Revert r229622: "[LoopAccesses] Make VectorizerParams global" and others. r229622...
authorNAKAMURA Takumi <geek4civic@gmail.com>
Wed, 18 Feb 2015 08:34:47 +0000 (08:34 +0000)
committerNAKAMURA Takumi <geek4civic@gmail.com>
Wed, 18 Feb 2015 08:34:47 +0000 (08:34 +0000)
  r229622: "[LoopAccesses] Make VectorizerParams global"
  r229623: "[LoopAccesses] Stash the report from the analysis rather than emitting it"
  r229624: "[LoopAccesses] Cache the result of canVectorizeMemory"
  r229626: "[LoopAccesses] Create the analysis pass"
  r229628: "[LoopAccesses] Change debug messages from LV to LAA"
  r229630: "[LoopAccesses] Add canAnalyzeLoop"
  r229631: "[LoopAccesses] Add missing const to APIs in VectorizationReport"
  r229632: "[LoopAccesses] Split out LoopAccessReport from VectorizerReport"
  r229633: "[LoopAccesses] Add -analyze support"
  r229634: "[LoopAccesses] Change LAA:getInfo to return a constant reference"
  r229638: "Analysis: fix buildbots"

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229650 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/Analysis/LoopAccessAnalysis.h
include/llvm/InitializePasses.h
lib/Analysis/LoopAccessAnalysis.cpp
lib/Transforms/Scalar/Scalar.cpp
lib/Transforms/Vectorize/LoopVectorize.cpp
test/Analysis/LoopAccessAnalysis/unsafe-and-rt-checks-no-dbg.ll [deleted file]
test/Analysis/LoopAccessAnalysis/unsafe-and-rt-checks.ll [deleted file]

index bd0f880340f54384b72ea984b2d6c7009716f616..941b50a2b256a8c04cfb425b79d489c8c8226a65 100644 (file)
 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
 
 #include "llvm/ADT/EquivalenceClasses.h"
 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
 
 #include "llvm/ADT/EquivalenceClasses.h"
-#include "llvm/ADT/Optional.h"
 #include "llvm/ADT/SetVector.h"
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/AliasSetTracker.h"
 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 #include "llvm/IR/ValueHandle.h"
 #include "llvm/ADT/SetVector.h"
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/AliasSetTracker.h"
 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 #include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
 #include "llvm/Support/raw_ostream.h"
 
 namespace llvm {
 #include "llvm/Support/raw_ostream.h"
 
 namespace llvm {
@@ -36,52 +34,30 @@ class SCEV;
 
 /// Optimization analysis message produced during vectorization. Messages inform
 /// the user why vectorization did not occur.
 
 /// Optimization analysis message produced during vectorization. Messages inform
 /// the user why vectorization did not occur.
-class LoopAccessReport {
+class VectorizationReport {
   std::string Message;
   std::string Message;
-  const Instruction *Instr;
-
-protected:
-  LoopAccessReport(const Twine &Message, const Instruction *I)
-      : Message(Message.str()), Instr(I) {}
+  Instruction *Instr;
 
 public:
 
 public:
-  LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
+  VectorizationReport(Instruction *I = nullptr)
+      : Message("loop not vectorized: "), Instr(I) {}
 
 
-  template <typename A> LoopAccessReport &operator<<(const A &Value) {
+  template <typename A> VectorizationReport &operator<<(const A &Value) {
     raw_string_ostream Out(Message);
     Out << Value;
     return *this;
   }
 
     raw_string_ostream Out(Message);
     Out << Value;
     return *this;
   }
 
-  const Instruction *getInstr() const { return Instr; }
+  Instruction *getInstr() { return Instr; }
 
   std::string &str() { return Message; }
 
   std::string &str() { return Message; }
-  const std::string &str() const { return Message; }
   operator Twine() { return Message; }
 
   operator Twine() { return Message; }
 
-  /// \brief Emit an analysis note for \p PassName with the debug location from
-  /// the instruction in \p Message if available.  Otherwise use the location of
-  /// \p TheLoop.
-  static void emitAnalysis(const LoopAccessReport &Message,
+  /// \brief Emit an analysis note with the debug location from the instruction
+  /// in \p Message if available.  Otherwise use the location of \p TheLoop.
+  static void emitAnalysis(VectorizationReport &Message,
                            const Function *TheFunction,
                            const Function *TheFunction,
-                           const Loop *TheLoop,
-                           const char *PassName);
-};
-
-/// \brief Collection of parameters shared beetween the Loop Vectorizer and the
-/// Loop Access Analysis.
-struct VectorizerParams {
-  /// \brief Maximum SIMD width.
-  static const unsigned MaxVectorWidth;
-
-  /// \brief VF as overridden by the user.
-  static unsigned VectorizationFactor;
-  /// \brief Interleave factor as overridden by the user.
-  static unsigned VectorizationInterleave;
-
-  /// \\brief When performing memory disambiguation checks at runtime do not
-  /// make more than this number of comparisons.
-  static const unsigned RuntimeMemoryCheckThreshold;
+                           const Loop *TheLoop);
 };
 
 /// \brief Drive the analysis of memory accesses in the loop
 };
 
 /// \brief Drive the analysis of memory accesses in the loop
@@ -100,6 +76,30 @@ struct VectorizerParams {
 /// RuntimePointerCheck class.
 class LoopAccessInfo {
 public:
 /// RuntimePointerCheck class.
 class LoopAccessInfo {
 public:
+  /// \brief Collection of parameters used from the vectorizer.
+  struct VectorizerParams {
+    /// \brief Maximum simd width.
+    unsigned MaxVectorWidth;
+
+    /// \brief VF as overridden by the user.
+    unsigned VectorizationFactor;
+    /// \brief Interleave factor as overridden by the user.
+    unsigned VectorizationInterleave;
+
+    /// \\brief When performing memory disambiguation checks at runtime do not
+    /// make more than this number of comparisons.
+    unsigned RuntimeMemoryCheckThreshold;
+
+    VectorizerParams(unsigned MaxVectorWidth,
+                     unsigned VectorizationFactor,
+                     unsigned VectorizationInterleave,
+                     unsigned RuntimeMemoryCheckThreshold) :
+        MaxVectorWidth(MaxVectorWidth),
+        VectorizationFactor(VectorizationFactor),
+        VectorizationInterleave(VectorizationInterleave),
+        RuntimeMemoryCheckThreshold(RuntimeMemoryCheckThreshold) {}
+  };
+
   /// This struct holds information about the memory runtime legality check that
   /// a group of pointers do not overlap.
   struct RuntimePointerCheck {
   /// This struct holds information about the memory runtime legality check that
   /// a group of pointers do not overlap.
   struct RuntimePointerCheck {
@@ -120,16 +120,10 @@ public:
     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
                 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
 
     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
                 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
 
-    /// \brief No run-time memory checking is necessary.
-    bool empty() const { return Pointers.empty(); }
-
     /// \brief Decide whether we need to issue a run-time check for pointer at
     /// index \p I and \p J to prove their independence.
     bool needsChecking(unsigned I, unsigned J) const;
 
     /// \brief Decide whether we need to issue a run-time check for pointer at
     /// index \p I and \p J to prove their independence.
     bool needsChecking(unsigned I, unsigned J) const;
 
-    /// \brief Print the list run-time memory checks necessary.
-    void print(raw_ostream &OS, unsigned Depth = 0) const;
-
     /// This flag indicates if we need to add the runtime check.
     bool Need;
     /// Holds the pointers that we need to check.
     /// This flag indicates if we need to add the runtime check.
     bool Need;
     /// Holds the pointers that we need to check.
@@ -147,17 +141,19 @@ public:
     SmallVector<unsigned, 2> AliasSetId;
   };
 
     SmallVector<unsigned, 2> AliasSetId;
   };
 
-  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
-                 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
-                 DominatorTree *DT, ValueToValueMap &Strides);
+  LoopAccessInfo(Function *F, Loop *L, ScalarEvolution *SE,
+                 const DataLayout *DL, const TargetLibraryInfo *TLI,
+                 AliasAnalysis *AA, DominatorTree *DT,
+                 const VectorizerParams &VectParams) :
+      TheFunction(F), TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT),
+      NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1U),
+      VectParams(VectParams) {}
 
   /// Return true we can analyze the memory accesses in the loop and there are
 
   /// Return true we can analyze the memory accesses in the loop and there are
-  /// no memory dependence cycles.
-  bool canVectorizeMemory() const { return CanVecMem; }
+  /// no memory dependence cycles.  Replaces symbolic strides using Strides.
+  bool canVectorizeMemory(ValueToValueMap &Strides);
 
 
-  const RuntimePointerCheck *getRuntimePointerCheck() const {
-    return &PtrRtCheck;
-  }
+  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
 
   /// Return true if the block BB needs to be predicated in order for the loop
   /// to be vectorized.
 
   /// Return true if the block BB needs to be predicated in order for the loop
   /// to be vectorized.
@@ -165,7 +161,7 @@ public:
                                     DominatorTree *DT);
 
   /// Returns true if the value V is uniform within the loop.
                                     DominatorTree *DT);
 
   /// Returns true if the value V is uniform within the loop.
-  bool isUniform(Value *V) const;
+  bool isUniform(Value *V);
 
   unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
   unsigned getNumStores() const { return NumStores; }
 
   unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
   unsigned getNumStores() const { return NumStores; }
@@ -176,34 +172,15 @@ public:
   /// Returns a pair of instructions where the first element is the first
   /// instruction generated in possibly a sequence of instructions and the
   /// second value is the final comparator value or NULL if no check is needed.
   /// Returns a pair of instructions where the first element is the first
   /// instruction generated in possibly a sequence of instructions and the
   /// second value is the final comparator value or NULL if no check is needed.
-  std::pair<Instruction *, Instruction *>
-    addRuntimeCheck(Instruction *Loc) const;
-
-  /// \brief The diagnostics report generated for the analysis.  E.g. why we
-  /// couldn't analyze the loop.
-  const Optional<LoopAccessReport> &getReport() const { return Report; }
-
-  /// \brief Print the information about the memory accesses in the loop.
-  void print(raw_ostream &OS, unsigned Depth = 0) const;
-
-  /// \brief Used to ensure that if the analysis was run with speculating the
-  /// value of symbolic strides, the client queries it with the same assumption.
-  /// Only used in DEBUG build but we don't want NDEBUG-depedent ABI.
-  unsigned NumSymbolicStrides;
+  std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
 
 private:
 
 private:
-  /// \brief Analyze the loop.  Substitute symbolic strides using Strides.
-  void analyzeLoop(ValueToValueMap &Strides);
-
-  /// \brief Check if the structure of the loop allows it to be analyzed by this
-  /// pass.
-  bool canAnalyzeLoop();
-
-  void emitAnalysis(LoopAccessReport &Message);
+  void emitAnalysis(VectorizationReport &Message);
 
   /// We need to check that all of the pointers in this list are disjoint
   /// at runtime.
   RuntimePointerCheck PtrRtCheck;
 
   /// We need to check that all of the pointers in this list are disjoint
   /// at runtime.
   RuntimePointerCheck PtrRtCheck;
+  Function *TheFunction;
   Loop *TheLoop;
   ScalarEvolution *SE;
   const DataLayout *DL;
   Loop *TheLoop;
   ScalarEvolution *SE;
   const DataLayout *DL;
@@ -216,12 +193,8 @@ private:
 
   unsigned MaxSafeDepDistBytes;
 
 
   unsigned MaxSafeDepDistBytes;
 
-  /// \brief Cache the result of analyzeLoop.
-  bool CanVecMem;
-
-  /// \brief The diagnostics report generated for the analysis.  E.g. why we
-  /// couldn't analyze the loop.
-  Optional<LoopAccessReport> Report;
+  /// \brief Vectorizer parameters used by the analysis.
+  VectorizerParams VectParams;
 };
 
 Value *stripIntegerCast(Value *V);
 };
 
 Value *stripIntegerCast(Value *V);
@@ -236,52 +209,6 @@ const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
                                       ValueToValueMap &PtrToStride,
                                       Value *Ptr, Value *OrigPtr = nullptr);
 
                                       ValueToValueMap &PtrToStride,
                                       Value *Ptr, Value *OrigPtr = nullptr);
 
-/// \brief This analysis provides dependence information for the memory accesses
-/// of a loop.
-///
-/// It runs the analysis for a loop on demand.  This can be initiated by
-/// querying the loop access info via LAA::getInfo.  getInfo return a
-/// LoopAccessInfo object.  See this class for the specifics of what information
-/// is provided.
-class LoopAccessAnalysis : public FunctionPass {
-public:
-  static char ID;
-
-  LoopAccessAnalysis() : FunctionPass(ID) {
-    initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
-  }
-
-  bool runOnFunction(Function &F) override;
-
-  void getAnalysisUsage(AnalysisUsage &AU) const override;
-
-  /// \brief Query the result of the loop access information for the loop \p L.
-  ///
-  /// If the client speculates (and then issues run-time checks) for the values
-  /// of symbolic strides, \p Strides provides the mapping (see
-  /// replaceSymbolicStrideSCEV).  If there is no cached result available run
-  /// the analysis.
-  const LoopAccessInfo &getInfo(Loop *L, ValueToValueMap &Strides);
-
-  void releaseMemory() override {
-    // Invalidate the cache when the pass is freed.
-    LoopAccessInfoMap.clear();
-  }
-
-  /// \brief Print the result of the analysis when invoked with -analyze.
-  void print(raw_ostream &OS, const Module *M = nullptr) const override;
-
-private:
-  /// \brief The cache.
-  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
-
-  // The used analysis passes.
-  ScalarEvolution *SE;
-  const DataLayout *DL;
-  const TargetLibraryInfo *TLI;
-  AliasAnalysis *AA;
-  DominatorTree *DT;
-};
 } // End llvm namespace
 
 #endif
 } // End llvm namespace
 
 #endif
index 3c69399aecf97d1f57067270e90f0921d8ae133f..363937314861761bd15eba494c069f8e8cecb2af 100644 (file)
@@ -281,7 +281,6 @@ void initializeVirtRegRewriterPass(PassRegistry&);
 void initializeInstSimplifierPass(PassRegistry&);
 void initializeUnpackMachineBundlesPass(PassRegistry&);
 void initializeFinalizeMachineBundlesPass(PassRegistry&);
 void initializeInstSimplifierPass(PassRegistry&);
 void initializeUnpackMachineBundlesPass(PassRegistry&);
 void initializeFinalizeMachineBundlesPass(PassRegistry&);
-void initializeLoopAccessAnalysisPass(PassRegistry&);
 void initializeLoopVectorizePass(PassRegistry&);
 void initializeSLPVectorizerPass(PassRegistry&);
 void initializeBBVectorizePass(PassRegistry&);
 void initializeLoopVectorizePass(PassRegistry&);
 void initializeSLPVectorizerPass(PassRegistry&);
 void initializeBBVectorizePass(PassRegistry&);
index a0e88370bc2d115224dddb47fb39f6ffcc7a666a..35c5807be0853458b81e9fb01cc57a51bb22ed03 100644 (file)
 #include "llvm/Transforms/Utils/VectorUtils.h"
 using namespace llvm;
 
 #include "llvm/Transforms/Utils/VectorUtils.h"
 using namespace llvm;
 
-#define DEBUG_TYPE "loop-accesses"
+#define DEBUG_TYPE "loop-vectorize"
 
 
-void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
-                                    const Function *TheFunction,
-                                    const Loop *TheLoop,
-                                    const char *PassName) {
+void VectorizationReport::emitAnalysis(VectorizationReport &Message,
+                                       const Function *TheFunction,
+                                       const Loop *TheLoop) {
   DebugLoc DL = TheLoop->getStartLoc();
   DebugLoc DL = TheLoop->getStartLoc();
-  if (const Instruction *I = Message.getInstr())
+  if (Instruction *I = Message.getInstr())
     DL = I->getDebugLoc();
     DL = I->getDebugLoc();
-  emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
+  emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
                                  *TheFunction, DL, Message.str());
 }
 
                                  *TheFunction, DL, Message.str());
 }
 
@@ -65,7 +64,7 @@ const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
 
     const SCEV *ByOne =
         SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
 
     const SCEV *ByOne =
         SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
-    DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
+    DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
                  << "\n");
     return ByOne;
   }
                  << "\n");
     return ByOne;
   }
@@ -110,23 +109,6 @@ bool LoopAccessInfo::RuntimePointerCheck::needsChecking(unsigned I,
   return true;
 }
 
   return true;
 }
 
-void LoopAccessInfo::RuntimePointerCheck::print(raw_ostream &OS,
-                                                unsigned Depth) const {
-  unsigned NumPointers = Pointers.size();
-  if (NumPointers == 0)
-    return;
-
-  OS.indent(Depth) << "Run-time memory checks:\n";
-  unsigned N = 0;
-  for (unsigned I = 0; I < NumPointers; ++I)
-    for (unsigned J = I + 1; J < NumPointers; ++J)
-      if (needsChecking(I, J)) {
-        OS.indent(Depth) << N++ << ":\n";
-        OS.indent(Depth + 2) << *Pointers[I] << "\n";
-        OS.indent(Depth + 2) << *Pointers[J] << "\n";
-      }
-}
-
 namespace {
 /// \brief Analyses memory accesses in a loop.
 ///
 namespace {
 /// \brief Analyses memory accesses in a loop.
 ///
@@ -282,7 +264,7 @@ bool AccessAnalysis::canCheckPtrAtRT(
 
         RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
 
 
         RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
 
-        DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
+        DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
       } else {
         CanDoRT = false;
       }
       } else {
         CanDoRT = false;
       }
@@ -319,7 +301,7 @@ bool AccessAnalysis::canCheckPtrAtRT(
       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
       if (ASi != ASj) {
       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
       if (ASi != ASj) {
-        DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
+        DEBUG(dbgs() << "LV: Runtime check would require comparison between"
                        " different address spaces\n");
         return false;
       }
                        " different address spaces\n");
         return false;
       }
@@ -334,9 +316,9 @@ void AccessAnalysis::processMemAccesses() {
   // process read-only pointers. This allows us to skip dependence tests for
   // read-only pointers.
 
   // process read-only pointers. This allows us to skip dependence tests for
   // read-only pointers.
 
-  DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
+  DEBUG(dbgs() << "LV: Processing memory accesses...\n");
   DEBUG(dbgs() << "  AST: "; AST.dump());
   DEBUG(dbgs() << "  AST: "; AST.dump());
-  DEBUG(dbgs() << "LAA:   Accesses:\n");
+  DEBUG(dbgs() << "LV:   Accesses:\n");
   DEBUG({
     for (auto A : Accesses)
       dbgs() << "\t" << *A.getPointer() << " (" <<
   DEBUG({
     for (auto A : Accesses)
       dbgs() << "\t" << *A.getPointer() << " (" <<
@@ -472,9 +454,10 @@ public:
   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 
   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 
-  MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
+  MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L,
+                   const LoopAccessInfo::VectorizerParams &VectParams)
       : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
       : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
-        ShouldRetryWithRuntimeCheck(false) {}
+        ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {}
 
   /// \brief Register the location (instructions are given increasing numbers)
   /// of a write access.
 
   /// \brief Register the location (instructions are given increasing numbers)
   /// of a write access.
@@ -529,6 +512,9 @@ private:
   /// vectorize this loop with runtime checks.
   bool ShouldRetryWithRuntimeCheck;
 
   /// vectorize this loop with runtime checks.
   bool ShouldRetryWithRuntimeCheck;
 
+  /// \brief Vectorizer parameters used by the analysis.
+  LoopAccessInfo::VectorizerParams VectParams;
+
   /// \brief Check whether there is a plausible dependence between the two
   /// accesses.
   ///
   /// \brief Check whether there is a plausible dependence between the two
   /// accesses.
   ///
@@ -567,8 +553,8 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
   // Make sure that the pointer does not point to aggregate types.
   const PointerType *PtrTy = cast<PointerType>(Ty);
   if (PtrTy->getElementType()->isAggregateType()) {
   // Make sure that the pointer does not point to aggregate types.
   const PointerType *PtrTy = cast<PointerType>(Ty);
   if (PtrTy->getElementType()->isAggregateType()) {
-    DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
-          << *Ptr << "\n");
+    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
+          "\n");
     return 0;
   }
 
     return 0;
   }
 
@@ -576,14 +562,14 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
 
   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   if (!AR) {
 
   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   if (!AR) {
-    DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
+    DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
           << *Ptr << " SCEV: " << *PtrScev << "\n");
     return 0;
   }
 
   // The accesss function must stride over the innermost loop.
   if (Lp != AR->getLoop()) {
           << *Ptr << " SCEV: " << *PtrScev << "\n");
     return 0;
   }
 
   // The accesss function must stride over the innermost loop.
   if (Lp != AR->getLoop()) {
-    DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
+    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
           *Ptr << " SCEV: " << *PtrScev << "\n");
   }
 
           *Ptr << " SCEV: " << *PtrScev << "\n");
   }
 
@@ -598,7 +584,7 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
-    DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
+    DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
           << *Ptr << " SCEV: " << *PtrScev << "\n");
     return 0;
   }
           << *Ptr << " SCEV: " << *PtrScev << "\n");
     return 0;
   }
@@ -609,7 +595,7 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
   // Calculate the pointer stride and check if it is consecutive.
   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   if (!C) {
   // Calculate the pointer stride and check if it is consecutive.
   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   if (!C) {
-    DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
+    DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
           " SCEV: " << *PtrScev << "\n");
     return 0;
   }
           " SCEV: " << *PtrScev << "\n");
     return 0;
   }
@@ -652,8 +638,7 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
   // Store-load forwarding distance.
   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
   // Maximum vector factor.
   // Store-load forwarding distance.
   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
   // Maximum vector factor.
-  unsigned MaxVFWithoutSLForwardIssues =
-    VectorizerParams::MaxVectorWidth * TypeByteSize;
+  unsigned MaxVFWithoutSLForwardIssues = VectParams.MaxVectorWidth*TypeByteSize;
   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
 
   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
 
@@ -666,14 +651,13 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
   }
 
   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
   }
 
   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
-    DEBUG(dbgs() << "LAA: Distance " << Distance <<
+    DEBUG(dbgs() << "LV: Distance " << Distance <<
           " that could cause a store-load forwarding conflict\n");
     return true;
   }
 
   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
           " that could cause a store-load forwarding conflict\n");
     return true;
   }
 
   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
-      MaxVFWithoutSLForwardIssues !=
-      VectorizerParams::MaxVectorWidth * TypeByteSize)
+      MaxVFWithoutSLForwardIssues != VectParams.MaxVectorWidth*TypeByteSize)
     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
   return false;
 }
     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
   return false;
 }
@@ -720,9 +704,9 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
 
   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
 
 
   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
 
-  DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
+  DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
         << "(Induction step: " << StrideAPtr <<  ")\n");
         << "(Induction step: " << StrideAPtr <<  ")\n");
-  DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
+  DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
         << *InstMap[BIdx] << ": " << *Dist << "\n");
 
   // Need consecutive accesses. We don't want to vectorize
         << *InstMap[BIdx] << ": " << *Dist << "\n");
 
   // Need consecutive accesses. We don't want to vectorize
@@ -735,7 +719,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
 
   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
   if (!C) {
 
   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
   if (!C) {
-    DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
+    DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
     ShouldRetryWithRuntimeCheck = true;
     return true;
   }
     ShouldRetryWithRuntimeCheck = true;
     return true;
   }
@@ -753,7 +737,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
          ATy != BTy))
       return true;
 
          ATy != BTy))
       return true;
 
-    DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
+    DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
     return false;
   }
 
     return false;
   }
 
@@ -762,7 +746,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   if (Val == 0) {
     if (ATy == BTy)
       return false;
   if (Val == 0) {
     if (ATy == BTy)
       return false;
-    DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
+    DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
     return true;
   }
 
     return true;
   }
 
@@ -771,17 +755,17 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   // Positive distance bigger than max vectorization factor.
   if (ATy != BTy) {
     DEBUG(dbgs() <<
   // Positive distance bigger than max vectorization factor.
   if (ATy != BTy) {
     DEBUG(dbgs() <<
-          "LAA: ReadWrite-Write positive dependency with different types\n");
+          "LV: ReadWrite-Write positive dependency with different types\n");
     return false;
   }
 
   unsigned Distance = (unsigned) Val.getZExtValue();
 
   // Bail out early if passed-in parameters make vectorization not feasible.
     return false;
   }
 
   unsigned Distance = (unsigned) Val.getZExtValue();
 
   // Bail out early if passed-in parameters make vectorization not feasible.
-  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
-                           VectorizerParams::VectorizationFactor : 1);
-  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
-                           VectorizerParams::VectorizationInterleave : 1);
+  unsigned ForcedFactor = (VectParams.VectorizationFactor ?
+                           VectParams.VectorizationFactor : 1);
+  unsigned ForcedUnroll = (VectParams.VectorizationInterleave ?
+                           VectParams.VectorizationInterleave : 1);
 
   // The distance must be bigger than the size needed for a vectorized version
   // of the operation and the size of the vectorized operation must not be
 
   // The distance must be bigger than the size needed for a vectorized version
   // of the operation and the size of the vectorized operation must not be
@@ -789,7 +773,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   if (Distance < 2*TypeByteSize ||
       2*TypeByteSize > MaxSafeDepDistBytes ||
       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
   if (Distance < 2*TypeByteSize ||
       2*TypeByteSize > MaxSafeDepDistBytes ||
       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
-    DEBUG(dbgs() << "LAA: Failure because of Positive distance "
+    DEBUG(dbgs() << "LV: Failure because of Positive distance "
         << Val.getSExtValue() << '\n');
     return true;
   }
         << Val.getSExtValue() << '\n');
     return true;
   }
@@ -802,7 +786,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
       couldPreventStoreLoadForward(Distance, TypeByteSize))
      return true;
 
       couldPreventStoreLoadForward(Distance, TypeByteSize))
      return true;
 
-  DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() <<
+  DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
 
   return false;
         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
 
   return false;
@@ -847,56 +831,7 @@ bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
   return true;
 }
 
   return true;
 }
 
-bool LoopAccessInfo::canAnalyzeLoop() {
-    // We can only analyze innermost loops.
-  if (!TheLoop->empty()) {
-    emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
-    return false;
-  }
-
-  // We must have a single backedge.
-  if (TheLoop->getNumBackEdges() != 1) {
-    emitAnalysis(
-        LoopAccessReport() <<
-        "loop control flow is not understood by analyzer");
-    return false;
-  }
-
-  // We must have a single exiting block.
-  if (!TheLoop->getExitingBlock()) {
-    emitAnalysis(
-        LoopAccessReport() <<
-        "loop control flow is not understood by analyzer");
-    return false;
-  }
-
-  // We only handle bottom-tested loops, i.e. loop in which the condition is
-  // checked at the end of each iteration. With that we can assume that all
-  // instructions in the loop are executed the same number of times.
-  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
-    emitAnalysis(
-        LoopAccessReport() <<
-        "loop control flow is not understood by analyzer");
-    return false;
-  }
-
-  // We need to have a loop header.
-  DEBUG(dbgs() << "LAA: Found a loop: " <<
-        TheLoop->getHeader()->getName() << '\n');
-
-  // ScalarEvolution needs to be able to find the exit count.
-  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
-  if (ExitCount == SE->getCouldNotCompute()) {
-    emitAnalysis(LoopAccessReport() <<
-                 "could not determine number of loop iterations");
-    DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
-    return false;
-  }
-
-  return true;
-}
-
-void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
+bool LoopAccessInfo::canVectorizeMemory(ValueToValueMap &Strides) {
 
   typedef SmallVector<Value*, 16> ValueVector;
   typedef SmallPtrSet<Value*, 16> ValueSet;
 
   typedef SmallVector<Value*, 16> ValueVector;
   typedef SmallPtrSet<Value*, 16> ValueSet;
@@ -913,7 +848,7 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
   PtrRtCheck.Need = false;
 
   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
   PtrRtCheck.Need = false;
 
   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
-  MemoryDepChecker DepChecker(SE, DL, TheLoop);
+  MemoryDepChecker DepChecker(SE, DL, TheLoop, VectParams);
 
   // For each block.
   for (Loop::block_iterator bb = TheLoop->block_begin(),
 
   // For each block.
   for (Loop::block_iterator bb = TheLoop->block_begin(),
@@ -936,11 +871,10 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
 
         LoadInst *Ld = dyn_cast<LoadInst>(it);
         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
 
         LoadInst *Ld = dyn_cast<LoadInst>(it);
         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
-          emitAnalysis(LoopAccessReport(Ld)
+          emitAnalysis(VectorizationReport(Ld)
                        << "read with atomic ordering or volatile read");
                        << "read with atomic ordering or volatile read");
-          DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
-          CanVecMem = false;
-          return;
+          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
+          return false;
         }
         NumLoads++;
         Loads.push_back(Ld);
         }
         NumLoads++;
         Loads.push_back(Ld);
@@ -952,17 +886,15 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
       if (it->mayWriteToMemory()) {
         StoreInst *St = dyn_cast<StoreInst>(it);
         if (!St) {
       if (it->mayWriteToMemory()) {
         StoreInst *St = dyn_cast<StoreInst>(it);
         if (!St) {
-          emitAnalysis(LoopAccessReport(it) <<
+          emitAnalysis(VectorizationReport(it) <<
                        "instruction cannot be vectorized");
                        "instruction cannot be vectorized");
-          CanVecMem = false;
-          return;
+          return false;
         }
         if (!St->isSimple() && !IsAnnotatedParallel) {
         }
         if (!St->isSimple() && !IsAnnotatedParallel) {
-          emitAnalysis(LoopAccessReport(St)
+          emitAnalysis(VectorizationReport(St)
                        << "write with atomic ordering or volatile write");
                        << "write with atomic ordering or volatile write");
-          DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
-          CanVecMem = false;
-          return;
+          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
+          return false;
         }
         NumStores++;
         Stores.push_back(St);
         }
         NumStores++;
         Stores.push_back(St);
@@ -977,9 +909,8 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
   // Check if we see any stores. If there are no stores, then we don't
   // care if the pointers are *restrict*.
   if (!Stores.size()) {
   // Check if we see any stores. If there are no stores, then we don't
   // care if the pointers are *restrict*.
   if (!Stores.size()) {
-    DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
-    CanVecMem = true;
-    return;
+    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
+    return true;
   }
 
   AccessAnalysis::DepCandidates DependentAccesses;
   }
 
   AccessAnalysis::DepCandidates DependentAccesses;
@@ -999,11 +930,10 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
 
     if (isUniform(Ptr)) {
       emitAnalysis(
 
     if (isUniform(Ptr)) {
       emitAnalysis(
-          LoopAccessReport(ST)
+          VectorizationReport(ST)
           << "write to a loop invariant address could not be vectorized");
           << "write to a loop invariant address could not be vectorized");
-      DEBUG(dbgs() << "LAA: We don't allow storing to uniform addresses\n");
-      CanVecMem = false;
-      return;
+      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
+      return false;
     }
 
     // If we did *not* see this pointer before, insert it to  the read-write
     }
 
     // If we did *not* see this pointer before, insert it to  the read-write
@@ -1024,10 +954,9 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
 
   if (IsAnnotatedParallel) {
     DEBUG(dbgs()
 
   if (IsAnnotatedParallel) {
     DEBUG(dbgs()
-          << "LAA: A loop annotated parallel, ignore memory dependency "
+          << "LV: A loop annotated parallel, ignore memory dependency "
           << "checks.\n");
           << "checks.\n");
-    CanVecMem = true;
-    return;
+    return true;
   }
 
   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
   }
 
   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
@@ -1061,9 +990,8 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
   // If we write (or read-write) to a single destination and there are no
   // other reads in this loop then is it safe to vectorize.
   if (NumReadWrites == 1 && NumReads == 0) {
   // If we write (or read-write) to a single destination and there are no
   // other reads in this loop then is it safe to vectorize.
   if (NumReadWrites == 1 && NumReads == 0) {
-    DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
-    CanVecMem = true;
-    return;
+    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
+    return true;
   }
 
   // Build dependence sets and check whether we need a runtime pointer bounds
   }
 
   // Build dependence sets and check whether we need a runtime pointer bounds
@@ -1079,7 +1007,7 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
                                        Strides);
 
     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
                                        Strides);
 
-  DEBUG(dbgs() << "LAA: We need to do " << NumComparisons <<
+  DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
         " pointer comparisons.\n");
 
   // If we only have one set of dependences to check pointers among we don't
         " pointer comparisons.\n");
 
   // If we only have one set of dependences to check pointers among we don't
@@ -1089,36 +1017,34 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
 
   // Check that we did not collect too many pointers or found an unsizeable
   // pointer.
 
   // Check that we did not collect too many pointers or found an unsizeable
   // pointer.
-  if (!CanDoRT ||
-      NumComparisons > VectorizerParams::RuntimeMemoryCheckThreshold) {
+  if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) {
     PtrRtCheck.reset();
     CanDoRT = false;
   }
 
   if (CanDoRT) {
     PtrRtCheck.reset();
     CanDoRT = false;
   }
 
   if (CanDoRT) {
-    DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
+    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
   }
 
   if (NeedRTCheck && !CanDoRT) {
   }
 
   if (NeedRTCheck && !CanDoRT) {
-    emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
-    DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " <<
+    emitAnalysis(VectorizationReport() << "cannot identify array bounds");
+    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
           "the array bounds.\n");
     PtrRtCheck.reset();
           "the array bounds.\n");
     PtrRtCheck.reset();
-    CanVecMem = false;
-    return;
+    return false;
   }
 
   PtrRtCheck.Need = NeedRTCheck;
 
   }
 
   PtrRtCheck.Need = NeedRTCheck;
 
-  CanVecMem = true;
+  bool CanVecMem = true;
   if (Accesses.isDependencyCheckNeeded()) {
   if (Accesses.isDependencyCheckNeeded()) {
-    DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
+    DEBUG(dbgs() << "LV: Checking memory dependencies\n");
     CanVecMem = DepChecker.areDepsSafe(
         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
 
     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
     CanVecMem = DepChecker.areDepsSafe(
         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
 
     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
-      DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
+      DEBUG(dbgs() << "LV: Retrying with memory checks\n");
       NeedRTCheck = true;
 
       // Clear the dependency checks. We assume they are not needed.
       NeedRTCheck = true;
 
       // Clear the dependency checks. We assume they are not needed.
@@ -1131,20 +1057,18 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
                                          TheLoop, Strides, true);
       // Check that we did not collect too many pointers or found an unsizeable
       // pointer.
                                          TheLoop, Strides, true);
       // Check that we did not collect too many pointers or found an unsizeable
       // pointer.
-      if (!CanDoRT ||
-          NumComparisons > VectorizerParams::RuntimeMemoryCheckThreshold) {
+      if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) {
         if (!CanDoRT && NumComparisons > 0)
         if (!CanDoRT && NumComparisons > 0)
-          emitAnalysis(LoopAccessReport()
+          emitAnalysis(VectorizationReport()
                        << "cannot check memory dependencies at runtime");
         else
                        << "cannot check memory dependencies at runtime");
         else
-          emitAnalysis(LoopAccessReport()
+          emitAnalysis(VectorizationReport()
                        << NumComparisons << " exceeds limit of "
                        << NumComparisons << " exceeds limit of "
-                       << VectorizerParams::RuntimeMemoryCheckThreshold
+                       << VectParams.RuntimeMemoryCheckThreshold
                        << " dependent memory operations checked at runtime");
                        << " dependent memory operations checked at runtime");
-        DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
+        DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
         PtrRtCheck.reset();
         PtrRtCheck.reset();
-        CanVecMem = false;
-        return;
+        return false;
       }
 
       CanVecMem = true;
       }
 
       CanVecMem = true;
@@ -1152,11 +1076,13 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
   }
 
   if (!CanVecMem)
   }
 
   if (!CanVecMem)
-    emitAnalysis(LoopAccessReport() <<
+    emitAnalysis(VectorizationReport() <<
                  "unsafe dependent memory operations in loop");
 
                  "unsafe dependent memory operations in loop");
 
-  DEBUG(dbgs() << "LAA: We" << (NeedRTCheck ? "" : " don't") <<
+  DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
         " need a runtime memory check.\n");
         " need a runtime memory check.\n");
+
+  return CanVecMem;
 }
 
 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
 }
 
 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
@@ -1168,12 +1094,11 @@ bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
   return !DT->dominates(BB, Latch);
 }
 
   return !DT->dominates(BB, Latch);
 }
 
-void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
-  assert(!Report && "Multiple report generated");
-  Report = Message;
+void LoopAccessInfo::emitAnalysis(VectorizationReport &Message) {
+  VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
 }
 
 }
 
-bool LoopAccessInfo::isUniform(Value *V) const {
+bool LoopAccessInfo::isUniform(Value *V) {
   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
 }
 
   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
 }
 
@@ -1189,7 +1114,7 @@ static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
 }
 
 std::pair<Instruction *, Instruction *>
 }
 
 std::pair<Instruction *, Instruction *>
-LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
+LoopAccessInfo::addRuntimeCheck(Instruction *Loc) {
   Instruction *tnullptr = nullptr;
   if (!PtrRtCheck.Need)
     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
   Instruction *tnullptr = nullptr;
   if (!PtrRtCheck.Need)
     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
@@ -1207,12 +1132,12 @@ LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
     const SCEV *Sc = SE->getSCEV(Ptr);
 
     if (SE->isLoopInvariant(Sc, TheLoop)) {
     const SCEV *Sc = SE->getSCEV(Ptr);
 
     if (SE->isLoopInvariant(Sc, TheLoop)) {
-      DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" <<
+      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
             *Ptr <<"\n");
       Starts.push_back(Ptr);
       Ends.push_back(Ptr);
     } else {
             *Ptr <<"\n");
       Starts.push_back(Ptr);
       Ends.push_back(Ptr);
     } else {
-      DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n');
+      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
       unsigned AS = Ptr->getType()->getPointerAddressSpace();
 
       // Use this type for pointer arithmetic.
       unsigned AS = Ptr->getType()->getPointerAddressSpace();
 
       // Use this type for pointer arithmetic.
@@ -1272,100 +1197,3 @@ LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
   FirstInst = getFirstInst(FirstInst, Check, Loc);
   return std::make_pair(FirstInst, Check);
 }
   FirstInst = getFirstInst(FirstInst, Check, Loc);
   return std::make_pair(FirstInst, Check);
 }
-
-LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
-                               const DataLayout *DL,
-                               const TargetLibraryInfo *TLI, AliasAnalysis *AA,
-                               DominatorTree *DT, ValueToValueMap &Strides)
-    : TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT), NumLoads(0),
-      NumStores(0), MaxSafeDepDistBytes(-1U), CanVecMem(false) {
-  if (canAnalyzeLoop())
-    analyzeLoop(Strides);
-}
-
-void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
-  if (CanVecMem) {
-    if (PtrRtCheck.empty())
-      OS.indent(Depth) << "Memory dependences are safe\n";
-    else
-      OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
-  }
-
-  if (Report)
-    OS.indent(Depth) << "Report: " << Report->str() << "\n";
-
-  // FIXME: Print unsafe dependences
-
-  // List the pair of accesses need run-time checks to prove independence.
-  PtrRtCheck.print(OS, Depth);
-  OS << "\n";
-}
-
-const LoopAccessInfo &LoopAccessAnalysis::getInfo(Loop *L,
-                                                  ValueToValueMap &Strides) {
-  auto &LAI = LoopAccessInfoMap[L];
-
-#ifndef NDEBUG
-  assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
-         "Symbolic strides changed for loop");
-#endif
-
-  if (!LAI) {
-    LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, Strides);
-#ifndef NDEBUG
-    LAI->NumSymbolicStrides = Strides.size();
-#endif
-  }
-  return *LAI.get();
-}
-
-void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
-  LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
-
-  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
-  ValueToValueMap NoSymbolicStrides;
-
-  for (Loop *TopLevelLoop : *LI)
-    for (Loop *L : depth_first(TopLevelLoop)) {
-      OS.indent(2) << L->getHeader()->getName() << ":\n";
-      auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
-      LAI.print(OS, 4);
-    }
-}
-
-bool LoopAccessAnalysis::runOnFunction(Function &F) {
-  SE = &getAnalysis<ScalarEvolution>();
-  DL = F.getParent()->getDataLayout();
-  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
-  TLI = TLIP ? &TLIP->getTLI() : nullptr;
-  AA = &getAnalysis<AliasAnalysis>();
-  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-
-  return false;
-}
-
-void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
-    AU.addRequired<ScalarEvolution>();
-    AU.addRequired<AliasAnalysis>();
-    AU.addRequired<DominatorTreeWrapperPass>();
-    AU.addRequired<LoopInfoWrapperPass>();
-
-    AU.setPreservesAll();
-}
-
-char LoopAccessAnalysis::ID = 0;
-static const char laa_name[] = "Loop Access Analysis";
-#define LAA_NAME "loop-accesses"
-
-INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
-INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
-
-namespace llvm {
-  Pass *createLAAPass() {
-    return new LoopAccessAnalysis();
-  }
-}
index c8a7a2c27b048d70ccbb0abfd5713cedcbd6bac4..f0728dccd24f141412c7fbdce476eb59b769918d 100644 (file)
@@ -46,7 +46,6 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
   initializeJumpThreadingPass(Registry);
   initializeLICMPass(Registry);
   initializeLoopDeletionPass(Registry);
   initializeJumpThreadingPass(Registry);
   initializeLICMPass(Registry);
   initializeLoopDeletionPass(Registry);
-  initializeLoopAccessAnalysisPass(Registry);
   initializeLoopInstSimplifyPass(Registry);
   initializeLoopRotatePass(Registry);
   initializeLoopStrengthReducePass(Registry);
   initializeLoopInstSimplifyPass(Registry);
   initializeLoopRotatePass(Registry);
   initializeLoopStrengthReducePass(Registry);
index d75eead0683a35c3f3fa27f882eff99f314008e2..1ddb45e5df6d7eddd21ce23e7769b299e52c58f2 100644 (file)
@@ -106,19 +106,14 @@ using namespace llvm::PatternMatch;
 STATISTIC(LoopsVectorized, "Number of loops vectorized");
 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
 
 STATISTIC(LoopsVectorized, "Number of loops vectorized");
 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
 
-static cl::opt<unsigned, true>
-VectorizationFactor("force-vector-width", cl::Hidden,
-                    cl::desc("Sets the SIMD width. Zero is autoselect."),
-                    cl::location(VectorizerParams::VectorizationFactor));
-unsigned VectorizerParams::VectorizationFactor = 0;
-
-static cl::opt<unsigned, true>
-VectorizationInterleave("force-vector-interleave", cl::Hidden,
-                        cl::desc("Sets the vectorization interleave count. "
-                                 "Zero is autoselect."),
-                        cl::location(
-                            VectorizerParams::VectorizationInterleave));
-unsigned VectorizerParams::VectorizationInterleave = 0;
+static cl::opt<unsigned>
+VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
+                    cl::desc("Sets the SIMD width. Zero is autoselect."));
+
+static cl::opt<unsigned>
+VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
+                    cl::desc("Sets the vectorization interleave count. "
+                             "Zero is autoselect."));
 
 static cl::opt<bool>
 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
 
 static cl::opt<bool>
 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
@@ -152,10 +147,10 @@ static const unsigned TinyTripCountUnrollThreshold = 128;
 
 /// When performing memory disambiguation checks at runtime do not make more
 /// than this number of comparisons.
 
 /// When performing memory disambiguation checks at runtime do not make more
 /// than this number of comparisons.
-const unsigned VectorizerParams::RuntimeMemoryCheckThreshold = 8;
+static const unsigned RuntimeMemoryCheckThreshold = 8;
 
 /// Maximum simd width.
 
 /// Maximum simd width.
-const unsigned VectorizerParams::MaxVectorWidth = 64;
+static const unsigned MaxVectorWidth = 64;
 
 static cl::opt<unsigned> ForceTargetNumScalarRegs(
     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
 
 static cl::opt<unsigned> ForceTargetNumScalarRegs(
     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
@@ -224,21 +219,6 @@ class LoopVectorizationLegality;
 class LoopVectorizationCostModel;
 class LoopVectorizeHints;
 
 class LoopVectorizationCostModel;
 class LoopVectorizeHints;
 
-/// \brief This modifies LoopAccessReport to initialize message with
-/// loop-vectorizer-specific part.
-class VectorizationReport : public LoopAccessReport {
-public:
-  VectorizationReport(Instruction *I = nullptr)
-      : LoopAccessReport("loop not vectorized: ", I) {}
-
-  /// \brief This allows promotion of the loop-access analysis report into the
-  /// loop-vectorizer report.  It modifies the message to add the
-  /// loop-vectorizer-specific part of the message.
-  explicit VectorizationReport(const LoopAccessReport &R)
-      : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
-                         R.getInstr()) {}
-};
-
 /// InnerLoopVectorizer vectorizes loops which contain only one basic
 /// block to a specified vectorization factor (VF).
 /// This class performs the widening of scalars into vectors, or multiple
 /// InnerLoopVectorizer vectorizes loops which contain only one basic
 /// block to a specified vectorization factor (VF).
 /// This class performs the widening of scalars into vectors, or multiple
@@ -567,11 +547,15 @@ public:
   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
                             DominatorTree *DT, TargetLibraryInfo *TLI,
                             AliasAnalysis *AA, Function *F,
   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
                             DominatorTree *DT, TargetLibraryInfo *TLI,
                             AliasAnalysis *AA, Function *F,
-                            const TargetTransformInfo *TTI,
-                            LoopAccessAnalysis *LAA)
+                            const TargetTransformInfo *TTI)
       : NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
       : NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
-        TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr),
-        Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
+        TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), Induction(nullptr),
+        WidestIndTy(nullptr),
+        LAI(F, L, SE, DL, TLI, AA, DT,
+            LoopAccessInfo::VectorizerParams(
+                MaxVectorWidth, VectorizationFactor, VectorizationInterleave,
+                RuntimeMemoryCheckThreshold)),
+        HasFunNoNaNAttr(false) {}
 
   /// This enum represents the kinds of reductions that we support.
   enum ReductionKind {
 
   /// This enum represents the kinds of reductions that we support.
   enum ReductionKind {
@@ -756,19 +740,19 @@ public:
   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
 
   /// Returns the information that we collected about runtime memory check.
   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
 
   /// Returns the information that we collected about runtime memory check.
-  const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const {
-    return LAI->getRuntimePointerCheck();
+  LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() {
+    return LAI.getRuntimePointerCheck();
   }
 
   }
 
-  const LoopAccessInfo *getLAI() const {
-    return LAI;
+  LoopAccessInfo *getLAI() {
+    return &LAI;
   }
 
   /// This function returns the identity element (or neutral element) for
   /// the operation K.
   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
 
   }
 
   /// This function returns the identity element (or neutral element) for
   /// the operation K.
   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
 
-  unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
+  unsigned getMaxSafeDepDistBytes() { return LAI.getMaxSafeDepDistBytes(); }
 
   bool hasStride(Value *V) { return StrideSet.count(V); }
   bool mustCheckStrides() { return !StrideSet.empty(); }
 
   bool hasStride(Value *V) { return StrideSet.count(V); }
   bool mustCheckStrides() { return !StrideSet.empty(); }
@@ -793,10 +777,10 @@ public:
     return (MaskedOp.count(I) != 0);
   }
   unsigned getNumStores() const {
     return (MaskedOp.count(I) != 0);
   }
   unsigned getNumStores() const {
-    return LAI->getNumStores();
+    return LAI.getNumStores();
   }
   unsigned getNumLoads() const {
   }
   unsigned getNumLoads() const {
-    return LAI->getNumLoads();
+    return LAI.getNumLoads();
   }
   unsigned getNumPredStores() const {
     return NumPredStores;
   }
   unsigned getNumPredStores() const {
     return NumPredStores;
@@ -850,11 +834,9 @@ private:
   void collectStridedAccess(Value *LoadOrStoreInst);
 
   /// Report an analysis message to assist the user in diagnosing loops that are
   void collectStridedAccess(Value *LoadOrStoreInst);
 
   /// Report an analysis message to assist the user in diagnosing loops that are
-  /// not vectorized.  These are handled as LoopAccessReport rather than
-  /// VectorizationReport because the << operator of VectorizationReport returns
-  /// LoopAccessReport.
-  void emitAnalysis(const LoopAccessReport &Message) {
-    LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
+  /// not vectorized.
+  void emitAnalysis(VectorizationReport &Message) {
+    VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
   }
 
   unsigned NumPredStores;
   }
 
   unsigned NumPredStores;
@@ -873,11 +855,6 @@ private:
   const TargetTransformInfo *TTI;
   /// Dominator Tree.
   DominatorTree *DT;
   const TargetTransformInfo *TTI;
   /// Dominator Tree.
   DominatorTree *DT;
-  // LoopAccess analysis.
-  LoopAccessAnalysis *LAA;
-  // And the loop-accesses info corresponding to this loop.  This pointer is
-  // null until canVectorizeMemory sets it up.
-  const LoopAccessInfo *LAI;
 
   //  ---  vectorization state --- //
 
 
   //  ---  vectorization state --- //
 
@@ -899,7 +876,7 @@ private:
   /// This set holds the variables which are known to be uniform after
   /// vectorization.
   SmallPtrSet<Instruction*, 4> Uniforms;
   /// This set holds the variables which are known to be uniform after
   /// vectorization.
   SmallPtrSet<Instruction*, 4> Uniforms;
-
+  LoopAccessInfo LAI;
   /// Can we assume the absence of NaNs.
   bool HasFunNoNaNAttr;
 
   /// Can we assume the absence of NaNs.
   bool HasFunNoNaNAttr;
 
@@ -989,11 +966,9 @@ private:
   bool isConsecutiveLoadOrStore(Instruction *I);
 
   /// Report an analysis message to assist the user in diagnosing loops that are
   bool isConsecutiveLoadOrStore(Instruction *I);
 
   /// Report an analysis message to assist the user in diagnosing loops that are
-  /// not vectorized.  These are handled as LoopAccessReport rather than
-  /// VectorizationReport because the << operator of VectorizationReport returns
-  /// LoopAccessReport.
-  void emitAnalysis(const LoopAccessReport &Message) {
-    LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
+  /// not vectorized.
+  void emitAnalysis(VectorizationReport &Message) {
+    VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
   }
 
   /// Values used only by @llvm.assume calls.
   }
 
   /// Values used only by @llvm.assume calls.
@@ -1046,7 +1021,7 @@ class LoopVectorizeHints {
     bool validate(unsigned Val) {
       switch (Kind) {
       case HK_WIDTH:
     bool validate(unsigned Val) {
       switch (Kind) {
       case HK_WIDTH:
-        return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
+        return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
       case HK_UNROLL:
         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
       case HK_FORCE:
       case HK_UNROLL:
         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
       case HK_FORCE:
@@ -1282,7 +1257,6 @@ struct LoopVectorize : public FunctionPass {
   TargetLibraryInfo *TLI;
   AliasAnalysis *AA;
   AssumptionCache *AC;
   TargetLibraryInfo *TLI;
   AliasAnalysis *AA;
   AssumptionCache *AC;
-  LoopAccessAnalysis *LAA;
   bool DisableUnrolling;
   bool AlwaysVectorize;
 
   bool DisableUnrolling;
   bool AlwaysVectorize;
 
@@ -1300,7 +1274,6 @@ struct LoopVectorize : public FunctionPass {
     TLI = TLIP ? &TLIP->getTLI() : nullptr;
     AA = &getAnalysis<AliasAnalysis>();
     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
     TLI = TLIP ? &TLIP->getTLI() : nullptr;
     AA = &getAnalysis<AliasAnalysis>();
     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
-    LAA = &getAnalysis<LoopAccessAnalysis>();
 
     // Compute some weights outside of the loop over the loops. Compute this
     // using a BranchProbability to re-use its scaling math.
 
     // Compute some weights outside of the loop over the loops. Compute this
     // using a BranchProbability to re-use its scaling math.
@@ -1411,7 +1384,7 @@ struct LoopVectorize : public FunctionPass {
     }
 
     // Check if it is legal to vectorize the loop.
     }
 
     // Check if it is legal to vectorize the loop.
-    LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI, LAA);
+    LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI);
     if (!LVL.canVectorize()) {
       DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
       emitMissedWarning(F, L, Hints);
     if (!LVL.canVectorize()) {
       DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
       emitMissedWarning(F, L, Hints);
@@ -1516,7 +1489,6 @@ struct LoopVectorize : public FunctionPass {
     AU.addRequired<ScalarEvolution>();
     AU.addRequired<TargetTransformInfoWrapperPass>();
     AU.addRequired<AliasAnalysis>();
     AU.addRequired<ScalarEvolution>();
     AU.addRequired<TargetTransformInfoWrapperPass>();
     AU.addRequired<AliasAnalysis>();
-    AU.addRequired<LoopAccessAnalysis>();
     AU.addPreserved<LoopInfoWrapperPass>();
     AU.addPreserved<DominatorTreeWrapperPass>();
     AU.addPreserved<AliasAnalysis>();
     AU.addPreserved<LoopInfoWrapperPass>();
     AU.addPreserved<DominatorTreeWrapperPass>();
     AU.addPreserved<AliasAnalysis>();
@@ -1688,7 +1660,7 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
 }
 
 bool LoopVectorizationLegality::isUniform(Value *V) {
 }
 
 bool LoopVectorizationLegality::isUniform(Value *V) {
-  return LAI->isUniform(V);
+  return LAI.isUniform(V);
 }
 
 InnerLoopVectorizer::VectorParts&
 }
 
 InnerLoopVectorizer::VectorParts&
@@ -3428,7 +3400,7 @@ bool LoopVectorizationLegality::canVectorize() {
   collectLoopUniforms();
 
   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
   collectLoopUniforms();
 
   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
-        (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
+        (LAI.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
          "")
         <<"!\n");
 
          "")
         <<"!\n");
 
@@ -3853,11 +3825,7 @@ void LoopVectorizationLegality::collectLoopUniforms() {
 }
 
 bool LoopVectorizationLegality::canVectorizeMemory() {
 }
 
 bool LoopVectorizationLegality::canVectorizeMemory() {
-  LAI = &LAA->getInfo(TheLoop, Strides);
-  auto &OptionalReport = LAI->getReport();
-  if (OptionalReport)
-    emitAnalysis(VectorizationReport(*OptionalReport));
-  return LAI->canVectorizeMemory();
+  return LAI.canVectorizeMemory(Strides);
 }
 
 static bool hasMultipleUsesOf(Instruction *I,
 }
 
 static bool hasMultipleUsesOf(Instruction *I,
@@ -5032,7 +5000,6 @@ INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 INITIALIZE_PASS_DEPENDENCY(LCSSA)
 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 INITIALIZE_PASS_DEPENDENCY(LCSSA)
 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
-INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 
 namespace llvm {
 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 
 namespace llvm {
diff --git a/test/Analysis/LoopAccessAnalysis/unsafe-and-rt-checks-no-dbg.ll b/test/Analysis/LoopAccessAnalysis/unsafe-and-rt-checks-no-dbg.ll
deleted file mode 100644 (file)
index 62291d5..0000000
+++ /dev/null
@@ -1,60 +0,0 @@
-; RUN: opt -loop-accesses -analyze < %s | FileCheck %s
-
-; FIXME: This is the non-debug version of unsafe-and-rt-checks.ll not
-; requiring "asserts".  Once we can check memory dependences without -debug,
-; we should remove this test.
-
-; Analyze this loop:
-;   for (i = 0; i < n; i++)
-;    A[i + 1] = A[i] * B[i] * C[i];
-
-target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-apple-macosx10.10.0"
-
-; CHECK: Report: unsafe dependent memory operations in loop
-
-; CHECK: Run-time memory checks:
-; CHECK-NEXT: 0:
-; CHECK-NEXT:   %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
-; CHECK-NEXT:   %arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
-; CHECK-NEXT: 1:
-; CHECK-NEXT:   %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
-; CHECK-NEXT:   %arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
-
-@n = global i32 20, align 4
-@B = common global i16* null, align 8
-@A = common global i16* null, align 8
-@C = common global i16* null, align 8
-
-define void @f() {
-entry:
-  %a = load i16** @A, align 8
-  %b = load i16** @B, align 8
-  %c = load i16** @C, align 8
-  br label %for.body
-
-for.body:                                         ; preds = %for.body, %entry
-  %storemerge3 = phi i64 [ 0, %entry ], [ %add, %for.body ]
-
-  %arrayidxA = getelementptr inbounds i16* %a, i64 %storemerge3
-  %loadA = load i16* %arrayidxA, align 2
-
-  %arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
-  %loadB = load i16* %arrayidxB, align 2
-
-  %arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
-  %loadC = load i16* %arrayidxC, align 2
-
-  %mul = mul i16 %loadB, %loadA
-  %mul1 = mul i16 %mul, %loadC
-
-  %add = add nuw nsw i64 %storemerge3, 1
-  %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
-  store i16 %mul1, i16* %arrayidxA_plus_2, align 2
-
-  %exitcond = icmp eq i64 %add, 20
-  br i1 %exitcond, label %for.end, label %for.body
-
-for.end:                                          ; preds = %for.body
-  ret void
-}
diff --git a/test/Analysis/LoopAccessAnalysis/unsafe-and-rt-checks.ll b/test/Analysis/LoopAccessAnalysis/unsafe-and-rt-checks.ll
deleted file mode 100644 (file)
index 4769a3a..0000000
+++ /dev/null
@@ -1,61 +0,0 @@
-; RUN: opt -loop-accesses -analyze < %s | FileCheck %s
-; RUN: opt -loop-accesses -analyze -debug-only=loop-accesses < %s 2>&1 | FileCheck %s --check-prefix=DEBUG
-; REQUIRES: asserts
-
-; Analyze this loop:
-;   for (i = 0; i < n; i++)
-;    A[i + 1] = A[i] * B[i] * C[i];
-
-target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
-target triple = "x86_64-apple-macosx10.10.0"
-
-; CHECK: Report: unsafe dependent memory operations in loop
-
-; DEBUG: LAA: Distance for   %loadA = load i16* %arrayidxA, align 2 to   store i16 %mul1, i16* %arrayidxA_plus_2, align 2: 2
-; DEBUG-NEXT: LAA: Failure because of Positive distance 2
-
-; CHECK: Run-time memory checks:
-; CHECK-NEXT: 0:
-; CHECK-NEXT:   %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
-; CHECK-NEXT:   %arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
-; CHECK-NEXT: 1:
-; CHECK-NEXT:   %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
-; CHECK-NEXT:   %arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
-
-@n = global i32 20, align 4
-@B = common global i16* null, align 8
-@A = common global i16* null, align 8
-@C = common global i16* null, align 8
-
-define void @f() {
-entry:
-  %a = load i16** @A, align 8
-  %b = load i16** @B, align 8
-  %c = load i16** @C, align 8
-  br label %for.body
-
-for.body:                                         ; preds = %for.body, %entry
-  %storemerge3 = phi i64 [ 0, %entry ], [ %add, %for.body ]
-
-  %arrayidxA = getelementptr inbounds i16* %a, i64 %storemerge3
-  %loadA = load i16* %arrayidxA, align 2
-
-  %arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
-  %loadB = load i16* %arrayidxB, align 2
-
-  %arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
-  %loadC = load i16* %arrayidxC, align 2
-
-  %mul = mul i16 %loadB, %loadA
-  %mul1 = mul i16 %mul, %loadC
-
-  %add = add nuw nsw i64 %storemerge3, 1
-  %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
-  store i16 %mul1, i16* %arrayidxA_plus_2, align 2
-
-  %exitcond = icmp eq i64 %add, 20
-  br i1 %exitcond, label %for.end, label %for.body
-
-for.end:                                          ; preds = %for.body
-  ret void
-}