X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FVMCore%2FVerifier.cpp;h=e2ccb5b12b99fed706ca20babc9e407821f6ffff;hp=da65b1ce30ae1c19aebec39bac73e717e957ac9c;hb=2751e76a709738590242adce47a3b55bc77fd36d;hpb=24ea74eb9a47b81c1557926acd83e0fbe6d7594e diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp index da65b1ce30a..e2ccb5b12b9 100644 --- a/lib/VMCore/Verifier.cpp +++ b/lib/VMCore/Verifier.cpp @@ -1,4 +1,11 @@ //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// // // This file defines the function verifier interface, that can be used for some // sanity checking of input to the system. @@ -8,7 +15,7 @@ // // * Both of a binary operator's parameters are the same type // * Verify that the indices of mem access instructions match other operands -// . Verify that arithmetic and other things are only performed on first class +// * Verify that arithmetic and other things are only performed on first class // types. Verify that shifts & logicals only happen on integrals f.e. // . All of the constants in a switch statement are of the correct type // * The code is in valid SSA form @@ -17,14 +24,14 @@ // * Only phi nodes can be self referential: 'add int %0, %0 ; :0' is bad // * PHI nodes must have an entry for each predecessor, with no extras. // * PHI nodes must be the first thing in a basic block, all grouped together +// * PHI nodes must have at least one entry // * All basic blocks should only end with terminator insts, not contain them // * The entry node to a function must not have predecessors -// * All Instructions must be embeded into a basic block +// * All Instructions must be embedded into a basic block // . Function's cannot take a void typed parameter // * Verify that a function's argument list agrees with it's declared type. -// . Verify that arrays and structures have fixed elements: No unsized arrays. // * It is illegal to specify a name for a void value. -// * It is illegal to have a internal function that is just a declaration +// * It is illegal to have a internal global value with no initializer // * It is illegal to have a ret instruction that returns a value that does not // agree with the function return value type. // * Function call argument types match the function prototype @@ -33,21 +40,24 @@ //===----------------------------------------------------------------------===// #include "llvm/Analysis/Verifier.h" +#include "llvm/Assembly/Writer.h" #include "llvm/Pass.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" +#include "llvm/iOperators.h" #include "llvm/iMemory.h" #include "llvm/SymbolTable.h" #include "llvm/PassManager.h" +#include "llvm/Intrinsics.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/InstVisitor.h" #include "Support/STLExtras.h" #include -#include +using namespace llvm; namespace { // Anonymous namespace for class @@ -55,7 +65,7 @@ namespace { // Anonymous namespace for class bool Broken; // Is this module found to be broken? bool RealPass; // Are we not being run by a PassManager? bool AbortBroken; // If broken, should it or should it not abort? - + Module *Mod; // Module we are verifying right now DominatorSet *DS; // Dominator set, caution can be null! Verifier() : Broken(false), RealPass(true), AbortBroken(true), DS(0) {} @@ -65,7 +75,15 @@ namespace { // Anonymous namespace for class bool doInitialization(Module &M) { + Mod = &M; verifySymbolTable(M.getSymbolTable()); + + // If this is a real pass, in a pass manager, we must abort before + // returning back to the pass manager, or else the pass manager may try to + // run other passes on the broken module. + // + if (RealPass) + abortIfBroken(); return false; } @@ -73,19 +91,27 @@ namespace { // Anonymous namespace for class // Get dominator information if we are being run by PassManager if (RealPass) DS = &getAnalysis(); visit(F); + + // If this is a real pass, in a pass manager, we must abort before + // returning back to the pass manager, or else the pass manager may try to + // run other passes on the broken module. + // + if (RealPass) + abortIfBroken(); + return false; } bool doFinalization(Module &M) { // Scan through, checking all of the external function's linkage now... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) - if (I->isExternal() && I->hasInternalLinkage()) - CheckFailed("Function Declaration has Internal Linkage!", I); + visitGlobalValue(*I); - if (Broken && AbortBroken) { - std::cerr << "Broken module found, compilation aborted!\n"; - abort(); - } + for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) + visitGlobalValue(*I); + + // If the module is broken, abort at this time. + abortIfBroken(); return false; } @@ -95,12 +121,27 @@ namespace { // Anonymous namespace for class AU.addRequired(); } + // abortIfBroken - If the module is broken and we are supposed to abort on + // this condition, do so. + // + void abortIfBroken() const { + if (Broken && AbortBroken) { + std::cerr << "Broken module found, compilation aborted!\n"; + abort(); + } + } + + // Verification methods... - void verifySymbolTable(SymbolTable *ST); + void verifySymbolTable(SymbolTable &ST); + void visitGlobalValue(GlobalValue &GV); void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); void visitPHINode(PHINode &PN); void visitBinaryOperator(BinaryOperator &B); + void visitShiftInst(ShiftInst &SI); + void visitVANextInst(VANextInst &VAN) { visitInstruction(VAN); } + void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } void visitCallInst(CallInst &CI); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitLoadInst(LoadInst &LI); @@ -108,25 +149,43 @@ namespace { // Anonymous namespace for class void visitInstruction(Instruction &I); void visitTerminatorInst(TerminatorInst &I); void visitReturnInst(ReturnInst &RI); + void visitUserOp1(Instruction &I); + void visitUserOp2(Instruction &I) { visitUserOp1(I); } + void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); + + + void WriteValue(const Value *V) { + if (!V) return; + if (isa(V)) { + std::cerr << *V; + } else if (const Type *Ty = dyn_cast(V)) { + WriteTypeSymbolic(std::cerr, Ty, Mod); + } else { + WriteAsOperand (std::cerr, V, true, true, Mod); + std::cerr << "\n"; + } + } + // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. // - inline void CheckFailed(const std::string &Message, - const Value *V1 = 0, const Value *V2 = 0, - const Value *V3 = 0, const Value *V4 = 0) { + void CheckFailed(const std::string &Message, + const Value *V1 = 0, const Value *V2 = 0, + const Value *V3 = 0, const Value *V4 = 0) { std::cerr << Message << "\n"; - if (V1) std::cerr << *V1 << "\n"; - if (V2) std::cerr << *V2 << "\n"; - if (V3) std::cerr << *V3 << "\n"; - if (V4) std::cerr << *V4 << "\n"; + WriteValue(V1); + WriteValue(V2); + WriteValue(V3); + WriteValue(V4); Broken = true; } }; - RegisterPass X("verify", "Module Verifier"); -} + RegisterOpt X("verify", "Module Verifier"); +} // End anonymous namespace + // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ @@ -141,13 +200,24 @@ namespace { // Anonymous namespace for class do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) +void Verifier::visitGlobalValue(GlobalValue &GV) { + Assert1(!GV.isExternal() || GV.hasExternalLinkage(), + "Global is external, but doesn't have external linkage!", &GV); + Assert1(!GV.hasAppendingLinkage() || isa(GV), + "Only global variables can have appending linkage!", &GV); + + if (GV.hasAppendingLinkage()) { + GlobalVariable &GVar = cast(GV); + Assert1(isa(GVar.getType()->getElementType()), + "Only global arrays can have appending linkage!", &GV); + } +} + // verifySymbolTable - Verify that a function or module symbol table is ok // -void Verifier::verifySymbolTable(SymbolTable *ST) { - if (ST == 0) return; // No symbol table to process - +void Verifier::verifySymbolTable(SymbolTable &ST) { // Loop over all of the types in the symbol table... - for (SymbolTable::iterator TI = ST->begin(), TE = ST->end(); TI != TE; ++TI) + for (SymbolTable::iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI) for (SymbolTable::type_iterator I = TI->second.begin(), E = TI->second.end(); I != E; ++I) { Value *V = I->second; @@ -164,38 +234,86 @@ void Verifier::verifySymbolTable(SymbolTable *ST) { // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { - if (F.isExternal()) return; - - verifySymbolTable(F.getSymbolTable()); - // Check function arguments... const FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.getArgumentList().size(); - Assert2(!FT->isVarArg(), "Cannot define varargs functions in LLVM!", &F, FT); - Assert2(FT->getParamTypes().size() == NumArgs, + Assert2(FT->getNumParams() == NumArgs, "# formal arguments must match # of arguments for function type!", &F, FT); + Assert1(F.getReturnType()->isFirstClassType() || + F.getReturnType() == Type::VoidTy, + "Functions cannot return aggregate values!", &F); // Check that the argument values match the function type for this function... - if (FT->getParamTypes().size() == NumArgs) { - unsigned i = 0; - for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i) - Assert2(I->getType() == FT->getParamType(i), - "Argument value does not match function argument type!", - I, FT->getParamType(i)); + unsigned i = 0; + for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i) + Assert2(I->getType() == FT->getParamType(i), + "Argument value does not match function argument type!", + I, FT->getParamType(i)); + + if (!F.isExternal()) { + verifySymbolTable(F.getSymbolTable()); + + // Check the entry node + BasicBlock *Entry = &F.getEntryBlock(); + Assert1(pred_begin(Entry) == pred_end(Entry), + "Entry block to function must not have predecessors!", Entry); } - - // Check the entry node - BasicBlock *Entry = &F.getEntryNode(); - Assert1(pred_begin(Entry) == pred_end(Entry), - "Entry block to function must not have predecessors!", Entry); } // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock &BB) { + // Check constraints that this basic block imposes on all of the PHI nodes in + // it. + if (isa(BB.front())) { + std::vector Preds(pred_begin(&BB), pred_end(&BB)); + std::sort(Preds.begin(), Preds.end()); + + for (BasicBlock::iterator I = BB.begin(); + PHINode *PN = dyn_cast(I); ++I) { + + // Ensure that PHI nodes have at least one entry! + Assert1(PN->getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", PN); + Assert1(PN->getNumIncomingValues() >= Preds.size(), + "PHINode has more entries than the basic block has predecessors!", + PN); + Assert1(PN->getNumIncomingValues() <= Preds.size(), + "PHINode has less entries than the basic block has predecessors!", + PN); + + // Get and sort all incoming values in the PHI node... + std::vector > Values; + Values.reserve(PN->getNumIncomingValues()); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + Values.push_back(std::make_pair(PN->getIncomingBlock(i), + PN->getIncomingValue(i))); + std::sort(Values.begin(), Values.end()); + + for (unsigned i = 0, e = Values.size(); i != e; ++i) { + // Check to make sure that if there is more than one entry for a + // particular basic block in this PHI node, that the incoming values are + // all identical. + // + Assert4(i == 0 || Values[i].first != Values[i-1].first || + Values[i].second == Values[i-1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", PN, Values[i].first, + Values[i].second, Values[i-1].second); + + // Check to make sure that the predecessors and PHI node entries are + // matched up. + Assert3(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", PN, + Values[i].first, Preds[i]); + } + } + } + // Ensure that basic blocks have terminators! Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); } @@ -218,67 +336,36 @@ void Verifier::visitReturnInst(ReturnInst &RI) { "Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); - // Check to make sure that the return value has neccesary properties for + // Check to make sure that the return value has necessary properties for // terminators... visitTerminatorInst(RI); } +// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of a +// pass, if any exist, it's an error. +// +void Verifier::visitUserOp1(Instruction &I) { + Assert1(0, "User-defined operators should not live outside of a pass!", + &I); +} // visitPHINode - Ensure that a PHI node is well formed. void Verifier::visitPHINode(PHINode &PN) { // Ensure that the PHI nodes are all grouped together at the top of the block. // This can be tested by checking whether the instruction before this is - // either nonexistant (because this is begin()) or is a PHI node. If not, + // either nonexistent (because this is begin()) or is a PHI node. If not, // then there is some other instruction before a PHI. - Assert2(PN.getPrev() == 0 || isa(PN.getPrev()), + Assert2(&PN.getParent()->front() == &PN || isa(PN.getPrev()), "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); - std::vector Preds(pred_begin(PN.getParent()), - pred_end(PN.getParent())); - // Loop over all of the incoming values, make sure that there are - // predecessors for each one... - // - for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { - // Make sure all of the incoming values are the right types... - Assert2(PN.getType() == PN.getIncomingValue(i)->getType(), - "PHI node argument type does not agree with PHI node type!", - &PN, PN.getIncomingValue(i)); - - BasicBlock *BB = PN.getIncomingBlock(i); - std::vector::iterator PI = - find(Preds.begin(), Preds.end(), BB); - Assert2(PI != Preds.end(), "PHI node has entry for basic block that" - " is not a predecessor!", &PN, BB); - Preds.erase(PI); - } - - // There should be no entries left in the predecessor list... - for (std::vector::iterator I = Preds.begin(), - E = Preds.end(); I != E; ++I) - Assert2(0, "PHI node does not have entry for a predecessor basic block!", - &PN, *I); - - // Now we go through and check to make sure that if there is more than one - // entry for a particular basic block in this PHI node, that the incoming - // values are all identical. - // - std::vector > Values; - Values.reserve(PN.getNumIncomingValues()); + // Check that all of the operands of the PHI node have the same type as the + // result. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) - Values.push_back(std::make_pair(PN.getIncomingBlock(i), - PN.getIncomingValue(i))); - - // Sort the Values vector so that identical basic block entries are adjacent. - std::sort(Values.begin(), Values.end()); + Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), + "PHI node operands are not the same type as the result!", &PN); - // Check for identical basic blocks with differing incoming values... - for (unsigned i = 1, e = PN.getNumIncomingValues(); i < e; ++i) - Assert4(Values[i].first != Values[i-1].first || - Values[i].second == Values[i-1].second, - "PHI node has multiple entries for the same basic block with " - "different incoming values!", &PN, Values[i].first, - Values[i].second, Values[i-1].second); + // All other PHI node constraints are checked in the visitBasicBlock method. visitInstruction(PN); } @@ -306,6 +393,10 @@ void Verifier::visitCallInst(CallInst &CI) { "Call parameter type does not match function signature!", CI.getOperand(i+1), FTy->getParamType(i)); + if (Function *F = CI.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) + visitIntrinsicFunctionCall(ID, CI); + visitInstruction(CI); } @@ -313,16 +404,47 @@ void Verifier::visitCallInst(CallInst &CI) { // of the same type! // void Verifier::visitBinaryOperator(BinaryOperator &B) { - Assert2(B.getOperand(0)->getType() == B.getOperand(1)->getType(), - "Both operands to a binary operator are not of the same type!", - B.getOperand(0), B.getOperand(1)); - + Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), + "Both operands to a binary operator are not of the same type!", &B); + + // Check that logical operators are only used with integral operands. + if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or || + B.getOpcode() == Instruction::Xor) { + Assert1(B.getType()->isIntegral(), + "Logical operators only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Logical operators must have same type for operands and result!", + &B); + } else if (isa(B)) { + // Check that setcc instructions return bool + Assert1(B.getType() == Type::BoolTy, + "setcc instructions must return boolean values!", &B); + } else { + // Arithmetic operators only work on integer or fp values + Assert1(B.getType() == B.getOperand(0)->getType(), + "Arithmetic operators must have same type for operands and result!", + &B); + Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint(), + "Arithmetic operators must have integer or fp type!", &B); + } + visitInstruction(B); } +void Verifier::visitShiftInst(ShiftInst &SI) { + Assert1(SI.getType()->isInteger(), + "Shift must return an integer result!", &SI); + Assert1(SI.getType() == SI.getOperand(0)->getType(), + "Shift return type must be same as first operand!", &SI); + Assert1(SI.getOperand(1)->getType() == Type::UByteTy, + "Second operand to shift must be ubyte type!", &SI); + visitInstruction(SI); +} + void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { - const Type *ElTy = MemAccessInst::getIndexedType(GEP.getOperand(0)->getType(), - GEP.copyIndices(), true); + const Type *ElTy = + GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), + std::vector(GEP.idx_begin(), GEP.idx_end()), true); Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); Assert2(PointerType::get(ElTy) == GEP.getType(), "GEP is not of right type for indices!", &GEP, ElTy); @@ -333,7 +455,7 @@ void Verifier::visitLoadInst(LoadInst &LI) { const Type *ElTy = cast(LI.getOperand(0)->getType())->getElementType(); Assert2(ElTy == LI.getType(), - "Load is not of right type for indices!", &LI, ElTy); + "Load result type does not match pointer operand type!", &LI, ElTy); visitInstruction(LI); } @@ -341,7 +463,7 @@ void Verifier::visitStoreInst(StoreInst &SI) { const Type *ElTy = cast(SI.getOperand(1)->getType())->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), - "Stored value is not of right type for indices!", &SI, ElTy); + "Stored value type does not match pointer operand type!", &SI, ElTy); visitInstruction(SI); } @@ -349,20 +471,8 @@ void Verifier::visitStoreInst(StoreInst &SI) { // verifyInstruction - Verify that an instruction is well formed. // void Verifier::visitInstruction(Instruction &I) { - Assert1(I.getParent(), "Instruction not embedded in basic block!", &I); - - // Check that all uses of the instruction, if they are instructions - // themselves, actually have parent basic blocks. If the use is not an - // instruction, it is an error! - // - for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); - UI != UE; ++UI) { - Assert1(isa(*UI), "Use of instruction is not an instruction!", - *UI); - Instruction *Used = cast(*UI); - Assert2(Used->getParent() != 0, "Instruction referencing instruction not" - " embeded in a basic block!", &I, Used); - } + BasicBlock *BB = I.getParent(); + Assert1(BB, "Instruction not embedded in basic block!", &I); if (!isa(I)) { // Check that non-phi nodes are not self referential for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); @@ -375,44 +485,123 @@ void Verifier::visitInstruction(Instruction &I) { Assert1(I.getType() != Type::VoidTy || !I.hasName(), "Instruction has a name, but provides a void value!", &I); - // Check that a definition dominates all of its uses. + // Check that all uses of the instruction, if they are instructions + // themselves, actually have parent basic blocks. If the use is not an + // instruction, it is an error! // for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) { - Instruction *Use = cast(*UI); - - // PHI nodes are more difficult than other nodes because they actually - // "use" the value in the predecessor basic blocks they correspond to. - if (PHINode *PN = dyn_cast(Use)) { - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - if (&I == PN->getIncomingValue(i)) { - // Make sure that I dominates the end of pred(i) - BasicBlock *Pred = PN->getIncomingBlock(i); - - Assert2(DS->dominates(I.getParent(), Pred), - "Instruction does not dominate all uses!", - &I, PN); - } - - } else { - Assert2(DS->dominates(&I, Use), - "Instruction does not dominate all uses!", &I, Use); + Assert1(isa(*UI), "Use of instruction is not an instruction!", + *UI); + Instruction *Used = cast(*UI); + Assert2(Used->getParent() != 0, "Instruction referencing instruction not" + " embeded in a basic block!", &I, Used); + } + + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + // Check to make sure that the "address of" an intrinsic function is never + // taken. + if (Function *F = dyn_cast(I.getOperand(i))) + Assert1(!F->isIntrinsic() || (i == 0 && isa(I)), + "Cannot take the address of an intrinsic!", &I); + + else if (Instruction *Op = dyn_cast(I.getOperand(i))) { + BasicBlock *OpBlock = Op->getParent(); + + // Check that a definition dominates all of its uses. + // + if (!isa(I)) { + // Invoke results are only usable in the normal destination, not in the + // exceptional destination. + if (InvokeInst *II = dyn_cast(Op)) + OpBlock = II->getNormalDest(); + + // Definition must dominate use unless use is unreachable! + Assert2(DS->dominates(OpBlock, BB) || + !DS->dominates(&BB->getParent()->getEntryBlock(), BB), + "Instruction does not dominate all uses!", Op, &I); + } else { + // PHI nodes are more difficult than other nodes because they actually + // "use" the value in the predecessor basic blocks they correspond to. + BasicBlock *PredBB = cast(I.getOperand(i+1)); + Assert2(DS->dominates(OpBlock, PredBB) || + !DS->dominates(&BB->getParent()->getEntryBlock(), PredBB), + "Instruction does not dominate all uses!", Op, &I); + } } } } +/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. +void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { + Function *IF = CI.getCalledFunction(); + const FunctionType *FT = IF->getFunctionType(); + Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF); + unsigned NumArgs = 0; + + // FIXME: this should check the return type of each intrinsic as well, also + // arguments! + switch (ID) { + case Intrinsic::va_start: + Assert1(CI.getParent()->getParent()->getFunctionType()->isVarArg(), + "llvm.va_start intrinsic may only occur in function with variable" + " args!", &CI); + NumArgs = 0; + break; + case Intrinsic::va_end: NumArgs = 1; break; + case Intrinsic::va_copy: NumArgs = 1; break; + + case Intrinsic::setjmp: NumArgs = 1; break; + case Intrinsic::longjmp: NumArgs = 2; break; + case Intrinsic::sigsetjmp: NumArgs = 2; break; + case Intrinsic::siglongjmp: NumArgs = 2; break; + + case Intrinsic::dbg_stoppoint: NumArgs = 4; break; + case Intrinsic::dbg_region_start:NumArgs = 1; break; + case Intrinsic::dbg_region_end: NumArgs = 1; break; + case Intrinsic::dbg_func_start: NumArgs = 1; break; + case Intrinsic::dbg_declare: NumArgs = 1; break; + + case Intrinsic::memcpy: NumArgs = 4; break; + case Intrinsic::memmove: NumArgs = 4; break; + + case Intrinsic::alpha_ctlz: NumArgs = 1; break; + case Intrinsic::alpha_cttz: NumArgs = 1; break; + case Intrinsic::alpha_ctpop: NumArgs = 1; break; + case Intrinsic::alpha_umulh: NumArgs = 2; break; + case Intrinsic::alpha_vecop: NumArgs = 4; break; + case Intrinsic::alpha_pup: NumArgs = 3; break; + case Intrinsic::alpha_bytezap: NumArgs = 2; break; + case Intrinsic::alpha_bytemanip: NumArgs = 3; break; + case Intrinsic::alpha_dfpbop: NumArgs = 3; break; + case Intrinsic::alpha_dfpuop: NumArgs = 2; break; + case Intrinsic::alpha_unordered: NumArgs = 2; break; + case Intrinsic::alpha_uqtodfp: NumArgs = 2; break; + case Intrinsic::alpha_uqtosfp: NumArgs = 2; break; + case Intrinsic::alpha_dfptosq: NumArgs = 2; break; + case Intrinsic::alpha_sfptosq: NumArgs = 2; break; + + case Intrinsic::not_intrinsic: + assert(0 && "Invalid intrinsic!"); NumArgs = 0; break; + } + + Assert1(FT->getNumParams() == NumArgs || (FT->getNumParams() < NumArgs && + FT->isVarArg()), + "Illegal # arguments for intrinsic function!", IF); +} + //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// -Pass *createVerifierPass() { +FunctionPass *llvm::createVerifierPass() { return new Verifier(); } // verifyFunction - Create -bool verifyFunction(const Function &f) { +bool llvm::verifyFunction(const Function &f) { Function &F = (Function&)f; assert(!F.isExternal() && "Cannot verify external functions"); @@ -431,7 +620,7 @@ bool verifyFunction(const Function &f) { // verifyModule - Check a module for errors, printing messages on stderr. // Return true if the module is corrupt. // -bool verifyModule(const Module &M) { +bool llvm::verifyModule(const Module &M) { PassManager PM; Verifier *V = new Verifier(); PM.add(V);