X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=utils%2FTableGen%2FIntrinsicEmitter.cpp;h=9c024a4981aff6a5f9cd7463acdcf386ce4ce299;hp=ff15996f0ccb86da3bf3e01e441bd06c3470d0c2;hb=908a831a9a1fb043bc4758d6712d78255099ae51;hpb=5348e393dff492b568c12f0bf5592509392b1407 diff --git a/utils/TableGen/IntrinsicEmitter.cpp b/utils/TableGen/IntrinsicEmitter.cpp index ff15996f0cc..9c024a4981a 100644 --- a/utils/TableGen/IntrinsicEmitter.cpp +++ b/utils/TableGen/IntrinsicEmitter.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Chris Lattner and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -11,8 +11,11 @@ // //===----------------------------------------------------------------------===// +#include "CodeGenTarget.h" #include "IntrinsicEmitter.h" -#include "Record.h" +#include "SequenceToOffsetTable.h" +#include "llvm/TableGen/Record.h" +#include "llvm/TableGen/StringMatcher.h" #include "llvm/ADT/StringExtras.h" #include using namespace llvm; @@ -21,41 +24,66 @@ using namespace llvm; // IntrinsicEmitter Implementation //===----------------------------------------------------------------------===// -void IntrinsicEmitter::run(std::ostream &OS) { +void IntrinsicEmitter::run(raw_ostream &OS) { EmitSourceFileHeader("Intrinsic Function Source Fragment", OS); - std::vector Ints = LoadIntrinsics(Records); + std::vector Ints = LoadIntrinsics(Records, TargetOnly); + + if (TargetOnly && !Ints.empty()) + TargetPrefix = Ints[0].TargetPrefix; + + EmitPrefix(OS); // Emit the enum information. EmitEnumInfo(Ints, OS); // Emit the intrinsic ID -> name table. EmitIntrinsicToNameTable(Ints, OS); - + + // Emit the intrinsic ID -> overload table. + EmitIntrinsicToOverloadTable(Ints, OS); + // Emit the function name recognizer. EmitFnNameRecognizer(Ints, OS); // Emit the intrinsic verifier. EmitVerifier(Ints, OS); - // Emit mod/ref info for each function. - EmitModRefInfo(Ints, OS); - - // Emit table of non-memory accessing intrinsics. - EmitNoMemoryInfo(Ints, OS); + // Emit the intrinsic declaration generator. + EmitGenerator(Ints, OS); - // Emit side effect info for each intrinsic. - EmitSideEffectInfo(Ints, OS); + // Emit the intrinsic parameter attributes. + EmitAttributes(Ints, OS); - // Emit a list of intrinsics with corresponding GCC builtins. - EmitGCCBuiltinList(Ints, OS); + // Emit intrinsic alias analysis mod/ref behavior. + EmitModRefBehavior(Ints, OS); // Emit code to translate GCC builtins into LLVM intrinsics. EmitIntrinsicToGCCBuiltinMap(Ints, OS); + + EmitSuffix(OS); +} + +void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { + OS << "// VisualStudio defines setjmp as _setjmp\n" + "#if defined(_MSC_VER) && defined(setjmp) && \\\n" + " !defined(setjmp_undefined_for_msvc)\n" + "# pragma push_macro(\"setjmp\")\n" + "# undef setjmp\n" + "# define setjmp_undefined_for_msvc\n" + "#endif\n\n"; +} + +void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { + OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" + "// let's return it to _setjmp state\n" + "# pragma pop_macro(\"setjmp\")\n" + "# undef setjmp_undefined_for_msvc\n" + "#endif\n\n"; } void IntrinsicEmitter::EmitEnumInfo(const std::vector &Ints, - std::ostream &OS) { + raw_ostream &OS) { OS << "// Enum values for Intrinsics.h\n"; OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { @@ -69,37 +97,56 @@ void IntrinsicEmitter::EmitEnumInfo(const std::vector &Ints, void IntrinsicEmitter:: EmitFnNameRecognizer(const std::vector &Ints, - std::ostream &OS) { - // Build a function name -> intrinsic name mapping. - std::map IntMapping; + raw_ostream &OS) { + // Build a 'first character of function name' -> intrinsic # mapping. + std::map > IntMapping; for (unsigned i = 0, e = Ints.size(); i != e; ++i) - IntMapping[Ints[i].Name] = Ints[i].EnumName; - + IntMapping[Ints[i].Name[5]].push_back(i); + OS << "// Function name -> enum value recognizer code.\n"; OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; - OS << " switch (Name[5]) {\n"; + OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n"; + OS << " switch (Name[5]) { // Dispatch on first letter.\n"; OS << " default: break;\n"; - // Emit the intrinsics in sorted order. - char LastChar = 0; - for (std::map::iterator I = IntMapping.begin(), + // Emit the intrinsic matching stuff by first letter. + for (std::map >::iterator I = IntMapping.begin(), E = IntMapping.end(); I != E; ++I) { - if (I->first[5] != LastChar) { - LastChar = I->first[5]; - OS << " case '" << LastChar << "':\n"; + OS << " case '" << I->first << "':\n"; + std::vector &IntList = I->second; + + // Emit all the overloaded intrinsics first, build a table of the + // non-overloaded ones. + std::vector MatchTable; + + for (unsigned i = 0, e = IntList.size(); i != e; ++i) { + unsigned IntNo = IntList[i]; + std::string Result = "return " + TargetPrefix + "Intrinsic::" + + Ints[IntNo].EnumName + ";"; + + if (!Ints[IntNo].isOverloaded) { + MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result)); + continue; + } + + // For overloaded intrinsics, only the prefix needs to match + std::string TheStr = Ints[IntNo].Name.substr(6); + TheStr += '.'; // Require "bswap." instead of bswap. + OS << " if (NameR.startswith(\"" << TheStr << "\")) " + << Result << '\n'; } - OS << " if (Name == \"" << I->first << "\") return Intrinsic::" - << I->second << ";\n"; + // Emit the matcher logic for the fixed length strings. + StringMatcher("NameR", MatchTable, OS).Emit(1); + OS << " break; // end of '" << I->first << "' case.\n"; } + OS << " }\n"; - OS << " // The 'llvm.' namespace is reserved!\n"; - OS << " assert(0 && \"Unknown LLVM intrinsic function!\");\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToNameTable(const std::vector &Ints, - std::ostream &OS) { + raw_ostream &OS) { OS << "// Intrinsic ID to name table\n"; OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; @@ -108,157 +155,632 @@ EmitIntrinsicToNameTable(const std::vector &Ints, OS << "#endif\n\n"; } -static void EmitTypeVerify(std::ostream &OS, Record *ArgType) { - OS << "(int)" << ArgType->getValueAsString("TypeVal") << ", "; - - // If this is a packed type, check that the subtype and size are correct. - if (ArgType->isSubClassOf("LLVMPackedType")) { - Record *SubType = ArgType->getValueAsDef("ElTy"); - OS << "(int)" << SubType->getValueAsString("TypeVal") << ", " - << ArgType->getValueAsInt("NumElts") << ", "; +void IntrinsicEmitter:: +EmitIntrinsicToOverloadTable(const std::vector &Ints, + raw_ostream &OS) { + OS << "// Intrinsic ID to overload bitset\n"; + OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; + OS << "static const uint8_t OTable[] = {\n"; + OS << " 0"; + for (unsigned i = 0, e = Ints.size(); i != e; ++i) { + // Add one to the index so we emit a null bit for the invalid #0 intrinsic. + if ((i+1)%8 == 0) + OS << ",\n 0"; + if (Ints[i].isOverloaded) + OS << " | (1<<" << (i+1)%8 << ')'; } + OS << "\n};\n\n"; + // OTable contains a true bit at the position if the intrinsic is overloaded. + OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; + OS << "#endif\n\n"; } -/// RecordListComparator - Provide a determinstic comparator for lists of +/// RecordListComparator - Provide a deterministic comparator for lists of /// records. namespace { + typedef std::pair, std::vector > RecPair; struct RecordListComparator { - bool operator()(const std::vector &LHS, - const std::vector &RHS) const { + bool operator()(const RecPair &LHS, + const RecPair &RHS) const { unsigned i = 0; - do { - if (i == RHS.size()) return false; // RHS is shorter than LHS. - if (LHS[i] != RHS[i]) - return LHS[i]->getName() < RHS[i]->getName(); - } while (++i != LHS.size()); - - return i != RHS.size(); + const std::vector *LHSVec = &LHS.first; + const std::vector *RHSVec = &RHS.first; + unsigned RHSSize = RHSVec->size(); + unsigned LHSSize = LHSVec->size(); + + for (; i != LHSSize; ++i) { + if (i == RHSSize) return false; // RHS is shorter than LHS. + if ((*LHSVec)[i] != (*RHSVec)[i]) + return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName(); + } + + if (i != RHSSize) return true; + + i = 0; + LHSVec = &LHS.second; + RHSVec = &RHS.second; + RHSSize = RHSVec->size(); + LHSSize = LHSVec->size(); + + for (i = 0; i != LHSSize; ++i) { + if (i == RHSSize) return false; // RHS is shorter than LHS. + if ((*LHSVec)[i] != (*RHSVec)[i]) + return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName(); + } + + return i != RHSSize; } }; } void IntrinsicEmitter::EmitVerifier(const std::vector &Ints, - std::ostream &OS) { + raw_ostream &OS) { OS << "// Verifier::visitIntrinsicFunctionCall code.\n"; OS << "#ifdef GET_INTRINSIC_VERIFIER\n"; OS << " switch (ID) {\n"; - OS << " default: assert(0 && \"Invalid intrinsic!\");\n"; + OS << " default: llvm_unreachable(\"Invalid intrinsic!\");\n"; // This checking can emit a lot of very common code. To reduce the amount of // code that we emit, batch up cases that have identical types. This avoids // problems where GCC can run out of memory compiling Verifier.cpp. - typedef std::map, std::vector, - RecordListComparator> MapTy; + typedef std::map, RecordListComparator> MapTy; MapTy UniqueArgInfos; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) - UniqueArgInfos[Ints[i].ArgTypeDefs].push_back(i); + UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs, + Ints[i].IS.ParamTypeDefs)].push_back(i); // Loop through the array, emitting one comparison for each batch. for (MapTy::iterator I = UniqueArgInfos.begin(), E = UniqueArgInfos.end(); I != E; ++I) { - for (unsigned i = 0, e = I->second.size(); i != e; ++i) { + for (unsigned i = 0, e = I->second.size(); i != e; ++i) OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// " << Ints[I->second[i]].Name << "\n"; - } - const std::vector &ArgTypes = I->first; - OS << " VerifyIntrinsicPrototype(IF, "; - for (unsigned j = 0; j != ArgTypes.size(); ++j) - EmitTypeVerify(OS, ArgTypes[j]); - OS << "-1);\n"; + const RecPair &ArgTypes = I->first; + const std::vector &RetTys = ArgTypes.first; + const std::vector &ParamTys = ArgTypes.second; + std::vector OverloadedTypeIndices; + + OS << " VerifyIntrinsicPrototype(ID, IF, " << RetTys.size() << ", " + << ParamTys.size(); + + // Emit return types. + for (unsigned j = 0, je = RetTys.size(); j != je; ++j) { + Record *ArgType = RetTys[j]; + OS << ", "; + + if (ArgType->isSubClassOf("LLVMMatchType")) { + unsigned Number = ArgType->getValueAsInt("Number"); + assert(Number < OverloadedTypeIndices.size() && + "Invalid matching number!"); + Number = OverloadedTypeIndices[Number]; + if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) + OS << "~(ExtendedElementVectorType | " << Number << ")"; + else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) + OS << "~(TruncatedElementVectorType | " << Number << ")"; + else + OS << "~" << Number; + } else { + MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); + OS << getEnumName(VT); + + if (EVT(VT).isOverloaded()) + OverloadedTypeIndices.push_back(j); + + if (VT == MVT::isVoid && j != 0 && j != je - 1) + throw "Var arg type not last argument"; + } + } + + // Emit the parameter types. + for (unsigned j = 0, je = ParamTys.size(); j != je; ++j) { + Record *ArgType = ParamTys[j]; + OS << ", "; + + if (ArgType->isSubClassOf("LLVMMatchType")) { + unsigned Number = ArgType->getValueAsInt("Number"); + assert(Number < OverloadedTypeIndices.size() && + "Invalid matching number!"); + Number = OverloadedTypeIndices[Number]; + if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) + OS << "~(ExtendedElementVectorType | " << Number << ")"; + else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) + OS << "~(TruncatedElementVectorType | " << Number << ")"; + else + OS << "~" << Number; + } else { + MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); + OS << getEnumName(VT); + + if (EVT(VT).isOverloaded()) + OverloadedTypeIndices.push_back(j + RetTys.size()); + + if (VT == MVT::isVoid && j != 0 && j != je - 1) + throw "Var arg type not last argument"; + } + } + + OS << ");\n"; OS << " break;\n"; } OS << " }\n"; OS << "#endif\n\n"; } -void IntrinsicEmitter::EmitModRefInfo(const std::vector &Ints, - std::ostream &OS) { - OS << "// BasicAliasAnalysis code.\n"; - OS << "#ifdef GET_MODREF_BEHAVIOR\n"; + +// NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp! +enum IIT_Info { + // Common values should be encoded with 0-15. + IIT_Done = 0, + IIT_I1 = 1, + IIT_I8 = 2, + IIT_I16 = 3, + IIT_I32 = 4, + IIT_I64 = 5, + IIT_F32 = 6, + IIT_F64 = 7, + IIT_V2 = 8, + IIT_V4 = 9, + IIT_V8 = 10, + IIT_V16 = 11, + IIT_V32 = 12, + IIT_MMX = 13, + IIT_PTR = 14, + IIT_ARG = 15, + + // Values from 16+ are only encodable with the inefficient encoding. + IIT_METADATA = 16, + IIT_EMPTYSTRUCT = 17, + IIT_STRUCT2 = 18, + IIT_STRUCT3 = 19, + IIT_STRUCT4 = 20, + IIT_STRUCT5 = 21, + IIT_EXTEND_VEC_ARG = 22, + IIT_TRUNC_VEC_ARG = 23, + IIT_ANYPTR = 24 +}; + + +static void EncodeFixedValueType(MVT::SimpleValueType VT, + std::vector &Sig) { + if (EVT(VT).isInteger()) { + unsigned BitWidth = EVT(VT).getSizeInBits(); + switch (BitWidth) { + default: throw "unhandled integer type width in intrinsic!"; + case 1: return Sig.push_back(IIT_I1); + case 8: return Sig.push_back(IIT_I8); + case 16: return Sig.push_back(IIT_I16); + case 32: return Sig.push_back(IIT_I32); + case 64: return Sig.push_back(IIT_I64); + } + } + + switch (VT) { + default: throw "unhandled MVT in intrinsic!"; + case MVT::f32: return Sig.push_back(IIT_F32); + case MVT::f64: return Sig.push_back(IIT_F64); + case MVT::Metadata: return Sig.push_back(IIT_METADATA); + case MVT::x86mmx: return Sig.push_back(IIT_MMX); + // MVT::OtherVT is used to mean the empty struct type here. + case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); + } +} + +#ifdef _MSC_VER +#pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function. +#endif + +static void EncodeFixedType(Record *R, std::vector &ArgCodes, + std::vector &Sig) { + + if (R->isSubClassOf("LLVMMatchType")) { + unsigned Number = R->getValueAsInt("Number"); + assert(Number < ArgCodes.size() && "Invalid matching number!"); + if (R->isSubClassOf("LLVMExtendedElementVectorType")) + Sig.push_back(IIT_EXTEND_VEC_ARG); + else if (R->isSubClassOf("LLVMTruncatedElementVectorType")) + Sig.push_back(IIT_TRUNC_VEC_ARG); + else + Sig.push_back(IIT_ARG); + return Sig.push_back((Number << 2) | ArgCodes[Number]); + } + + MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); + + unsigned Tmp = 0; + switch (VT) { + default: break; + case MVT::iPTRAny: ++Tmp; // FALL THROUGH. + case MVT::vAny: ++Tmp; // FALL THROUGH. + case MVT::fAny: ++Tmp; // FALL THROUGH. + case MVT::iAny: { + // If this is an "any" valuetype, then the type is the type of the next + // type in the list specified to getIntrinsic(). + Sig.push_back(IIT_ARG); + + // Figure out what arg # this is consuming, and remember what kind it was. + unsigned ArgNo = ArgCodes.size(); + ArgCodes.push_back(Tmp); + + // Encode what sort of argument it must be in the low 2 bits of the ArgNo. + return Sig.push_back((ArgNo << 2) | Tmp); + } + + case MVT::iPTR: { + unsigned AddrSpace = 0; + if (R->isSubClassOf("LLVMQualPointerType")) { + AddrSpace = R->getValueAsInt("AddrSpace"); + assert(AddrSpace < 256 && "Address space exceeds 255"); + } + if (AddrSpace) { + Sig.push_back(IIT_ANYPTR); + Sig.push_back(AddrSpace); + } else { + Sig.push_back(IIT_PTR); + } + return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig); + } + } + + if (EVT(VT).isVector()) { + EVT VVT = VT; + switch (VVT.getVectorNumElements()) { + default: throw "unhandled vector type width in intrinsic!"; + case 2: Sig.push_back(IIT_V2); break; + case 4: Sig.push_back(IIT_V4); break; + case 8: Sig.push_back(IIT_V8); break; + case 16: Sig.push_back(IIT_V16); break; + case 32: Sig.push_back(IIT_V32); break; + } + + return EncodeFixedValueType(VVT.getVectorElementType(). + getSimpleVT().SimpleTy, Sig); + } + + EncodeFixedValueType(VT, Sig); +} + +#ifdef _MSC_VER +#pragma optimize("",on) +#endif + +/// ComputeFixedEncoding - If we can encode the type signature for this +/// intrinsic into 32 bits, return it. If not, return ~0U. +static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, + std::vector &TypeSig) { + std::vector ArgCodes; + + if (Int.IS.RetVTs.empty()) + TypeSig.push_back(IIT_Done); + else if (Int.IS.RetVTs.size() == 1 && + Int.IS.RetVTs[0] == MVT::isVoid) + TypeSig.push_back(IIT_Done); + else { + switch (Int.IS.RetVTs.size()) { + case 1: break; + case 2: TypeSig.push_back(IIT_STRUCT2); break; + case 3: TypeSig.push_back(IIT_STRUCT3); break; + case 4: TypeSig.push_back(IIT_STRUCT4); break; + case 5: TypeSig.push_back(IIT_STRUCT5); break; + default: assert(0 && "Unhandled case in struct"); + } + + for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) + EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig); + } + + for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) + EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig); +} + +void printIITEntry(raw_ostream &OS, unsigned char X) { + OS << (unsigned)X; +} + +void IntrinsicEmitter::EmitGenerator(const std::vector &Ints, + raw_ostream &OS) { + // If we can compute a 32-bit fixed encoding for this intrinsic, do so and + // capture it in this vector, otherwise store a ~0U. + std::vector FixedEncodings; + + SequenceToOffsetTable > LongEncodingTable; + + std::vector TypeSig; + + // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) { - switch (Ints[i].ModRef) { - default: break; + // Get the signature for the intrinsic. + TypeSig.clear(); + ComputeFixedEncoding(Ints[i], TypeSig); + + // Check to see if we can encode it into a 32-bit word. We can only encode + // 8 nibbles into a 32-bit word. + if (TypeSig.size() <= 8) { + bool Failed = false; + unsigned Result = 0; + for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { + // If we had an unencodable argument, bail out. + if (TypeSig[i] > 15) { + Failed = true; + break; + } + Result = (Result << 4) | TypeSig[e-i-1]; + } + + // If this could be encoded into a 31-bit word, return it. + if (!Failed && (Result >> 31) == 0) { + FixedEncodings.push_back(Result); + continue; + } + } + + // Otherwise, we're going to unique the sequence into the + // LongEncodingTable, and use its offset in the 32-bit table instead. + LongEncodingTable.add(TypeSig); + + // This is a placehold that we'll replace after the table is laid out. + FixedEncodings.push_back(~0U); + } + + LongEncodingTable.layout(); + + OS << "// Global intrinsic function declaration type table.\n"; + OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; + + OS << "static const unsigned IIT_Table[] = {\n "; + + for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { + if ((i & 7) == 7) + OS << "\n "; + + // If the entry fit in the table, just emit it. + if (FixedEncodings[i] != ~0U) { + OS << "0x" << utohexstr(FixedEncodings[i]) << ", "; + continue; + } + + TypeSig.clear(); + ComputeFixedEncoding(Ints[i], TypeSig); + + + // Otherwise, emit the offset into the long encoding table. We emit it this + // way so that it is easier to read the offset in the .def file. + OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; + } + + OS << "0\n};\n\n"; + + // Emit the shared table of register lists. + OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; + if (!LongEncodingTable.empty()) + LongEncodingTable.emit(OS, printIITEntry); + OS << " 255\n};\n\n"; + + OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL +} + +namespace { + enum ModRefKind { + MRK_none, + MRK_readonly, + MRK_readnone + }; + + ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) { + switch (intrinsic.ModRef) { case CodeGenIntrinsic::NoMem: - OS << " NoMemoryTable.push_back(\"" << Ints[i].Name << "\");\n"; - break; + return MRK_readnone; case CodeGenIntrinsic::ReadArgMem: case CodeGenIntrinsic::ReadMem: - OS << " OnlyReadsMemoryTable.push_back(\"" << Ints[i].Name << "\");\n"; - break; + return MRK_readonly; + case CodeGenIntrinsic::ReadWriteArgMem: + case CodeGenIntrinsic::ReadWriteMem: + return MRK_none; } + llvm_unreachable("bad mod-ref kind"); } - OS << "#endif\n\n"; + + struct AttributeComparator { + bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { + // Sort throwing intrinsics after non-throwing intrinsics. + if (L->canThrow != R->canThrow) + return R->canThrow; + + // Try to order by readonly/readnone attribute. + ModRefKind LK = getModRefKind(*L); + ModRefKind RK = getModRefKind(*R); + if (LK != RK) return (LK > RK); + + // Order by argument attributes. + // This is reliable because each side is already sorted internally. + return (L->ArgumentAttributes < R->ArgumentAttributes); + } + }; } +/// EmitAttributes - This emits the Intrinsic::getAttributes method. void IntrinsicEmitter:: -EmitNoMemoryInfo(const std::vector &Ints, std::ostream &OS) { - OS << "// SelectionDAGIsel code.\n"; - OS << "#ifdef GET_NO_MEMORY_INTRINSICS\n"; - OS << " switch (IntrinsicID) {\n"; - OS << " default: break;\n"; +EmitAttributes(const std::vector &Ints, raw_ostream &OS) { + OS << "// Add parameter attributes that are not common to all intrinsics.\n"; + OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; + if (TargetOnly) + OS << "static AttrListPtr getAttributes(" << TargetPrefix + << "Intrinsic::ID id) {\n"; + else + OS << "AttrListPtr Intrinsic::getAttributes(ID id) {\n"; + + // Compute the maximum number of attribute arguments and the map + typedef std::map UniqAttrMapTy; + UniqAttrMapTy UniqAttributes; + unsigned maxArgAttrs = 0; + unsigned AttrNum = 0; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { - switch (Ints[i].ModRef) { - default: break; - case CodeGenIntrinsic::NoMem: - OS << " case Intrinsic::" << Ints[i].EnumName << ":\n"; - break; + const CodeGenIntrinsic &intrinsic = Ints[i]; + maxArgAttrs = + std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); + unsigned &N = UniqAttributes[&intrinsic]; + if (N) continue; + assert(AttrNum < 256 && "Too many unique attributes for table!"); + N = ++AttrNum; + } + + // Emit an array of AttributeWithIndex. Most intrinsics will have + // at least one entry, for the function itself (index ~1), which is + // usually nounwind. + OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; + + for (unsigned i = 0, e = Ints.size(); i != e; ++i) { + const CodeGenIntrinsic &intrinsic = Ints[i]; + + OS << " " << UniqAttributes[&intrinsic] << ", // " + << intrinsic.Name << "\n"; + } + OS << " };\n\n"; + + OS << " AttributeWithIndex AWI[" << maxArgAttrs+1 << "];\n"; + OS << " unsigned NumAttrs = 0;\n"; + OS << " if (id != 0) {\n"; + OS << " switch(IntrinsicsToAttributesMap[id - "; + if (TargetOnly) + OS << "Intrinsic::num_intrinsics"; + else + OS << "1"; + OS << "]) {\n"; + OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; + for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), + E = UniqAttributes.end(); I != E; ++I) { + OS << " case " << I->second << ":\n"; + + const CodeGenIntrinsic &intrinsic = *(I->first); + + // Keep track of the number of attributes we're writing out. + unsigned numAttrs = 0; + + // The argument attributes are alreadys sorted by argument index. + for (unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); ai != ae;) { + unsigned argNo = intrinsic.ArgumentAttributes[ai].first; + + OS << " AWI[" << numAttrs++ << "] = AttributeWithIndex::get(" + << argNo+1 << ", "; + + bool moreThanOne = false; + + do { + if (moreThanOne) OS << '|'; + + switch (intrinsic.ArgumentAttributes[ai].second) { + case CodeGenIntrinsic::NoCapture: + OS << "Attribute::NoCapture"; + break; + } + + ++ai; + moreThanOne = true; + } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); + + OS << ");\n"; + } + + ModRefKind modRef = getModRefKind(intrinsic); + + if (!intrinsic.canThrow || modRef) { + OS << " AWI[" << numAttrs++ << "] = AttributeWithIndex::get(~0, "; + if (!intrinsic.canThrow) { + OS << "Attribute::NoUnwind"; + if (modRef) OS << '|'; + } + switch (modRef) { + case MRK_none: break; + case MRK_readonly: OS << "Attribute::ReadOnly"; break; + case MRK_readnone: OS << "Attribute::ReadNone"; break; + } + OS << ");\n"; + } + + if (numAttrs) { + OS << " NumAttrs = " << numAttrs << ";\n"; + OS << " break;\n"; + } else { + OS << " return AttrListPtr();\n"; } } - OS << " return true; // These intrinsics have no side effects.\n"; + + OS << " }\n"; OS << " }\n"; - OS << "#endif\n\n"; + OS << " return AttrListPtr::get(AWI, NumAttrs);\n"; + OS << "}\n"; + OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; } +/// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior. void IntrinsicEmitter:: -EmitSideEffectInfo(const std::vector &Ints, std::ostream &OS){ - OS << "// Return true if doesn't access or only reads memory.\n"; - OS << "#ifdef GET_SIDE_EFFECT_INFO\n"; - OS << " switch (IntrinsicID) {\n"; - OS << " default: break;\n"; +EmitModRefBehavior(const std::vector &Ints, raw_ostream &OS){ + OS << "// Determine intrinsic alias analysis mod/ref behavior.\n" + << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n" + << "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && " + << "\"Unknown intrinsic.\");\n\n"; + + OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n" + << " /* invalid */ UnknownModRefBehavior,\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { + OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ "; switch (Ints[i].ModRef) { - default: break; case CodeGenIntrinsic::NoMem: + OS << "DoesNotAccessMemory,\n"; + break; case CodeGenIntrinsic::ReadArgMem: + OS << "OnlyReadsArgumentPointees,\n"; + break; case CodeGenIntrinsic::ReadMem: - OS << " case Intrinsic::" << Ints[i].EnumName << ":\n"; + OS << "OnlyReadsMemory,\n"; + break; + case CodeGenIntrinsic::ReadWriteArgMem: + OS << "OnlyAccessesArgumentPointees,\n"; + break; + case CodeGenIntrinsic::ReadWriteMem: + OS << "UnknownModRefBehavior,\n"; break; } } - OS << " return true; // These intrinsics have no side effects.\n"; - OS << " }\n"; - OS << "#endif\n\n"; + OS << "};\n\n" + << "return static_cast(IntrinsicModRefBehavior[iid]);\n" + << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n"; } -void IntrinsicEmitter:: -EmitGCCBuiltinList(const std::vector &Ints, std::ostream &OS){ - OS << "// Get the GCC builtin that corresponds to an LLVM intrinsic.\n"; - OS << "#ifdef GET_GCC_BUILTIN_NAME\n"; - OS << " switch (F->getIntrinsicID()) {\n"; - OS << " default: BuiltinName = \"\"; break;\n"; - for (unsigned i = 0, e = Ints.size(); i != e; ++i) { - if (!Ints[i].GCCBuiltinName.empty()) { - OS << " case Intrinsic::" << Ints[i].EnumName << ": BuiltinName = \"" - << Ints[i].GCCBuiltinName << "\"; break;\n"; - } +/// EmitTargetBuiltins - All of the builtins in the specified map are for the +/// same target, and we already checked it. +static void EmitTargetBuiltins(const std::map &BIM, + const std::string &TargetPrefix, + raw_ostream &OS) { + + std::vector Results; + + for (std::map::const_iterator I = BIM.begin(), + E = BIM.end(); I != E; ++I) { + std::string ResultCode = + "return " + TargetPrefix + "Intrinsic::" + I->second + ";"; + Results.push_back(StringMatcher::StringPair(I->first, ResultCode)); } - OS << " }\n"; - OS << "#endif\n\n"; + + StringMatcher("BuiltinName", Results, OS).Emit(); } + void IntrinsicEmitter:: EmitIntrinsicToGCCBuiltinMap(const std::vector &Ints, - std::ostream &OS) { - typedef std::map, std::string> BIMTy; + raw_ostream &OS) { + typedef std::map > BIMTy; BIMTy BuiltinMap; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { - std::pair Key(Ints[i].GCCBuiltinName, - Ints[i].TargetPrefix); - if (!BuiltinMap.insert(std::make_pair(Key, Ints[i].EnumName)).second) + // Get the map for this target prefix. + std::map &BIM =BuiltinMap[Ints[i].TargetPrefix]; + + if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName, + Ints[i].EnumName)).second) throw "Intrinsic '" + Ints[i].TheDef->getName() + "': duplicate GCC builtin name!"; } @@ -269,19 +791,36 @@ EmitIntrinsicToGCCBuiltinMap(const std::vector &Ints, OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; - OS << " if (0);\n"; + + if (TargetOnly) { + OS << "static " << TargetPrefix << "Intrinsic::ID " + << "getIntrinsicForGCCBuiltin(const char " + << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; + } else { + OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char " + << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; + } + + OS << " StringRef BuiltinName(BuiltinNameStr);\n"; + OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; + // Note: this could emit significantly better code if we cared. for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ - OS << " else if ("; - if (!I->first.second.empty()) { - // Emit this as a strcmp, so it can be constant folded by the FE. - OS << "!strcmp(TargetPrefix, \"" << I->first.second << "\") &&\n" - << " "; - } - OS << "!strcmp(BuiltinName, \"" << I->first.first << "\"))\n"; - OS << " IntrinsicID = Intrinsic::" << I->second << ";\n"; + OS << " "; + if (!I->first.empty()) + OS << "if (TargetPrefix == \"" << I->first << "\") "; + else + OS << "/* Target Independent Builtins */ "; + OS << "{\n"; + + // Emit the comparisons for this target prefix. + EmitTargetBuiltins(I->second, TargetPrefix, OS); + OS << " }\n"; } - OS << " else\n"; - OS << " IntrinsicID = Intrinsic::not_intrinsic;\n"; + OS << " return "; + if (!TargetPrefix.empty()) + OS << "(" << TargetPrefix << "Intrinsic::ID)"; + OS << "Intrinsic::not_intrinsic;\n"; + OS << "}\n"; OS << "#endif\n\n"; }