Separate out BDCE's analysis into a separate DemandedBits analysis.
authorJames Molloy <james.molloy@arm.com>
Fri, 14 Aug 2015 11:09:09 +0000 (11:09 +0000)
committerJames Molloy <james.molloy@arm.com>
Fri, 14 Aug 2015 11:09:09 +0000 (11:09 +0000)
This allows other areas of the compiler to use BDCE's bit-tracking.
NFCI.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245039 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/Analysis/DemandedBits.h [new file with mode: 0644]
include/llvm/InitializePasses.h
lib/Analysis/Analysis.cpp
lib/Analysis/CMakeLists.txt
lib/Analysis/DemandedBits.cpp [new file with mode: 0644]
lib/Transforms/Scalar/BDCE.cpp

diff --git a/include/llvm/Analysis/DemandedBits.h b/include/llvm/Analysis/DemandedBits.h
new file mode 100644 (file)
index 0000000..1b1b9c5
--- /dev/null
@@ -0,0 +1,71 @@
+//===-- llvm/Analysis/DemandedBits.h - Determine demanded bits --*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a demanded bits analysis. A demanded bit is one that
+// contributes to a result; bits that are not demanded can be either zero or
+// one without affecting control or data flow. For example in this sequence:
+//
+//   %1 = add i32 %x, %y
+//   %2 = trunc i32 %1 to i16
+//
+// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
+// trunc.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_DEMANDED_BITS_H
+#define LLVM_ANALYSIS_DEMANDED_BITS_H
+
+#include "llvm/Pass.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+
+namespace llvm {
+
+class FunctionPass;
+class Function;
+class Instruction;
+class DominatorTree;
+class AssumptionCache;
+
+struct DemandedBits : public FunctionPass {
+  static char ID; // Pass identification, replacement for typeid
+  DemandedBits();
+
+  bool runOnFunction(Function& F) override;
+  void getAnalysisUsage(AnalysisUsage& AU) const override;
+
+  /// Return the bits demanded from instruction I.
+  APInt getDemandedBits(Instruction *I);
+
+  /// Return true if, during analysis, I could not be reached.
+  bool isInstructionDead(Instruction *I);
+
+private:
+  void determineLiveOperandBits(const Instruction *UserI,
+                                const Instruction *I, unsigned OperandNo,
+                                const APInt &AOut, APInt &AB,
+                                APInt &KnownZero, APInt &KnownOne,
+                                APInt &KnownZero2, APInt &KnownOne2);
+
+  AssumptionCache *AC;
+  DominatorTree *DT;
+
+  // The set of visited instructions (non-integer-typed only).
+  SmallPtrSet<Instruction*, 128> Visited;
+  DenseMap<Instruction *, APInt> AliveBits;
+};
+
+/// Create a demanded bits analysis pass.
+FunctionPass *createDemandedBitsPass();
+
+} // End llvm namespace
+
+#endif
index 6725eb4c374ebf417d70ba640c09ea585baef8cc..02ea255c115a4421cebb025a3caf0ecf89c89a60 100644 (file)
@@ -303,6 +303,7 @@ void initializeDwarfEHPreparePass(PassRegistry&);
 void initializeFloat2IntPass(PassRegistry&);
 void initializeLoopDistributePass(PassRegistry&);
 void initializeSjLjEHPreparePass(PassRegistry&);
+void initializeDemandedBitsPass(PassRegistry&);
 }
 
 #endif
index ecaac22d9131528ef88589ce36dc8cc49f01002e..472956ca4a7259d6b2151c7f8456adc932d4711f 100644 (file)
@@ -36,6 +36,7 @@ void llvm::initializeAnalysis(PassRegistry &Registry) {
   initializeCFLAliasAnalysisPass(Registry);
   initializeDependenceAnalysisPass(Registry);
   initializeDelinearizationPass(Registry);
+  initializeDemandedBitsPass(Registry);
   initializeDivergenceAnalysisPass(Registry);
   initializeDominanceFrontierPass(Registry);
   initializeDomViewerPass(Registry);
index b6aef62eef0c211cd9bc0833bf463c2e54fb9007..431bd34371f54b094f036999d5dd4c0e86a26adc 100644 (file)
@@ -18,6 +18,7 @@ add_llvm_library(LLVMAnalysis
   CodeMetrics.cpp
   ConstantFolding.cpp
   Delinearization.cpp
+  DemandedBits.cpp
   DependenceAnalysis.cpp
   DivergenceAnalysis.cpp
   DomPrinter.cpp
diff --git a/lib/Analysis/DemandedBits.cpp b/lib/Analysis/DemandedBits.cpp
new file mode 100644 (file)
index 0000000..d2eca03
--- /dev/null
@@ -0,0 +1,364 @@
+//===---- DemandedBits.cpp - Determine demanded bits -----------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a demanded bits analysis. A demanded bit is one that
+// contributes to a result; bits that are not demanded can be either zero or
+// one without affecting control or data flow. For example in this sequence:
+//
+//   %1 = add i32 %x, %y
+//   %2 = trunc i32 %1 to i16
+//
+// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
+// trunc.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/DemandedBits.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "demanded-bits"
+
+char DemandedBits::ID = 0;
+INITIALIZE_PASS_BEGIN(DemandedBits, "demanded-bits", "Demanded bits analysis",
+                      false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(DemandedBits, "demanded-bits", "Demanded bits analysis",
+                       false, false)
+
+DemandedBits::DemandedBits() : FunctionPass(ID) {
+  initializeDemandedBitsPass(*PassRegistry::getPassRegistry());
+}
+
+
+void DemandedBits::getAnalysisUsage(AnalysisUsage& AU) const {
+  AU.setPreservesCFG();
+  AU.addRequired<AssumptionCacheTracker>();
+  AU.addRequired<DominatorTreeWrapperPass>();
+  AU.setPreservesAll();
+}
+
+static bool isAlwaysLive(Instruction *I) {
+  return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
+      I->isEHPad() || I->mayHaveSideEffects();
+}
+
+void
+DemandedBits::determineLiveOperandBits(const Instruction *UserI,
+                                      const Instruction *I, unsigned OperandNo,
+                                      const APInt &AOut, APInt &AB,
+                                      APInt &KnownZero, APInt &KnownOne,
+                                      APInt &KnownZero2, APInt &KnownOne2) {
+  unsigned BitWidth = AB.getBitWidth();
+
+  // We're called once per operand, but for some instructions, we need to
+  // compute known bits of both operands in order to determine the live bits of
+  // either (when both operands are instructions themselves). We don't,
+  // however, want to do this twice, so we cache the result in APInts that live
+  // in the caller. For the two-relevant-operands case, both operand values are
+  // provided here.
+  auto ComputeKnownBits =
+      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
+        const DataLayout &DL = I->getModule()->getDataLayout();
+        KnownZero = APInt(BitWidth, 0);
+        KnownOne = APInt(BitWidth, 0);
+        computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
+                         AC, UserI, DT);
+
+        if (V2) {
+          KnownZero2 = APInt(BitWidth, 0);
+          KnownOne2 = APInt(BitWidth, 0);
+          computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
+                           0, AC, UserI, DT);
+        }
+      };
+
+  switch (UserI->getOpcode()) {
+  default: break;
+  case Instruction::Call:
+  case Instruction::Invoke:
+    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
+      switch (II->getIntrinsicID()) {
+      default: break;
+      case Intrinsic::bswap:
+        // The alive bits of the input are the swapped alive bits of
+        // the output.
+        AB = AOut.byteSwap();
+        break;
+      case Intrinsic::ctlz:
+        if (OperandNo == 0) {
+          // We need some output bits, so we need all bits of the
+          // input to the left of, and including, the leftmost bit
+          // known to be one.
+          ComputeKnownBits(BitWidth, I, nullptr);
+          AB = APInt::getHighBitsSet(BitWidth,
+                 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
+        }
+        break;
+      case Intrinsic::cttz:
+        if (OperandNo == 0) {
+          // We need some output bits, so we need all bits of the
+          // input to the right of, and including, the rightmost bit
+          // known to be one.
+          ComputeKnownBits(BitWidth, I, nullptr);
+          AB = APInt::getLowBitsSet(BitWidth,
+                 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
+        }
+        break;
+      }
+    break;
+  case Instruction::Add:
+  case Instruction::Sub:
+    // Find the highest live output bit. We don't need any more input
+    // bits than that (adds, and thus subtracts, ripple only to the
+    // left).
+    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
+    break;
+  case Instruction::Shl:
+    if (OperandNo == 0)
+      if (ConstantInt *CI =
+            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
+        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
+        AB = AOut.lshr(ShiftAmt);
+
+        // If the shift is nuw/nsw, then the high bits are not dead
+        // (because we've promised that they *must* be zero).
+        const ShlOperator *S = cast<ShlOperator>(UserI);
+        if (S->hasNoSignedWrap())
+          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
+        else if (S->hasNoUnsignedWrap())
+          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
+      }
+    break;
+  case Instruction::LShr:
+    if (OperandNo == 0)
+      if (ConstantInt *CI =
+            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
+        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
+        AB = AOut.shl(ShiftAmt);
+
+        // If the shift is exact, then the low bits are not dead
+        // (they must be zero).
+        if (cast<LShrOperator>(UserI)->isExact())
+          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+      }
+    break;
+  case Instruction::AShr:
+    if (OperandNo == 0)
+      if (ConstantInt *CI =
+            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
+        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
+        AB = AOut.shl(ShiftAmt);
+        // Because the high input bit is replicated into the
+        // high-order bits of the result, if we need any of those
+        // bits, then we must keep the highest input bit.
+        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
+            .getBoolValue())
+          AB.setBit(BitWidth-1);
+
+        // If the shift is exact, then the low bits are not dead
+        // (they must be zero).
+        if (cast<AShrOperator>(UserI)->isExact())
+          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+      }
+    break;
+  case Instruction::And:
+    AB = AOut;
+
+    // For bits that are known zero, the corresponding bits in the
+    // other operand are dead (unless they're both zero, in which
+    // case they can't both be dead, so just mark the LHS bits as
+    // dead).
+    if (OperandNo == 0) {
+      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
+      AB &= ~KnownZero2;
+    } else {
+      if (!isa<Instruction>(UserI->getOperand(0)))
+        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
+      AB &= ~(KnownZero & ~KnownZero2);
+    }
+    break;
+  case Instruction::Or:
+    AB = AOut;
+
+    // For bits that are known one, the corresponding bits in the
+    // other operand are dead (unless they're both one, in which
+    // case they can't both be dead, so just mark the LHS bits as
+    // dead).
+    if (OperandNo == 0) {
+      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
+      AB &= ~KnownOne2;
+    } else {
+      if (!isa<Instruction>(UserI->getOperand(0)))
+        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
+      AB &= ~(KnownOne & ~KnownOne2);
+    }
+    break;
+  case Instruction::Xor:
+  case Instruction::PHI:
+    AB = AOut;
+    break;
+  case Instruction::Trunc:
+    AB = AOut.zext(BitWidth);
+    break;
+  case Instruction::ZExt:
+    AB = AOut.trunc(BitWidth);
+    break;
+  case Instruction::SExt:
+    AB = AOut.trunc(BitWidth);
+    // Because the high input bit is replicated into the
+    // high-order bits of the result, if we need any of those
+    // bits, then we must keep the highest input bit.
+    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
+                                      AOut.getBitWidth() - BitWidth))
+        .getBoolValue())
+      AB.setBit(BitWidth-1);
+    break;
+  case Instruction::Select:
+    if (OperandNo != 0)
+      AB = AOut;
+    break;
+  }
+}
+
+bool DemandedBits::runOnFunction(Function& F) {
+  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+  Visited.clear();
+  AliveBits.clear();
+
+  SmallVector<Instruction*, 128> Worklist;
+
+  // Collect the set of "root" instructions that are known live.
+  for (Instruction &I : instructions(F)) {
+    if (!isAlwaysLive(&I))
+      continue;
+
+    DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
+    // For integer-valued instructions, set up an initial empty set of alive
+    // bits and add the instruction to the work list. For other instructions
+    // add their operands to the work list (for integer values operands, mark
+    // all bits as live).
+    if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
+      if (!AliveBits.count(&I)) {
+        AliveBits[&I] = APInt(IT->getBitWidth(), 0);
+        Worklist.push_back(&I);
+      }
+
+      continue;
+    }
+
+    // Non-integer-typed instructions...
+    for (Use &OI : I.operands()) {
+      if (Instruction *J = dyn_cast<Instruction>(OI)) {
+        if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
+          AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
+        Worklist.push_back(J);
+      }
+    }
+    // To save memory, we don't add I to the Visited set here. Instead, we
+    // check isAlwaysLive on every instruction when searching for dead
+    // instructions later (we need to check isAlwaysLive for the
+    // integer-typed instructions anyway).
+  }
+
+  // Propagate liveness backwards to operands.
+  while (!Worklist.empty()) {
+    Instruction *UserI = Worklist.pop_back_val();
+
+    DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
+    APInt AOut;
+    if (UserI->getType()->isIntegerTy()) {
+      AOut = AliveBits[UserI];
+      DEBUG(dbgs() << " Alive Out: " << AOut);
+    }
+    DEBUG(dbgs() << "\n");
+
+    if (!UserI->getType()->isIntegerTy())
+      Visited.insert(UserI);
+
+    APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
+    // Compute the set of alive bits for each operand. These are anded into the
+    // existing set, if any, and if that changes the set of alive bits, the
+    // operand is added to the work-list.
+    for (Use &OI : UserI->operands()) {
+      if (Instruction *I = dyn_cast<Instruction>(OI)) {
+        if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
+          unsigned BitWidth = IT->getBitWidth();
+          APInt AB = APInt::getAllOnesValue(BitWidth);
+          if (UserI->getType()->isIntegerTy() && !AOut &&
+              !isAlwaysLive(UserI)) {
+            AB = APInt(BitWidth, 0);
+          } else {
+            // If all bits of the output are dead, then all bits of the input 
+            // Bits of each operand that are used to compute alive bits of the
+            // output are alive, all others are dead.
+            determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
+                                     KnownZero, KnownOne,
+                                     KnownZero2, KnownOne2);
+          }
+
+          // If we've added to the set of alive bits (or the operand has not
+          // been previously visited), then re-queue the operand to be visited
+          // again.
+          APInt ABPrev(BitWidth, 0);
+          auto ABI = AliveBits.find(I);
+          if (ABI != AliveBits.end())
+            ABPrev = ABI->second;
+
+          APInt ABNew = AB | ABPrev;
+          if (ABNew != ABPrev || ABI == AliveBits.end()) {
+            AliveBits[I] = std::move(ABNew);
+            Worklist.push_back(I);
+          }
+        } else if (!Visited.count(I)) {
+          Worklist.push_back(I);
+        }
+      }
+    }
+  }
+
+  return false;
+}
+
+APInt DemandedBits::getDemandedBits(Instruction *I) {
+  const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
+  if (AliveBits.count(I))
+    return AliveBits[I];
+  return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
+}
+
+bool DemandedBits::isInstructionDead(Instruction *I) {
+  return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
+    !isAlwaysLive(I);
+}
+
+FunctionPass *llvm::createDemandedBitsPass() {
+  return new DemandedBits();
+}
index 909a86f740b8a5677ef2600231c1d8f0c0ff7977..7b01ec150862baddb2fccbaa1e2b7f1668c682a4 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Transforms/Scalar.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/BasicBlock.h"
+#include "llvm/Analysis/DemandedBits.h"
 #include "llvm/IR/CFG.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
 #include "llvm/IR/InstIterator.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
 #include "llvm/IR/Operator.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
-
 using namespace llvm;
 
 #define DEBUG_TYPE "bdce"
@@ -53,342 +44,41 @@ struct BDCE : public FunctionPass {
 
   void getAnalysisUsage(AnalysisUsage& AU) const override {
     AU.setPreservesCFG();
-    AU.addRequired<AssumptionCacheTracker>();
-    AU.addRequired<DominatorTreeWrapperPass>();
+    AU.addRequired<DemandedBits>();
   }
-
-  void determineLiveOperandBits(const Instruction *UserI,
-                                const Instruction *I, unsigned OperandNo,
-                                const APInt &AOut, APInt &AB,
-                                APInt &KnownZero, APInt &KnownOne,
-                                APInt &KnownZero2, APInt &KnownOne2);
-
-  AssumptionCache *AC;
-  DominatorTree *DT;
 };
 }
 
 char BDCE::ID = 0;
 INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
                       false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DemandedBits)
 INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
                     false, false)
 
-static bool isAlwaysLive(Instruction *I) {
-  return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
-         I->mayHaveSideEffects();
-}
-
-void BDCE::determineLiveOperandBits(const Instruction *UserI,
-                                    const Instruction *I, unsigned OperandNo,
-                                    const APInt &AOut, APInt &AB,
-                                    APInt &KnownZero, APInt &KnownOne,
-                                    APInt &KnownZero2, APInt &KnownOne2) {
-  unsigned BitWidth = AB.getBitWidth();
-
-  // We're called once per operand, but for some instructions, we need to
-  // compute known bits of both operands in order to determine the live bits of
-  // either (when both operands are instructions themselves). We don't,
-  // however, want to do this twice, so we cache the result in APInts that live
-  // in the caller. For the two-relevant-operands case, both operand values are
-  // provided here.
-  auto ComputeKnownBits =
-      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
-        const DataLayout &DL = I->getModule()->getDataLayout();
-        KnownZero = APInt(BitWidth, 0);
-        KnownOne = APInt(BitWidth, 0);
-        computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
-                         AC, UserI, DT);
-
-        if (V2) {
-          KnownZero2 = APInt(BitWidth, 0);
-          KnownOne2 = APInt(BitWidth, 0);
-          computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
-                           0, AC, UserI, DT);
-        }
-      };
-
-  switch (UserI->getOpcode()) {
-  default: break;
-  case Instruction::Call:
-  case Instruction::Invoke:
-    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
-      switch (II->getIntrinsicID()) {
-      default: break;
-      case Intrinsic::bswap:
-        // The alive bits of the input are the swapped alive bits of
-        // the output.
-        AB = AOut.byteSwap();
-        break;
-      case Intrinsic::ctlz:
-        if (OperandNo == 0) {
-          // We need some output bits, so we need all bits of the
-          // input to the left of, and including, the leftmost bit
-          // known to be one.
-          ComputeKnownBits(BitWidth, I, nullptr);
-          AB = APInt::getHighBitsSet(BitWidth,
-                 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
-        }
-        break;
-      case Intrinsic::cttz:
-        if (OperandNo == 0) {
-          // We need some output bits, so we need all bits of the
-          // input to the right of, and including, the rightmost bit
-          // known to be one.
-          ComputeKnownBits(BitWidth, I, nullptr);
-          AB = APInt::getLowBitsSet(BitWidth,
-                 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
-        }
-        break;
-      }
-    break;
-  case Instruction::Add:
-  case Instruction::Sub:
-    // Find the highest live output bit. We don't need any more input
-    // bits than that (adds, and thus subtracts, ripple only to the
-    // left).
-    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
-    break;
-  case Instruction::Shl:
-    if (OperandNo == 0)
-      if (ConstantInt *CI =
-            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
-        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
-        AB = AOut.lshr(ShiftAmt);
-
-        // If the shift is nuw/nsw, then the high bits are not dead
-        // (because we've promised that they *must* be zero).
-        const ShlOperator *S = cast<ShlOperator>(UserI);
-        if (S->hasNoSignedWrap())
-          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
-        else if (S->hasNoUnsignedWrap())
-          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
-      }
-    break;
-  case Instruction::LShr:
-    if (OperandNo == 0)
-      if (ConstantInt *CI =
-            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
-        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
-        AB = AOut.shl(ShiftAmt);
-
-        // If the shift is exact, then the low bits are not dead
-        // (they must be zero).
-        if (cast<LShrOperator>(UserI)->isExact())
-          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-      }
-    break;
-  case Instruction::AShr:
-    if (OperandNo == 0)
-      if (ConstantInt *CI =
-            dyn_cast<ConstantInt>(UserI->getOperand(1))) {
-        uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
-        AB = AOut.shl(ShiftAmt);
-        // Because the high input bit is replicated into the
-        // high-order bits of the result, if we need any of those
-        // bits, then we must keep the highest input bit.
-        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
-            .getBoolValue())
-          AB.setBit(BitWidth-1);
-
-        // If the shift is exact, then the low bits are not dead
-        // (they must be zero).
-        if (cast<AShrOperator>(UserI)->isExact())
-          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
-      }
-    break;
-  case Instruction::And:
-    AB = AOut;
-
-    // For bits that are known zero, the corresponding bits in the
-    // other operand are dead (unless they're both zero, in which
-    // case they can't both be dead, so just mark the LHS bits as
-    // dead).
-    if (OperandNo == 0) {
-      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
-      AB &= ~KnownZero2;
-    } else {
-      if (!isa<Instruction>(UserI->getOperand(0)))
-        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
-      AB &= ~(KnownZero & ~KnownZero2);
-    }
-    break;
-  case Instruction::Or:
-    AB = AOut;
-
-    // For bits that are known one, the corresponding bits in the
-    // other operand are dead (unless they're both one, in which
-    // case they can't both be dead, so just mark the LHS bits as
-    // dead).
-    if (OperandNo == 0) {
-      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
-      AB &= ~KnownOne2;
-    } else {
-      if (!isa<Instruction>(UserI->getOperand(0)))
-        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
-      AB &= ~(KnownOne & ~KnownOne2);
-    }
-    break;
-  case Instruction::Xor:
-  case Instruction::PHI:
-    AB = AOut;
-    break;
-  case Instruction::Trunc:
-    AB = AOut.zext(BitWidth);
-    break;
-  case Instruction::ZExt:
-    AB = AOut.trunc(BitWidth);
-    break;
-  case Instruction::SExt:
-    AB = AOut.trunc(BitWidth);
-    // Because the high input bit is replicated into the
-    // high-order bits of the result, if we need any of those
-    // bits, then we must keep the highest input bit.
-    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
-                                      AOut.getBitWidth() - BitWidth))
-        .getBoolValue())
-      AB.setBit(BitWidth-1);
-    break;
-  case Instruction::Select:
-    if (OperandNo != 0)
-      AB = AOut;
-    break;
-  }
-}
-
 bool BDCE::runOnFunction(Function& F) {
   if (skipOptnoneFunction(F))
     return false;
+  DemandedBits &DB = getAnalysis<DemandedBits>();
 
-  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
-  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-
-  DenseMap<Instruction *, APInt> AliveBits;
   SmallVector<Instruction*, 128> Worklist;
-
-  // The set of visited instructions (non-integer-typed only).
-  SmallPtrSet<Instruction*, 128> Visited;
-
-  // Collect the set of "root" instructions that are known live.
-  for (Instruction &I : instructions(F)) {
-    if (!isAlwaysLive(&I))
-      continue;
-
-    DEBUG(dbgs() << "BDCE: Root: " << I << "\n");
-    // For integer-valued instructions, set up an initial empty set of alive
-    // bits and add the instruction to the work list. For other instructions
-    // add their operands to the work list (for integer values operands, mark
-    // all bits as live).
-    if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
-      if (!AliveBits.count(&I)) {
-        AliveBits[&I] = APInt(IT->getBitWidth(), 0);
-        Worklist.push_back(&I);
-      }
-
-      continue;
-    }
-
-    // Non-integer-typed instructions...
-    for (Use &OI : I.operands()) {
-      if (Instruction *J = dyn_cast<Instruction>(OI)) {
-        if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
-          AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
-        Worklist.push_back(J);
-      }
-    }
-    // To save memory, we don't add I to the Visited set here. Instead, we
-    // check isAlwaysLive on every instruction when searching for dead
-    // instructions later (we need to check isAlwaysLive for the
-    // integer-typed instructions anyway).
-  }
-
-  // Propagate liveness backwards to operands.
-  while (!Worklist.empty()) {
-    Instruction *UserI = Worklist.pop_back_val();
-
-    DEBUG(dbgs() << "BDCE: Visiting: " << *UserI);
-    APInt AOut;
-    if (UserI->getType()->isIntegerTy()) {
-      AOut = AliveBits[UserI];
-      DEBUG(dbgs() << " Alive Out: " << AOut);
-    }
-    DEBUG(dbgs() << "\n");
-
-    if (!UserI->getType()->isIntegerTy())
-      Visited.insert(UserI);
-
-    APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
-    // Compute the set of alive bits for each operand. These are anded into the
-    // existing set, if any, and if that changes the set of alive bits, the
-    // operand is added to the work-list.
-    for (Use &OI : UserI->operands()) {
-      if (Instruction *I = dyn_cast<Instruction>(OI)) {
-        if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
-          unsigned BitWidth = IT->getBitWidth();
-          APInt AB = APInt::getAllOnesValue(BitWidth);
-          if (UserI->getType()->isIntegerTy() && !AOut &&
-              !isAlwaysLive(UserI)) {
-            AB = APInt(BitWidth, 0);
-          } else {
-            // If all bits of the output are dead, then all bits of the input 
-            // Bits of each operand that are used to compute alive bits of the
-            // output are alive, all others are dead.
-            determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
-                                     KnownZero, KnownOne,
-                                     KnownZero2, KnownOne2);
-          }
-
-          // If we've added to the set of alive bits (or the operand has not
-          // been previously visited), then re-queue the operand to be visited
-          // again.
-          APInt ABPrev(BitWidth, 0);
-          auto ABI = AliveBits.find(I);
-          if (ABI != AliveBits.end())
-            ABPrev = ABI->second;
-
-          APInt ABNew = AB | ABPrev;
-          if (ABNew != ABPrev || ABI == AliveBits.end()) {
-            AliveBits[I] = std::move(ABNew);
-            Worklist.push_back(I);
-          }
-        } else if (!Visited.count(I)) {
-          Worklist.push_back(I);
-        }
-      }
-    }
-  }
-
   bool Changed = false;
-  // The inverse of the live set is the dead set.  These are those instructions
-  // which have no side effects and do not influence the control flow or return
-  // value of the function, and may therefore be deleted safely.
-  // NOTE: We reuse the Worklist vector here for memory efficiency.
   for (Instruction &I : instructions(F)) {
-    // For live instructions that have all dead bits, first make them dead by
-    // replacing all uses with something else. Then, if they don't need to
-    // remain live (because they have side effects, etc.) we can remove them.
-    if (I.getType()->isIntegerTy()) {
-      auto ABI = AliveBits.find(&I);
-      if (ABI != AliveBits.end()) {
-        if (ABI->second.getBoolValue())
-          continue;
-
-        DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
-        // FIXME: In theory we could substitute undef here instead of zero.
-        // This should be reconsidered once we settle on the semantics of
-        // undef, poison, etc.
-        Value *Zero = ConstantInt::get(I.getType(), 0);
-        ++NumSimplified;
-        I.replaceAllUsesWith(Zero);
-        Changed = true;
-      }
-    } else if (Visited.count(&I)) {
-      continue;
+    if (I.getType()->isIntegerTy() &&
+        !DB.getDemandedBits(&I).getBoolValue()) {
+      // For live instructions that have all dead bits, first make them dead by
+      // replacing all uses with something else. Then, if they don't need to
+      // remain live (because they have side effects, etc.) we can remove them.
+      DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
+      // FIXME: In theory we could substitute undef here instead of zero.
+      // This should be reconsidered once we settle on the semantics of
+      // undef, poison, etc.
+      Value *Zero = ConstantInt::get(I.getType(), 0);
+      ++NumSimplified;
+      I.replaceAllUsesWith(Zero);
+      Changed = true;
     }
-
-    if (isAlwaysLive(&I))
+    if (!DB.isInstructionDead(&I))
       continue;
 
     Worklist.push_back(&I);