr *DefMI = DefMII;
-  const MCInstrDesc &MCID = DefMI->getDesc();
-  unsigned NewDstIdx;
-  if (DefMII != MBB->begin() &&
-      MCID.isCommutable() &&
-      CommuteChangesDestination(DefMI, MCID, SrcReg, TII, NewDstIdx)) {
-    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
-    unsigned NewReg = NewDstMO.getReg();
-    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
-      return false;
-    MachineInstr *ReloadMI = prior(DefMII);
-    int FrameIdx;
-    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
-    if (DestReg != SrcReg || FrameIdx != SS)
-      return false;
-    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
-    if (UseIdx == -1)
-      return false;
-    unsigned DefIdx;
-    if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
-      return false;
-    assert(DefMI->getOperand(DefIdx).isReg() &&
-           DefMI->getOperand(DefIdx).getReg() == SrcReg);
-
-    // Now commute def instruction.
-    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
-    if (!CommutedMI)
-      return false;
-    MBB->insert(MII, CommutedMI);
-    SmallVector<unsigned, 1> Ops;
-    Ops.push_back(NewDstIdx);
-    MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
-    // Not needed since foldMemoryOperand returns new MI.
-    CommutedMI->eraseFromParent();
-    if (!FoldedMI)
-      return false;
-
-    VRM->addSpillSlotUse(SS, FoldedMI);
-    VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
-    // Insert new def MI and spill MI.
-    const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
-    TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
-    MII = prior(MII);
-    MachineInstr *StoreMI = MII;
-    VRM->addSpillSlotUse(SS, StoreMI);
-    VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
-    MII = FoldedMI;  // Update MII to backtrack.
-
-    // Delete all 3 old instructions.
-    InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
-    EraseInstr(ReloadMI);
-    InvalidateKills(*DefMI, TRI, RegKills, KillOps);
-    EraseInstr(DefMI);
-    InvalidateKills(MI, TRI, RegKills, KillOps);
-    EraseInstr(&MI);
-
-    // If NewReg was previously holding value of some SS, it's now clobbered.
-    // This has to be done now because it's a physical register. When this
-    // instruction is re-visited, it's ignored.
-    Spills.ClobberPhysReg(NewReg);
-
-    ++NumCommutes;
-    return true;
-  }
-
-  return false;
-}
-
-/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
-/// the last store to the same slot is now dead. If so, remove the last store.
-void LocalRewriter::
-SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
-                    int Idx, unsigned PhysReg, int StackSlot,
-                    const TargetRegisterClass *RC,
-                    bool isAvailable, MachineInstr *&LastStore,
-                    AvailableSpills &Spills,
-                    SmallSet<MachineInstr*, 4> &ReMatDefs,
-                    BitVector &RegKills,
-                    std::vector<MachineOperand*> &KillOps) {
-
-  MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
-  TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
-                           TRI);
-  MachineInstr *StoreMI = prior(oldNextMII);
-  VRM->addSpillSlotUse(StackSlot, StoreMI);
-  DEBUG(dbgs() << "Store:\t" << *StoreMI);
-
-  // If there is a dead store to this stack slot, nuke it now.
-  if (LastStore) {
-    DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
-    ++NumDSE;
-    SmallVector<unsigned, 2> KillRegs;
-    InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
-    MachineBasicBlock::iterator PrevMII = LastStore;
-    bool CheckDef = PrevMII != MBB->begin();
-    if (CheckDef)
-      --PrevMII;
-    EraseInstr(LastStore);
-    if (CheckDef) {
-      // Look at defs of killed registers on the store. Mark the defs
-      // as dead since the store has been deleted and they aren't
-      // being reused.
-      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
-        bool HasOtherDef = false;
-        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
-          MachineInstr *DeadDef = PrevMII;
-          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
-            // FIXME: This assumes a remat def does not have side effects.
-            EraseInstr(DeadDef);
-            ++NumDRM;
-          }
-        }
-      }
-    }
-  }
-
-  // Allow for multi-instruction spill sequences, as on PPC Altivec.  Presume
-  // the last of multiple instructions is the actual store.
-  LastStore = prior(oldNextMII);
-
-  // If the stack slot value was previously available in some other
-  // register, change it now.  Otherwise, make the register available,
-  // in PhysReg.
-  Spills.ModifyStackSlotOrReMat(StackSlot);
-  Spills.ClobberPhysReg(PhysReg);
-  Spills.addAvailable(StackSlot, PhysReg, isAvailable);
-  ++NumStores;
-}
-
-/// isSafeToDelete - Return true if this instruction doesn't produce any side
-/// effect and all of its defs are dead.
-static bool isSafeToDelete(MachineInstr &MI) {
-  const MCInstrDesc &MCID = MI.getDesc();
-  if (MCID.mayLoad() || MCID.mayStore() || MCID.isTerminator() ||
-      MCID.isCall() || MCID.isBarrier() || MCID.isReturn() ||
-      MI.isLabel() || MI.isDebugValue() ||
-      MI.hasUnmodeledSideEffects())
-    return false;
-
-  // Technically speaking inline asm without side effects and no defs can still
-  // be deleted. But there is so much bad inline asm code out there, we should
-  // let them be.
-  if (MI.isInlineAsm())
-    return false;
-
-  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI.getOperand(i);
-    if (!MO.isReg() || !MO.getReg())
-      continue;
-    if (MO.isDef() && !MO.isDead())
-      return false;
-    if (MO.isUse() && MO.isKill())
-      // FIXME: We can't remove kill markers or else the scavenger will assert.
-      // An alternative is to add a ADD pseudo instruction to replace kill
-      // markers.
-      return false;
-  }
-  return true;
-}
-
-/// TransferDeadness - A identity copy definition is dead and it's being
-/// removed. Find the last def or use and mark it as dead / kill.
-void LocalRewriter::
-TransferDeadness(unsigned Reg, BitVector &RegKills,
-                 std::vector<MachineOperand*> &KillOps) {
-  SmallPtrSet<MachineInstr*, 4> Seens;
-  SmallVector<std::pair<MachineInstr*, int>,8> Refs;
-  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
-         RE = MRI->reg_end(); RI != RE; ++RI) {
-    MachineInstr *UDMI = &*RI;
-    if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
-      continue;
-    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
-    if (DI == DistanceMap.end())
-      continue;
-    if (Seens.insert(UDMI))
-      Refs.push_back(std::make_pair(UDMI, DI->second));
-  }
-
-  if (Refs.empty())
-    return;
-  std::sort(Refs.begin(), Refs.end(), RefSorter());
-
-  while (!Refs.empty()) {
-    MachineInstr *LastUDMI = Refs.back().first;
-    Refs.pop_back();
-
-    MachineOperand *LastUD = NULL;
-    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
-      MachineOperand &MO = LastUDMI->getOperand(i);
-      if (!MO.isReg() || MO.getReg() != Reg)
-        continue;
-      if (!LastUD || (LastUD->isUse() && MO.isDef()))
-        LastUD = &MO;
-      if (LastUDMI->isRegTiedToDefOperand(i))
-        break;
-    }
-    if (LastUD->isDef()) {
-      // If the instruction has no side effect, delete it and propagate
-      // backward further. Otherwise, mark is dead and we are done.
-      if (!isSafeToDelete(*LastUDMI)) {
-        LastUD->setIsDead();
-        break;
-      }
-      EraseInstr(LastUDMI);
-    } else {
-      LastUD->setIsKill();
-      RegKills.set(Reg);
-      KillOps[Reg] = LastUD;
-      break;
-    }
-  }
-}
-
-/// InsertEmergencySpills - Insert emergency spills before MI if requested by
-/// VRM. Return true if spills were inserted.
-bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
-  if (!VRM->hasEmergencySpills(MI))
-    return false;
-  MachineBasicBlock::iterator MII = MI;
-  SmallSet<int, 4> UsedSS;
-  std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
-  for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
-    unsigned PhysReg = EmSpills[i];
-    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
-    assert(RC && "Unable to determine register class!");
-    int SS = VRM->getEmergencySpillSlot(RC);
-    if (UsedSS.count(SS))
-      llvm_unreachable("Need to spill more than one physical registers!");
-    UsedSS.insert(SS);
-    TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
-    MachineInstr *StoreMI = prior(MII);
-    VRM->addSpillSlotUse(SS, StoreMI);
-
-    // Back-schedule reloads and remats.
-    MachineBasicBlock::iterator InsertLoc =
-      ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
-                       TII, *MBB->getParent());
-
-    TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
-
-    MachineInstr *LoadMI = prior(InsertLoc);
-    VRM->addSpillSlotUse(SS, LoadMI);
-    ++NumPSpills;
-    DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
-  }
-  return true;
-}
-
-/// InsertRestores - Restore registers before MI is requested by VRM. Return
-/// true is any instructions were inserted.
-bool LocalRewriter::InsertRestores(MachineInstr *MI,
-                                   AvailableSpills &Spills,
-                                   BitVector &RegKills,
-                                   std::vector<MachineOperand*> &KillOps) {
-  if (!VRM->isRestorePt(MI))
-    return false;
-  MachineBasicBlock::iterator MII = MI;
-  std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
-  for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
-    unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
-    if (!VRM->getPreSplitReg(VirtReg))
-      continue; // Split interval spilled again.
-    unsigned Phys = VRM->getPhys(VirtReg);
-    MRI->setPhysRegUsed(Phys);
-
-    // Check if the value being restored if available. If so, it must be
-    // from a predecessor BB that fallthrough into this BB. We do not
-    // expect:
-    // BB1:
-    // r1 = load fi#1
-    // ...
-    //    = r1<kill>
-    // ... # r1 not clobbered
-    // ...
-    //    = load fi#1
-    bool DoReMat = VRM->isReMaterialized(VirtReg);
-    int SSorRMId = DoReMat
-      ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
-    unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
-    if (InReg == Phys) {
-      // If the value is already available in the expected register, save
-      // a reload / remat.
-      if (SSorRMId)
-        DEBUG(dbgs() << "Reusing RM#"
-                     << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
-      else
-        DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
-      DEBUG(dbgs() << " from physreg "
-                   << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
-                   <<" instead of reloading into physreg "
-                   << TRI->getName(Phys) << '\n');
-
-      // Reusing a physreg may resurrect it. But we expect ProcessUses to update
-      // the kill flags for the current instruction after processing it.
-
-      ++NumOmitted;
-      continue;
-    } else if (InReg && InReg != Phys) {
-      if (SSorRMId)
-        DEBUG(dbgs() << "Reusing RM#"
-                     << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
-      else
-        DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
-      DEBUG(dbgs() << " from physreg "
-                   << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
-                   <<" by copying it into physreg "
-                   << TRI->getName(Phys) << '\n');
-
-      // If the reloaded / remat value is available in another register,
-      // copy it to the desired register.
-
-      // Back-schedule reloads and remats.
-      MachineBasicBlock::iterator InsertLoc =
-        ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
-                         *MBB->getParent());
-      MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
-                                     TII->get(TargetOpcode::COPY), Phys)
-                               .addReg(InReg, RegState::Kill);
-
-      // This invalidates Phys.
-      Spills.ClobberPhysReg(Phys);
-      // Remember it's available.
-      Spills.addAvailable(SSorRMId, Phys);
-
-      CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
-      UpdateKills(*CopyMI, TRI, RegKills, KillOps);
-
-      DEBUG(dbgs() << '\t' << *CopyMI);
-      ++NumCopified;
-      continue;
-    }
-
-    // Back-schedule reloads and remats.
-    MachineBasicBlock::iterator InsertLoc =
-      ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
-                       *MBB->getParent());
-
-    if (VRM->isReMaterialized(VirtReg)) {
-      ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
-    } else {
-      const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
-      TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
-      MachineInstr *LoadMI = prior(InsertLoc);
-      VRM->addSpillSlotUse(SSorRMId, LoadMI);
-      ++NumLoads;
-      DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
-    }
-
-    // This invalidates Phys.
-    Spills.ClobberPhysReg(Phys);
-    // Remember it's available.
-    Spills.addAvailable(SSorRMId, Phys);
-
-    UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
-    DEBUG(dbgs() << '\t' << *prior(MII));
-  }
-  return true;
-}
-
-/// InsertSpills - Insert spills after MI if requested by VRM. Return
-/// true if spills were inserted.
-bool LocalRewriter::InsertSpills(MachineInstr *MI) {
-  if (!VRM->isSpillPt(MI))
-    return false;
-  MachineBasicBlock::iterator MII = MI;
-  std::vector<std::pair<unsigned,bool> > &SpillRegs =
-    VRM->getSpillPtSpills(MI);
-  for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
-    unsigned VirtReg = SpillRegs[i].first;
-    bool isKill = SpillRegs[i].second;
-    if (!VRM->getPreSplitReg(VirtReg))
-      continue; // Split interval spilled again.
-    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
-    unsigned Phys = VRM->getPhys(VirtReg);
-    int StackSlot = VRM->getStackSlot(VirtReg);
-    MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
-    TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
-                             RC, TRI);
-    MachineInstr *StoreMI = prior(oldNextMII);
-    VRM->addSpillSlotUse(StackSlot, StoreMI);
-    DEBUG(dbgs() << "Store:\t" << *StoreMI);
-    VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
-  }
-  return true;
-}
-
-
-/// ProcessUses - Process all of MI's spilled operands and all available
-/// operands.
-void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
-                                std::vector<MachineInstr*> &MaybeDeadStores,
-                                BitVector &RegKills,
-                                ReuseInfo &ReusedOperands,
-                                std::vector<MachineOperand*> &KillOps) {
-  // Clear kill info.
-  SmallSet<unsigned, 2> KilledMIRegs;
-  SmallVector<unsigned, 4> VirtUseOps;
-  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-    MachineOperand &MO = MI.getOperand(i);
-    if (!MO.isReg() || MO.getReg() == 0)
-      continue;   // Ignore non-register operands.
-
-    unsigned VirtReg = MO.getReg();
-
-    if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
-      // Ignore physregs for spilling, but remember that it is used by this
-      // function.
-      MRI->setPhysRegUsed(VirtReg);
-      continue;
-    }
-
-    // We want to process implicit virtual register uses first.
-    if (MO.isImplicit())
-      // If the virtual register is implicitly defined, emit a implicit_def
-      // before so scavenger knows it's "defined".
-      // FIXME: This is a horrible hack done the by register allocator to
-      // remat a definition with virtual register operand.
-      VirtUseOps.insert(VirtUseOps.begin(), i);
-    else
-      VirtUseOps.push_back(i);
-
-    // A partial def causes problems because the same operand both reads and
-    // writes the register. This rewriter is designed to rewrite uses and defs
-    // separately, so a partial def would already have been rewritten to a
-    // physreg by the time we get to processing defs.
-    // Add an implicit use operand to model the partial def.
-    if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
-        MI.findRegisterUseOperandIdx(VirtReg) == -1) {
-      VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
-      MI.addOperand(MachineOperand::CreateReg(VirtReg,
-                                              false,  // isDef
-                                              true)); // isImplicit
-      DEBUG(dbgs() << "Partial redef: " << MI);
-    }
-  }
-
-  // Process all of the spilled uses and all non spilled reg references.
-  SmallVector<int, 2> PotentialDeadStoreSlots;
-  KilledMIRegs.clear();
-  for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
-    unsigned i = VirtUseOps[j];
-    unsigned VirtReg = MI.getOperand(i).getReg();
-    assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
-           "Not a virtual register?");
-
-    unsigned SubIdx = MI.getOperand(i).getSubReg();
-    if (VRM->isAssignedReg(VirtReg)) {
-      // This virtual register was assigned a physreg!
-      unsigned Phys = VRM->getPhys(VirtReg);
-      MRI->setPhysRegUsed(Phys);
-      if (MI.getOperand(i).isDef())
-        ReusedOperands.markClobbered(Phys);
-      substitutePhysReg(MI.getOperand(i), Phys, *TRI);
-      if (VRM->isImplicitlyDefined(VirtReg))
-        // FIXME: Is this needed?
-        BuildMI(*MBB, &MI, MI.getDebugLoc(),
-                TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
-      continue;
-    }
-
-    // This virtual register is now known to be a spilled value.
-    if (!MI.getOperand(i).isUse())
-      continue;  // Handle defs in the loop below (handle use&def here though)
-
-    bool AvoidReload = MI.getOperand(i).isUndef();
-    // Check if it is defined by an implicit def. It should not be spilled.
-    // Note, this is for correctness reason. e.g.
-    // 8   %reg1024<def> = IMPLICIT_DEF
-    // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
-    // The live range [12, 14) are not part of the r1024 live interval since
-    // it's defined by an implicit def. It will not conflicts with live
-    // interval of r1025. Now suppose both registers are spilled, you can
-    // easily see a situation where both registers are reloaded before
-    // the INSERT_SUBREG and both target registers that would overlap.
-    bool DoReMat = VRM->isReMaterialized(VirtReg);
-    int SSorRMId = DoReMat
-      ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
-    int ReuseSlot = SSorRMId;
-
-    // Check to see if this stack slot is available.
-    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
-
-    // If this is a sub-register use, make sure the reuse register is in the
-    // right register class. For example, for x86 not all of the 32-bit
-    // registers have accessible sub-registers.
-    // Similarly so for EXTRACT_SUBREG. Consider this:
-    // EDI = op
-    // MOV32_mr fi#1, EDI
-    // ...
-    //       = EXTRACT_SUBREG fi#1
-    // fi#1 is available in EDI, but it cannot be reused because it's not in
-    // the right register file.
-    if (PhysReg && !AvoidReload && SubIdx) {
-      const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
-      if (!RC->contains(PhysReg))
-        PhysReg = 0;
-    }
-
-    if (PhysReg && !AvoidReload) {
-      // This spilled operand might be part of a two-address operand.  If this
-      // is the case, then changing it will necessarily require changing the
-      // def part of the instruction as well.  However, in some cases, we
-      // aren't allowed to modify the reused register.  If none of these cases
-      // apply, reuse it.
-      bool CanReuse = true;
-      bool isTied = MI.isRegTiedToDefOperand(i);
-      if (isTied) {
-        // Okay, we have a two address operand.  We can reuse this physreg as
-        // long as we are allowed to clobber the value and there isn't an
-        // earlier def that has already clobbered the physreg.
-        CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
-          Spills.canClobberPhysReg(PhysReg);
-      }
-      // If this is an asm, and a PhysReg alias is used elsewhere as an
-      // earlyclobber operand, we can't also use it as an input.
-      if (MI.isInlineAsm()) {
-        for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
-          MachineOperand &MOk = MI.getOperand(k);
-          if (MOk.isReg() && MOk.isEarlyClobber() &&
-              TRI->regsOverlap(MOk.getReg(), PhysReg)) {
-            CanReuse = false;
-            DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
-                         << " for " << PrintReg(VirtReg) << ": " << MOk
-                         << '\n');
-            break;
-          }
-        }
-      }
-
-      if (CanReuse) {
-        // If this stack slot value is already available, reuse it!
-        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
-          DEBUG(dbgs() << "Reusing RM#"
-                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
-        else
-          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
-        DEBUG(dbgs() << " from physreg "
-              << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg)
-              << " instead of reloading into "
-              << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n');
-        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
-        MI.getOperand(i).setReg(RReg);
-        MI.getOperand(i).setSubReg(0);
-
-        // Reusing a physreg may resurrect it. But we expect ProcessUses to
-        // update the kill flags for the current instr after processing it.
-
-        // The only technical detail we have is that we don't know that
-        // PhysReg won't be clobbered by a reloaded stack slot that occurs
-        // later in the instruction.  In particular, consider 'op V1, V2'.
-        // If V1 is available in physreg R0, we would choose to reuse it
-        // here, instead of reloading it into the register the allocator
-        // indicated (say R1).  However, V2 might have to be reloaded
-        // later, and it might indicate that it needs to live in R0.  When
-        // this occurs, we need to have information available that
-        // indicates it is safe to use R1 for the reload instead of R0.
-        //
-        // To further complicate matters, we might conflict with an alias,
-        // or R0 and R1 might not be compatible with each other.  In this
-        // case, we actually insert a reload for V1 in R1, ensuring that
-        // we can get at R0 or its alias.
-        ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
-                                VRM->getPhys(VirtReg), VirtReg);
-        if (isTied)
-          // Only mark it clobbered if this is a use&def operand.
-          ReusedOperands.markClobbered(PhysReg);
-        ++NumReused;
-
-        if (MI.getOperand(i).isKill() &&
-            ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
-
-          // The store of this spilled value is potentially dead, but we
-          // won't know for certain until we've confirmed that the re-use
-          // above is valid, which means waiting until the other operands
-          // are processed. For now we just track the spill slot, we'll
-          // remove it after the other operands are processed if valid.
-
-          PotentialDeadStoreSlots.push_back(ReuseSlot);
-        }
-
-        // Mark is isKill if it's there no other uses of the same virtual
-        // register and it's not a two-address operand. IsKill will be
-        // unset if reg is reused.
-        if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
-          MI.getOperand(i).setIsKill();
-          KilledMIRegs.insert(VirtReg);
-        }
-        continue;
-      }  // CanReuse
-
-      // Otherwise we have a situation where we have a two-address instruction
-      // whose mod/ref operand needs to be reloaded.  This reload is already
-      // available in some register "PhysReg", but if we used PhysReg as the
-      // operand to our 2-addr instruction, the instruction would modify
-      // PhysReg.  This isn't cool if something later uses PhysReg and expects
-      // to get its initial value.
-      //
-      // To avoid this problem, and to avoid doing a load right after a store,
-      // we emit a copy from PhysReg into the designated register for this
-      // operand.
-      //
-      // This case also applies to an earlyclobber'd PhysReg.
-      unsigned DesignatedReg = VRM->getPhys(VirtReg);
-      assert(DesignatedReg && "Must map virtreg to physreg!");
-
-      // Note that, if we reused a register for a previous operand, the
-      // register we want to reload into might not actually be
-      // available.  If this occurs, use the register indicated by the
-      // reuser.
-      if (ReusedOperands.hasReuses())
-        DesignatedReg = ReusedOperands.
-          GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
-                          MaybeDeadStores, RegKills, KillOps, *VRM);
-
-      // If the mapped designated register is actually the physreg we have
-      // incoming, we don't need to inserted a dead copy.
-      if (DesignatedReg == PhysReg) {
-        // If this stack slot value is already available, reuse it!
-        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
-          DEBUG(dbgs() << "Reusing RM#"
-                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
-        else
-          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
-        DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
-              << " for " << PrintReg(VirtReg)
-              << " instead of reloading into same physreg.\n");
-        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
-        MI.getOperand(i).setReg(RReg);
-        MI.getOperand(i).setSubReg(0);
-        ReusedOperands.markClobbered(RReg);
-        ++NumReused;
-        continue;
-      }
-
-      MRI->setPhysRegUsed(DesignatedReg);
-      ReusedOperands.markClobbered(DesignatedReg);
-
-      // Back-schedule reloads and remats.
-      MachineBasicBlock::iterator InsertLoc =
-        ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
-                         SSorRMId, TII, *MBB->getParent());
-      MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
-                                     TII->get(TargetOpcode::COPY),
-                                     DesignatedReg).addReg(PhysReg);
-      CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
-      UpdateKills(*CopyMI, TRI, RegKills, KillOps);
-
-      // This invalidates DesignatedReg.
-      Spills.ClobberPhysReg(DesignatedReg);
-
-      Spills.addAvailable(ReuseSlot, DesignatedReg);
-      unsigned RReg =
-        SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
-      MI.getOperand(i).setReg(RReg);
-      MI.getOperand(i).setSubReg(0);
-      DEBUG(dbgs() << '\t' << *prior(InsertLoc));
-      ++NumReused;
-      continue;
-    } // if (PhysReg)
-
-    // Otherwise, reload it and remember that we have it.
-    PhysReg = VRM->getPhys(VirtReg);
-    assert(PhysReg && "Must map virtreg to physreg!");
-
-    // Note that, if we reused a register for a previous operand, the
-    // register we want to reload into might not actually be
-    // available.  If this occurs, use the register indicated by the
-    // reuser.
-    if (ReusedOperands.hasReuses())
-      PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
-                  Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
-
-    MRI->setPhysRegUsed(PhysReg);
-    ReusedOperands.markClobbered(PhysReg);
-    if (AvoidReload)
-      ++NumAvoided;
-    else {
-      // Back-schedule reloads and remats.
-      MachineBasicBlock::iterator InsertLoc =
-        ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
-                         SSorRMId, TII, *MBB->getParent());
-
-      if (DoReMat) {
-        ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
-      } else {
-        const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
-        TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
-        MachineInstr *LoadMI = prior(InsertLoc);
-        VRM->addSpillSlotUse(SSorRMId, LoadMI);
-        ++NumLoads;
-        DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
-      }
-      // This invalidates PhysReg.
-      Spills.ClobberPhysReg(PhysReg);
-
-      // Any stores to this stack slot are not dead anymore.
-      if (!DoReMat)
-        MaybeDeadStores[SSorRMId] = NULL;
-      Spills.addAvailable(SSorRMId, PhysReg);
-      // Assumes this is the last use. IsKill will be unset if reg is reused
-      // unless it's a two-address operand.
-      if (!MI.isRegTiedToDefOperand(i) &&
-          KilledMIRegs.count(VirtReg) == 0) {
-        MI.getOperand(i).setIsKill();
-        KilledMIRegs.insert(VirtReg);
-      }
-
-      UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
-      DEBUG(dbgs() << '\t' << *prior(InsertLoc));
-    }
-    unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
-    MI.getOperand(i).setReg(RReg);
-    MI.getOperand(i).setSubReg(0);
-  }
-
-  // Ok - now we can remove stores that have been confirmed dead.
-  for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
-    // This was the last use and the spilled value is still available
-    // for reuse. That means the spill was unnecessary!
-    int PDSSlot = PotentialDeadStoreSlots[j];
-    MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
-    if (DeadStore) {
-      DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
-      InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
-      EraseInstr(DeadStore);
-      MaybeDeadStores[PDSSlot] = NULL;
-      ++NumDSE;
-    }
-  }
-}
-
-/// rewriteMBB - Keep track of which spills are available even after the
-/// register allocator is done with them.  If possible, avoid reloading vregs.
-void
-LocalRewriter::RewriteMBB(LiveIntervals *LIs,
-                          AvailableSpills &Spills, BitVector &RegKills,
-                          std::vector<MachineOperand*> &KillOps) {
-
-  DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
-               << MBB->getName() << "':\n");
-
-  MachineFunction &MF = *MBB->getParent();
-
-  // MaybeDeadStores - When we need to write a value back into a stack slot,
-  // keep track of the inserted store.  If the stack slot value is never read
-  // (because the value was used from some available register, for example), and
-  // subsequently stored to, the original store is dead.  This map keeps track
-  // of inserted stores that are not used.  If we see a subsequent store to the
-  // same stack slot, the original store is deleted.
-  std::vector<MachineInstr*> MaybeDeadStores;
-  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
-
-  // ReMatDefs - These are rematerializable def MIs which are not deleted.
-  SmallSet<MachineInstr*, 4> ReMatDefs;
-
-  // Keep track of the registers we have already spilled in case there are
-  // multiple defs of the same register in MI.
-  SmallSet<unsigned, 8> SpilledMIRegs;
-
-  RegKills.reset();
-  KillOps.clear();
-  KillOps.resize(TRI->getNumRegs(), NULL);
-
-  DistanceMap.clear();
-  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
-       MII != E; ) {
-    MachineBasicBlock::iterator NextMII = llvm::next(MII);
-
-    if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
-      NextMII = llvm::next(MII);
-
-    if (InsertEmergencySpills(MII))
-      NextMII = llvm::next(MII);
-
-    InsertRestores(MII, Spills, RegKills, KillOps);
-
-    if (InsertSpills(MII))
-      NextMII = llvm::next(MII);
-
-    bool Erased = false;
-    bool BackTracked = false;
-    MachineInstr &MI = *MII;
-
-    // Remember DbgValue's which reference stack slots.
-    if (MI.isDebugValue() && MI.getOperand(0).isFI())
-      Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
-
-    /// ReusedOperands - Keep track of operand reuse in case we need to undo
-    /// reuse.
-    ReuseInfo ReusedOperands(MI, TRI);
-
-    ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
-
-    DEBUG(dbgs() << '\t' << MI);
-
-
-    // If we have folded references to memory operands, make sure we clear all
-    // physical registers that may contain the value of the spilled virtual
-    // register
-
-    // Copy the folded virts to a small vector, we may change MI2VirtMap.
-    SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
-    // C++0x FTW!
-    for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
-                   VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
-           VRM->getFoldedVirts(&MI);
-         FVRange.first != FVRange.second; ++FVRange.first)
-      FoldedVirts.push_back(FVRange.first->second);
-
-    SmallSet<int, 2> FoldedSS;
-    for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
-      unsigned VirtReg = FoldedVirts[FVI].first;
-      VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
-      DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << "  MR: " << MR);
-
-      int SS = VRM->getStackSlot(VirtReg);
-      if (SS == VirtRegMap::NO_STACK_SLOT)
-        continue;
-      FoldedSS.insert(SS);
-      DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
-
-      // If this folded instruction is just a use, check to see if it's a
-      // straight load from the virt reg slot.
-      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
-        int FrameIdx;
-        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
-        if (DestReg && FrameIdx == SS) {
-          // If this spill slot is available, turn it into a copy (or nothing)
-          // instead of leaving it as a load!
-          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
-            DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
-            if (DestReg != InReg) {
-              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
-              MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
-                                             TII->get(TargetOpcode::COPY))
-                .addReg(DestReg, RegState::Define, DefMO->getSubReg())
-                .addReg(InReg, RegState::Kill);
-              // Revisit the copy so we make sure to notice the effects of the
-              // operation on the destreg (either needing to RA it if it's
-              // virtual or needing to clobber any values if it's physical).
-              NextMII = CopyMI;
-              NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
-              BackTracked = true;
-            } else {
-              DEBUG(dbgs() << "Removing now-noop copy: " << MI);
-              // InvalidateKills resurrects any prior kill of the copy's source
-              // allowing the source reg to be reused in place of the copy.
-              Spills.disallowClobberPhysReg(InReg);
-            }
-
-            InvalidateKills(MI, TRI, RegKills, KillOps);
-            EraseInstr(&MI);
-            Erased = true;
-            goto ProcessNextInst;
-          }
-        } else {
-          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
-          SmallVector<MachineInstr*, 4> NewMIs;
-          if (PhysReg &&
-              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
-            MBB->insert(MII, NewMIs[0]);
-            InvalidateKills(MI, TRI, RegKills, KillOps);
-            EraseInstr(&MI);
-            Erased = true;
-            --NextMII;  // backtrack to the unfolded instruction.
-            BackTracked = true;
-            goto ProcessNextInst;
-          }
-        }
-      }
-
-      // If this reference is not a use, any previous store is now dead.
-      // Otherwise, the store to this stack slot is not dead anymore.
-      MachineInstr* DeadStore = MaybeDeadStores[SS];
-      if (DeadStore) {
-        bool isDead = !(MR & VirtRegMap::isRef);
-        MachineInstr *NewStore = NULL;
-        if (MR & VirtRegMap::isModRef) {
-          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
-          SmallVector<MachineInstr*, 4> NewMIs;
-          // We can reuse this physreg as long as we are allowed to clobber
-          // the value and there isn't an earlier def that has already clobbered
-          // the physreg.
-          if (PhysReg &&
-              !ReusedOperands.isClobbered(PhysReg) &&
-              Spills.canClobberPhysReg(PhysReg) &&
-              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
-            MachineOperand *KillOpnd =
-              DeadStore->findRegisterUseOperand(PhysReg, true);
-            // Note, if the store is storing a sub-register, it's possible the
-            // super-register is needed below.
-            if (KillOpnd && !KillOpnd->getSubReg() &&
-                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
-              MBB->insert(MII, NewMIs[0]);
-              NewStore = NewMIs[1];
-              MBB->insert(MII, NewStore);
-              VRM->addSpillSlotUse(SS, NewStore);
-              InvalidateKills(MI, TRI, RegKills, KillOps);
-              EraseInstr(&MI);
-              Erased = true;
-              --NextMII;
-              --NextMII;  // backtrack to the unfolded instruction.
-              BackTracked = true;
-              isDead = true;
-              ++NumSUnfold;
-            }
-          }
-        }
-
-        if (isDead) {  // Previous store is dead.
-          // If we get here, the store is dead, nuke it now.
-          DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
-          InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
-          EraseInstr(DeadStore);
-          if (!NewStore)
-            ++NumDSE;
-        }
-
-        MaybeDeadStores[SS] = NULL;
-        if (NewStore) {
-          // Treat this store as a spill merged into a copy. That makes the
-          // stack slot value available.
-          VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
-          goto ProcessNextInst;
-        }
-      }
-
-      // If the spill slot value is available, and this is a new definition of
-      // the value, the value is not available anymore.
-      if (MR & VirtRegMap::isMod) {
-        // Notice that the value in this stack slot has been modified.
-        Spills.ModifyStackSlotOrReMat(SS);
-
-        // If this is *just* a mod of the value, check to see if this is just a
-        // store to the spill slot (i.e. the spill got merged into the copy). If
-        // so, realize that the vreg is available now, and add the store to the
-        // MaybeDeadStore info.
-        int StackSlot;
-        if (!(MR & VirtRegMap::isRef)) {
-          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
-            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
-                   "Src hasn't been allocated yet?");
-
-            if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
-                                    Spills, RegKills, KillOps, TRI)) {
-              NextMII = llvm::next(MII);
-              BackTracked = true;
-              goto ProcessNextInst;
-            }
-
-            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
-            // this as a potentially dead store in case there is a subsequent
-            // store into the stack slot without a read from it.
-            MaybeDeadStores[StackSlot] = &MI;
-
-            // If the stack slot value was previously available in some other
-            // register, change it now.  Otherwise, make the register
-            // available in PhysReg.
-            Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
-          }
-        }
-      }
-    }
-
-    // Process all of the spilled defs.
-    SpilledMIRegs.clear();
-    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
-      MachineOperand &MO = MI.getOperand(i);
-      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
-        continue;
-
-      unsigned VirtReg = MO.getReg();
-      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
-        // Check to see if this is a noop copy.  If so, eliminate the
-        // instruction before considering the dest reg to be changed.
-        // Also check if it's copying from an "undef", if so, we can't
-        // eliminate this or else the undef marker is lost and it will
-        // confuses the scavenger. This is extremely rare.
-        if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
-            MI.getNumOperands() == 2) {
-          ++NumDCE;
-          DEBUG(dbgs() << "Removing now-noop copy: " << MI);
-          SmallVector<unsigned, 2> KillRegs;
-          InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
-          if (MO.isDead() && !KillRegs.empty()) {
-            // Source register or an implicit super/sub-register use is killed.
-            assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
-            // Last def is now dead.
-            TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
-          }
-          EraseInstr(&MI);
-          Erased = true;
-          Spills.disallowClobberPhysReg(VirtReg);
-          goto ProcessNextInst;
-        }
-
-        // If it's not a no-op copy, it clobbers the value in the destreg.
-        Spills.ClobberPhysReg(VirtReg);
-        ReusedOperands.markClobbered(VirtReg);
-
-        // Check to see if this instruction is a load from a stack slot into
-        // a register.  If so, this provides the stack slot value in the reg.
-        int FrameIdx;
-        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
-          assert(DestReg == VirtReg && "Unknown load situation!");
-
-          // If it is a folded reference, then it's not safe to clobber.
-          bool Folded = FoldedSS.count(FrameIdx);
-          // Otherwise, if it wasn't available, remember that it is now!
-          Spills.addAvailable(FrameIdx, DestReg, !Folded);
-          goto ProcessNextInst;
-        }
-
-        continue;
-      }
-
-      unsigned SubIdx = MO.getSubReg();
-      bool DoReMat = VRM->isReMaterialized(VirtReg);
-      if (DoReMat)
-        ReMatDefs.insert(&MI);
-
-      // The only vregs left are stack slot definitions.
-      int StackSlot = VRM->getStackSlot(VirtReg);
-      const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
-
-      // If this def is part of a two-address operand, make sure to execute
-      // the store from the correct physical register.
-      unsigned PhysReg;
-      unsigned TiedOp;
-      if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
-        PhysReg = MI.getOperand(TiedOp).getReg();
-        if (SubIdx) {
-          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
-          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
-                 "Can't find corresponding super-register!");
-          PhysReg = SuperReg;
-        }
-      } else {
-        PhysReg = VRM->getPhys(VirtReg);
-        if (ReusedOperands.isClobbered(PhysReg)) {
-          // Another def has taken the assigned physreg. It must have been a
-          // use&def which got it due to reuse. Undo the reuse!
-          PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
-                      Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
-        }
-      }
-
-      // If StackSlot is available in a register that also holds other stack
-      // slots, clobber those stack slots now.
-      Spills.ClobberSharingStackSlots(StackSlot);
-
-      assert(PhysReg && "VR not assigned a physical register?");
-      MRI->setPhysRegUsed(PhysReg);
-      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
-      ReusedOperands.markClobbered(RReg);
-      MI.getOperand(i).setReg(RReg);
-      MI.getOperand(i).setSubReg(0);
-
-      if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
-        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
-        SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
-          LastStore, Spills, ReMatDefs, RegKills, KillOps);
-        NextMII = llvm::next(MII);
-
-        // Check to see if this is a noop copy.  If so, eliminate the
-        // instruction before considering the dest reg to be changed.
-        if (MI.isIdentityCopy()) {
-          ++NumDCE;
-          DEBUG(dbgs() << "Removing now-noop copy: " << MI);
-          InvalidateKills(MI, TRI, RegKills, KillOps);
-          EraseInstr(&MI);
-          Erased = true;
-          UpdateKills(*LastStore, TRI, RegKills, KillOps);
-          goto ProcessNextInst;
-        }
-      }
-    }
-    ProcessNextInst:
-    // Delete dead instructions without side effects.
-    if (!Erased && !BackTracked && isSafeToDelete(MI)) {
-      InvalidateKills(MI, TRI, RegKills, KillOps);
-      EraseInstr(&MI);
-      Erased = true;
-    }
-    if (!Erased)
-      DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
-    if (!Erased && !BackTracked) {
-      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
-        UpdateKills(*II, TRI, RegKills, KillOps);
-    }
-    MII = NextMII;
-  }
-
-}
-
-llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
-  switch (RewriterOpt) {
-  default: llvm_unreachable("Unreachable!");
-  case local:
-    return new LocalRewriter();
-  case trivial:
-    return new TrivialRewriter();
-  }
-}
diff --git a/lib/CodeGen/VirtRegRewriter.h b/lib/CodeGen/VirtRegRewriter.h
deleted file mode 100644 (file)
index 93474e0..0000000
+++ /dev/null
@@ -1,32 +0,0 @@
-//===-- llvm/CodeGen/VirtRegRewriter.h - VirtRegRewriter -*- C++ -*--------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_VIRTREGREWRITER_H
-#define LLVM_CODEGEN_VIRTREGREWRITER_H
-
-namespace llvm {
-  class LiveIntervals;
-  class MachineFunction;
-  class VirtRegMap;
-  
-  /// VirtRegRewriter interface: Implementations of this interface assign
-  /// spilled virtual registers to stack slots, rewriting the code.
-  struct VirtRegRewriter {
-    virtual ~VirtRegRewriter();
-    virtual bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
-                                      LiveIntervals* LIs) = 0;
-  };
-
-  /// createVirtRegRewriter - Create an return a rewriter object, as specified
-  /// on the command line.
-  VirtRegRewriter* createVirtRegRewriter();
-
-}
-
-#endif