X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FTransforms%2FUtils%2FInlineFunction.cpp;h=f4152dd490ac4dc5b80dcc9841c62966ff6513e0;hp=d60f9080502a572c7dfe5a41ff422fc558f40925;hb=16fd27b2c37d78cde979c7523f3d37a991407209;hpb=f601d6df6f43bb833461cbcee475c36998e6c259 diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp index d60f9080502..f4152dd490a 100644 --- a/lib/Transforms/Utils/InlineFunction.cpp +++ b/lib/Transforms/Utils/InlineFunction.cpp @@ -13,91 +13,206 @@ //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Module.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/Intrinsics.h" -#include "llvm/Attributes.h" -#include "llvm/Analysis/CallGraph.h" -#include "llvm/Analysis/DebugInfo.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Target/TargetData.h" +#include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringExtras.h" -#include "llvm/Support/CallSite.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/Transforms/Utils/Local.h" using namespace llvm; -bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { - return InlineFunction(CallSite(CI), IFI); +bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, + bool InsertLifetime) { + return InlineFunction(CallSite(CI), IFI, InsertLifetime); +} +bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, + bool InsertLifetime) { + return InlineFunction(CallSite(II), IFI, InsertLifetime); } -bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { - return InlineFunction(CallSite(II), IFI); + +namespace { + /// A class for recording information about inlining through an invoke. + class InvokeInliningInfo { + BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. + BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. + LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. + PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. + SmallVector UnwindDestPHIValues; + + public: + InvokeInliningInfo(InvokeInst *II) + : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), + CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { + // If there are PHI nodes in the unwind destination block, we need to keep + // track of which values came into them from the invoke before removing + // the edge from this block. + llvm::BasicBlock *InvokeBB = II->getParent(); + BasicBlock::iterator I = OuterResumeDest->begin(); + for (; isa(I); ++I) { + // Save the value to use for this edge. + PHINode *PHI = cast(I); + UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); + } + + CallerLPad = cast(I); + } + + /// getOuterResumeDest - The outer unwind destination is the target of + /// unwind edges introduced for calls within the inlined function. + BasicBlock *getOuterResumeDest() const { + return OuterResumeDest; + } + + BasicBlock *getInnerResumeDest(); + + LandingPadInst *getLandingPadInst() const { return CallerLPad; } + + /// forwardResume - Forward the 'resume' instruction to the caller's landing + /// pad block. When the landing pad block has only one predecessor, this is + /// a simple branch. When there is more than one predecessor, we need to + /// split the landing pad block after the landingpad instruction and jump + /// to there. + void forwardResume(ResumeInst *RI, + SmallPtrSet &InlinedLPads); + + /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind + /// destination block for the given basic block, using the values for the + /// original invoke's source block. + void addIncomingPHIValuesFor(BasicBlock *BB) const { + addIncomingPHIValuesForInto(BB, OuterResumeDest); + } + + void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { + BasicBlock::iterator I = dest->begin(); + for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { + PHINode *phi = cast(I); + phi->addIncoming(UnwindDestPHIValues[i], src); + } + } + }; +} + +/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. +BasicBlock *InvokeInliningInfo::getInnerResumeDest() { + if (InnerResumeDest) return InnerResumeDest; + + // Split the landing pad. + BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; + InnerResumeDest = + OuterResumeDest->splitBasicBlock(SplitPoint, + OuterResumeDest->getName() + ".body"); + + // The number of incoming edges we expect to the inner landing pad. + const unsigned PHICapacity = 2; + + // Create corresponding new PHIs for all the PHIs in the outer landing pad. + BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); + BasicBlock::iterator I = OuterResumeDest->begin(); + for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { + PHINode *OuterPHI = cast(I); + PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, + OuterPHI->getName() + ".lpad-body", + InsertPoint); + OuterPHI->replaceAllUsesWith(InnerPHI); + InnerPHI->addIncoming(OuterPHI, OuterResumeDest); + } + + // Create a PHI for the exception values. + InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, + "eh.lpad-body", InsertPoint); + CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); + InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); + + // All done. + return InnerResumeDest; } +/// forwardResume - Forward the 'resume' instruction to the caller's landing pad +/// block. When the landing pad block has only one predecessor, this is a simple +/// branch. When there is more than one predecessor, we need to split the +/// landing pad block after the landingpad instruction and jump to there. +void InvokeInliningInfo::forwardResume(ResumeInst *RI, + SmallPtrSet &InlinedLPads) { + BasicBlock *Dest = getInnerResumeDest(); + BasicBlock *Src = RI->getParent(); + + BranchInst::Create(Dest, Src); + + // Update the PHIs in the destination. They were inserted in an order which + // makes this work. + addIncomingPHIValuesForInto(Src, Dest); + + InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); + RI->eraseFromParent(); +} /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. -/// static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, - BasicBlock *InvokeDest, - const SmallVectorImpl &InvokeDestPHIValues) { + InvokeInliningInfo &Invoke) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; - + // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast(I); - if (CI == 0) continue; - + // If this call cannot unwind, don't convert it to an invoke. - if (CI->doesNotThrow()) + // Inline asm calls cannot throw. + if (!CI || CI->doesNotThrow() || isa(CI->getCalledValue())) continue; - - // Convert this function call into an invoke instruction. - // First, split the basic block. + + // Convert this function call into an invoke instruction. First, split the + // basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); - - // Next, create the new invoke instruction, inserting it at the end - // of the old basic block. + + // Delete the unconditional branch inserted by splitBasicBlock + BB->getInstList().pop_back(); + + // Create the new invoke instruction. ImmutableCallSite CS(CI); SmallVector InvokeArgs(CS.arg_begin(), CS.arg_end()); - InvokeInst *II = - InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, - InvokeArgs.begin(), InvokeArgs.end(), - CI->getName(), BB->getTerminator()); + InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, + Invoke.getOuterResumeDest(), + InvokeArgs, CI->getName(), BB); + II->setDebugLoc(CI->getDebugLoc()); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); - - // Delete the unconditional branch inserted by splitBasicBlock - BB->getInstList().pop_back(); - Split->getInstList().pop_front(); // Delete the original call - - // Update any PHI nodes in the exceptional block to indicate that - // there is now a new entry in them. - unsigned i = 0; - for (BasicBlock::iterator I = InvokeDest->begin(); - isa(I); ++I, ++i) - cast(I)->addIncoming(InvokeDestPHIValues[i], BB); - - // This basic block is now complete, the caller will continue scanning the - // next one. + + // Delete the original call + Split->getInstList().pop_front(); + + // Update any PHI nodes in the exceptional block to indicate that there is + // now a new entry in them. + Invoke.addIncomingPHIValuesFor(BB); return; } } - /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls -/// in the body of the inlined function into invokes and turn unwind -/// instructions into branches to the invoke unwind dest. +/// in the body of the inlined function into invokes. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), @@ -105,66 +220,144 @@ static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); - SmallVector InvokeDestPHIValues; - - // If there are PHI nodes in the unwind destination block, we need to - // keep track of which values came into them from this invoke, then remove - // the entry for this block. - BasicBlock *InvokeBlock = II->getParent(); - for (BasicBlock::iterator I = InvokeDest->begin(); isa(I); ++I) { - PHINode *PN = cast(I); - // Save the value to use for this edge. - InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock)); - } Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to - // rewrite. If the code doesn't have calls or unwinds, we know there is - // nothing to rewrite. - if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { - // Now that everything is happy, we have one final detail. The PHI nodes in - // the exception destination block still have entries due to the original - // invoke instruction. Eliminate these entries (which might even delete the - // PHI node) now. - InvokeDest->removePredecessor(II->getParent()); - return; + // rewrite. + InvokeInliningInfo Invoke(II); + + // Get all of the inlined landing pad instructions. + SmallPtrSet InlinedLPads; + for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) + if (InvokeInst *II = dyn_cast(I->getTerminator())) + InlinedLPads.insert(II->getLandingPadInst()); + + // Append the clauses from the outer landing pad instruction into the inlined + // landing pad instructions. + LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); + for (SmallPtrSet::iterator I = InlinedLPads.begin(), + E = InlinedLPads.end(); I != E; ++I) { + LandingPadInst *InlinedLPad = *I; + unsigned OuterNum = OuterLPad->getNumClauses(); + InlinedLPad->reserveClauses(OuterNum); + for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) + InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); + if (OuterLPad->isCleanup()) + InlinedLPad->setCleanup(true); } - + for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ if (InlinedCodeInfo.ContainsCalls) - HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest, - InvokeDestPHIValues); - - if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { - // An UnwindInst requires special handling when it gets inlined into an - // invoke site. Once this happens, we know that the unwind would cause - // a control transfer to the invoke exception destination, so we can - // transform it into a direct branch to the exception destination. - BranchInst::Create(InvokeDest, UI); - - // Delete the unwind instruction! - UI->eraseFromParent(); - - // Update any PHI nodes in the exceptional block to indicate that - // there is now a new entry in them. - unsigned i = 0; - for (BasicBlock::iterator I = InvokeDest->begin(); - isa(I); ++I, ++i) { - PHINode *PN = cast(I); - PN->addIncoming(InvokeDestPHIValues[i], BB); - } - } + HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); + + // Forward any resumes that are remaining here. + if (ResumeInst *RI = dyn_cast(BB->getTerminator())) + Invoke.forwardResume(RI, InlinedLPads); } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original - // invoke instruction. Eliminate these entries (which might even delete the + // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); } +/// CloneAliasScopeMetadata - When inlining a function that contains noalias +/// scope metadata, this metadata needs to be cloned so that the inlined blocks +/// have different "unqiue scopes" at every call site. Were this not done, then +/// aliasing scopes from a function inlined into a caller multiple times could +/// not be differentiated (and this would lead to miscompiles because the +/// non-aliasing property communicated by the metadata could have +/// call-site-specific control dependencies). +static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { + const Function *CalledFunc = CS.getCalledFunction(); + SetVector MD; + + // Note: We could only clone the metadata if it is already used in the + // caller. I'm omitting that check here because it might confuse + // inter-procedural alias analysis passes. We can revisit this if it becomes + // an efficiency or overhead problem. + + for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); + I != IE; ++I) + for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { + if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) + MD.insert(M); + if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) + MD.insert(M); + } + + if (MD.empty()) + return; + + // Walk the existing metadata, adding the complete (perhaps cyclic) chain to + // the set. + SmallVector Queue(MD.begin(), MD.end()); + while (!Queue.empty()) { + const MDNode *M = cast(Queue.pop_back_val()); + for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) + if (const MDNode *M1 = dyn_cast(M->getOperand(i))) + if (MD.insert(M1)) + Queue.push_back(M1); + } + + // Now we have a complete set of all metadata in the chains used to specify + // the noalias scopes and the lists of those scopes. + SmallVector DummyNodes; + DenseMap > MDMap; + for (SetVector::iterator I = MD.begin(), IE = MD.end(); + I != IE; ++I) { + MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), + ArrayRef()); + DummyNodes.push_back(Dummy); + MDMap[*I] = Dummy; + } + + // Create new metadata nodes to replace the dummy nodes, replacing old + // metadata references with either a dummy node or an already-created new + // node. + for (SetVector::iterator I = MD.begin(), IE = MD.end(); + I != IE; ++I) { + SmallVector NewOps; + for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { + const Value *V = (*I)->getOperand(i); + if (const MDNode *M = dyn_cast(V)) + NewOps.push_back(MDMap[M]); + else + NewOps.push_back(const_cast(V)); + } + + MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps), + *TempM = MDMap[*I]; + + TempM->replaceAllUsesWith(NewM); + } + + // Now replace the metadata in the new inlined instructions with the + // repacements from the map. + for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); + VMI != VMIE; ++VMI) { + if (!VMI->second) + continue; + + Instruction *NI = dyn_cast(VMI->second); + if (!NI) + continue; + + if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) + NI->setMetadata(LLVMContext::MD_alias_scope, MDMap[M]); + + if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) + NI->setMetadata(LLVMContext::MD_noalias, MDMap[M]); + } + + // Now that everything has been replaced, delete the dummy nodes. + for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i) + MDNode::deleteTemporary(DummyNodes[i]); +} + /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee /// into the caller, update the specified callgraph to reflect the changes we /// made. Note that it's possible that not all code was copied over, so only @@ -196,13 +389,13 @@ static void UpdateCallGraphAfterInlining(CallSite CS, ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); // Only copy the edge if the call was inlined! - if (VMI == VMap.end() || VMI->second == 0) + if (VMI == VMap.end() || VMI->second == nullptr) continue; // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. Instruction *NewCall = dyn_cast(VMI->second); - if (NewCall == 0) continue; + if (!NewCall) continue; // Remember that this call site got inlined for the client of // InlineFunction. @@ -213,7 +406,7 @@ static void UpdateCallGraphAfterInlining(CallSite CS, // happens, set the callee of the new call site to a more precise // destination. This can also happen if the call graph node of the caller // was just unnecessarily imprecise. - if (I->second->getFunction() == 0) + if (!I->second->getFunction()) if (Function *F = CallSite(NewCall).getCalledFunction()) { // Indirect call site resolved to direct call. CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); @@ -229,18 +422,207 @@ static void UpdateCallGraphAfterInlining(CallSite CS, CallerNode->removeCallEdgeFor(CS); } -// InlineFunction - This function inlines the called function into the basic -// block of the caller. This returns false if it is not possible to inline this -// call. The program is still in a well defined state if this occurs though. -// -// Note that this only does one level of inlining. For example, if the -// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now -// exists in the instruction stream. Similiarly this will inline a recursive -// function by one level. -// -bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { +static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, + BasicBlock *InsertBlock, + InlineFunctionInfo &IFI) { + LLVMContext &Context = Src->getContext(); + Type *VoidPtrTy = Type::getInt8PtrTy(Context); + Type *AggTy = cast(Src->getType())->getElementType(); + Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) }; + Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys); + IRBuilder<> builder(InsertBlock->begin()); + Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp"); + Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp"); + + Value *Size; + if (IFI.DL == nullptr) + Size = ConstantExpr::getSizeOf(AggTy); + else + Size = ConstantInt::get(Type::getInt64Ty(Context), + IFI.DL->getTypeStoreSize(AggTy)); + + // Always generate a memcpy of alignment 1 here because we don't know + // the alignment of the src pointer. Other optimizations can infer + // better alignment. + Value *CallArgs[] = { + DstCast, SrcCast, Size, + ConstantInt::get(Type::getInt32Ty(Context), 1), + ConstantInt::getFalse(Context) // isVolatile + }; + builder.CreateCall(MemCpyFn, CallArgs); +} + +/// HandleByValArgument - When inlining a call site that has a byval argument, +/// we have to make the implicit memcpy explicit by adding it. +static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, + const Function *CalledFunc, + InlineFunctionInfo &IFI, + unsigned ByValAlignment) { + PointerType *ArgTy = cast(Arg->getType()); + Type *AggTy = ArgTy->getElementType(); + + // If the called function is readonly, then it could not mutate the caller's + // copy of the byval'd memory. In this case, it is safe to elide the copy and + // temporary. + if (CalledFunc->onlyReadsMemory()) { + // If the byval argument has a specified alignment that is greater than the + // passed in pointer, then we either have to round up the input pointer or + // give up on this transformation. + if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. + return Arg; + + // If the pointer is already known to be sufficiently aligned, or if we can + // round it up to a larger alignment, then we don't need a temporary. + if (getOrEnforceKnownAlignment(Arg, ByValAlignment, + IFI.DL) >= ByValAlignment) + return Arg; + + // Otherwise, we have to make a memcpy to get a safe alignment. This is bad + // for code quality, but rarely happens and is required for correctness. + } + + // Create the alloca. If we have DataLayout, use nice alignment. + unsigned Align = 1; + if (IFI.DL) + Align = IFI.DL->getPrefTypeAlignment(AggTy); + + // If the byval had an alignment specified, we *must* use at least that + // alignment, as it is required by the byval argument (and uses of the + // pointer inside the callee). + Align = std::max(Align, ByValAlignment); + + Function *Caller = TheCall->getParent()->getParent(); + + Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), + &*Caller->begin()->begin()); + IFI.StaticAllocas.push_back(cast(NewAlloca)); + + // Uses of the argument in the function should use our new alloca + // instead. + return NewAlloca; +} + +// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime +// intrinsic. +static bool isUsedByLifetimeMarker(Value *V) { + for (User *U : V->users()) { + if (IntrinsicInst *II = dyn_cast(U)) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + return true; + } + } + } + return false; +} + +// hasLifetimeMarkers - Check whether the given alloca already has +// lifetime.start or lifetime.end intrinsics. +static bool hasLifetimeMarkers(AllocaInst *AI) { + Type *Ty = AI->getType(); + Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), + Ty->getPointerAddressSpace()); + if (Ty == Int8PtrTy) + return isUsedByLifetimeMarker(AI); + + // Do a scan to find all the casts to i8*. + for (User *U : AI->users()) { + if (U->getType() != Int8PtrTy) continue; + if (U->stripPointerCasts() != AI) continue; + if (isUsedByLifetimeMarker(U)) + return true; + } + return false; +} + +/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to +/// recursively update InlinedAtEntry of a DebugLoc. +static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, + const DebugLoc &InlinedAtDL, + LLVMContext &Ctx) { + if (MDNode *IA = DL.getInlinedAt(Ctx)) { + DebugLoc NewInlinedAtDL + = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); + return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), + NewInlinedAtDL.getAsMDNode(Ctx)); + } + + return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), + InlinedAtDL.getAsMDNode(Ctx)); +} + +/// fixupLineNumbers - Update inlined instructions' line numbers to +/// to encode location where these instructions are inlined. +static void fixupLineNumbers(Function *Fn, Function::iterator FI, + Instruction *TheCall) { + DebugLoc TheCallDL = TheCall->getDebugLoc(); + if (TheCallDL.isUnknown()) + return; + + for (; FI != Fn->end(); ++FI) { + for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); + BI != BE; ++BI) { + DebugLoc DL = BI->getDebugLoc(); + if (DL.isUnknown()) { + // If the inlined instruction has no line number, make it look as if it + // originates from the call location. This is important for + // ((__always_inline__, __nodebug__)) functions which must use caller + // location for all instructions in their function body. + BI->setDebugLoc(TheCallDL); + } else { + BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); + if (DbgValueInst *DVI = dyn_cast(BI)) { + LLVMContext &Ctx = BI->getContext(); + MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); + DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), + InlinedAt, Ctx)); + } + } + } + } +} + +/// Returns a musttail call instruction if one immediately precedes the given +/// return instruction with an optional bitcast instruction between them. +static CallInst *getPrecedingMustTailCall(ReturnInst *RI) { + Instruction *Prev = RI->getPrevNode(); + if (!Prev) + return nullptr; + + if (Value *RV = RI->getReturnValue()) { + if (RV != Prev) + return nullptr; + + // Look through the optional bitcast. + if (auto *BI = dyn_cast(Prev)) { + RV = BI->getOperand(0); + Prev = BI->getPrevNode(); + if (!Prev || RV != Prev) + return nullptr; + } + } + + if (auto *CI = dyn_cast(Prev)) { + if (CI->isMustTailCall()) + return CI; + } + return nullptr; +} + +/// InlineFunction - This function inlines the called function into the basic +/// block of the caller. This returns false if it is not possible to inline +/// this call. The program is still in a well defined state if this occurs +/// though. +/// +/// Note that this only does one level of inlining. For example, if the +/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now +/// exists in the instruction stream. Similarly this will inline a recursive +/// function by one level. +bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, + bool InsertLifetime) { Instruction *TheCall = CS.getInstruction(); - LLVMContext &Context = TheCall->getContext(); assert(TheCall->getParent() && TheCall->getParent()->getParent() && "Instruction not in function!"); @@ -248,16 +630,10 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { IFI.reset(); const Function *CalledFunc = CS.getCalledFunction(); - if (CalledFunc == 0 || // Can't inline external function or indirect + if (!CalledFunc || // Can't inline external function or indirect CalledFunc->isDeclaration() || // call, or call to a vararg function! CalledFunc->getFunctionType()->isVarArg()) return false; - - // If the call to the callee is not a tail call, we must clear the 'tail' - // flags on any calls that we inline. - bool MustClearTailCallFlags = - !(isa(TheCall) && cast(TheCall)->isTailCall()); - // If the call to the callee cannot throw, set the 'nounwind' flag on any // calls that we inline. bool MarkNoUnwind = CS.doesNotThrow(); @@ -276,9 +652,40 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { return false; } + // Get the personality function from the callee if it contains a landing pad. + Value *CalleePersonality = nullptr; + for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); + I != E; ++I) + if (const InvokeInst *II = dyn_cast(I->getTerminator())) { + const BasicBlock *BB = II->getUnwindDest(); + const LandingPadInst *LP = BB->getLandingPadInst(); + CalleePersonality = LP->getPersonalityFn(); + break; + } + + // Find the personality function used by the landing pads of the caller. If it + // exists, then check to see that it matches the personality function used in + // the callee. + if (CalleePersonality) { + for (Function::const_iterator I = Caller->begin(), E = Caller->end(); + I != E; ++I) + if (const InvokeInst *II = dyn_cast(I->getTerminator())) { + const BasicBlock *BB = II->getUnwindDest(); + const LandingPadInst *LP = BB->getLandingPadInst(); + + // If the personality functions match, then we can perform the + // inlining. Otherwise, we can't inline. + // TODO: This isn't 100% true. Some personality functions are proper + // supersets of others and can be used in place of the other. + if (LP->getPersonalityFn() != CalleePersonality) + return false; + + break; + } + } + // Get an iterator to the last basic block in the function, which will have // the new function inlined after it. - // Function::iterator LastBlock = &Caller->back(); // Make sure to capture all of the return instructions from the cloned @@ -289,6 +696,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { { // Scope to destroy VMap after cloning. ValueToValueMapTy VMap; + // Keep a list of pair (dst, src) to emit byval initializations. + SmallVector, 4> ByValInit; assert(CalledFunc->arg_size() == CS.arg_size() && "No varargs calls can be inlined!"); @@ -305,58 +714,11 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // by them explicit. However, we don't do this if the callee is readonly // or readnone, because the copy would be unneeded: the callee doesn't // modify the struct. - if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) && - !CalledFunc->onlyReadsMemory()) { - const Type *AggTy = cast(I->getType())->getElementType(); - const Type *VoidPtrTy = - Type::getInt8PtrTy(Context); - - // Create the alloca. If we have TargetData, use nice alignment. - unsigned Align = 1; - if (IFI.TD) Align = IFI.TD->getPrefTypeAlignment(AggTy); - Value *NewAlloca = new AllocaInst(AggTy, 0, Align, - I->getName(), - &*Caller->begin()->begin()); - // Emit a memcpy. - const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; - Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), - Intrinsic::memcpy, - Tys, 3); - Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); - Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall); - - Value *Size; - if (IFI.TD == 0) - Size = ConstantExpr::getSizeOf(AggTy); - else - Size = ConstantInt::get(Type::getInt64Ty(Context), - IFI.TD->getTypeStoreSize(AggTy)); - - // Always generate a memcpy of alignment 1 here because we don't know - // the alignment of the src pointer. Other optimizations can infer - // better alignment. - Value *CallArgs[] = { - DestCast, SrcCast, Size, - ConstantInt::get(Type::getInt32Ty(Context), 1), - ConstantInt::getFalse(Context) // isVolatile - }; - CallInst *TheMemCpy = - CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall); - - // If we have a call graph, update it. - if (CallGraph *CG = IFI.CG) { - CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn); - CallGraphNode *CallerNode = (*CG)[Caller]; - CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN); - } - - // Uses of the argument in the function should use our new alloca - // instead. - ActualArg = NewAlloca; - - // Calls that we inline may use the new alloca, so we need to clear - // their 'tail' flags. - MustClearTailCallFlags = true; + if (CS.isByValArgument(ArgNo)) { + ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, + CalledFunc->getParamAlignment(ArgNo+1)); + if (ActualArg != *AI) + ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); } VMap[I] = ActualArg; @@ -368,27 +730,37 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // happy with whatever the cloner can do. CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, /*ModuleLevelChanges=*/false, Returns, ".i", - &InlinedFunctionInfo, IFI.TD, TheCall); + &InlinedFunctionInfo, IFI.DL, TheCall); // Remember the first block that is newly cloned over. FirstNewBlock = LastBlock; ++FirstNewBlock; + // Inject byval arguments initialization. + for (std::pair &Init : ByValInit) + HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), + FirstNewBlock, IFI); + // Update the callgraph if requested. if (IFI.CG) UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); + + // Update inlined instructions' line number information. + fixupLineNumbers(Caller, FirstNewBlock, TheCall); + + // Clone existing noalias metadata if necessary. + CloneAliasScopeMetadata(CS, VMap); } // If there are any alloca instructions in the block that used to be the entry // block for the callee, move them to the entry block of the caller. First // calculate which instruction they should be inserted before. We insert the // instructions at the end of the current alloca list. - // { BasicBlock::iterator InsertPoint = Caller->begin()->begin(); for (BasicBlock::iterator I = FirstNewBlock->begin(), E = FirstNewBlock->end(); I != E; ) { AllocaInst *AI = dyn_cast(I++); - if (AI == 0) continue; + if (!AI) continue; // If the alloca is now dead, remove it. This often occurs due to code // specialization. @@ -400,8 +772,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { if (!isa(AI->getArraySize())) continue; - // Keep track of the static allocas that we inline into the caller if the - // StaticAllocas pointer is non-null. + // Keep track of the static allocas that we inline into the caller. IFI.StaticAllocas.push_back(AI); // Scan for the block of allocas that we can move over, and move them @@ -421,6 +792,87 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { } } + bool InlinedMustTailCalls = false; + if (InlinedFunctionInfo.ContainsCalls) { + CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; + if (CallInst *CI = dyn_cast(TheCall)) + CallSiteTailKind = CI->getTailCallKind(); + + for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; + ++BB) { + for (Instruction &I : *BB) { + CallInst *CI = dyn_cast(&I); + if (!CI) + continue; + + // We need to reduce the strength of any inlined tail calls. For + // musttail, we have to avoid introducing potential unbounded stack + // growth. For example, if functions 'f' and 'g' are mutually recursive + // with musttail, we can inline 'g' into 'f' so long as we preserve + // musttail on the cloned call to 'f'. If either the inlined call site + // or the cloned call site is *not* musttail, the program already has + // one frame of stack growth, so it's safe to remove musttail. Here is + // a table of example transformations: + // + // f -> musttail g -> musttail f ==> f -> musttail f + // f -> musttail g -> tail f ==> f -> tail f + // f -> g -> musttail f ==> f -> f + // f -> g -> tail f ==> f -> f + CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); + ChildTCK = std::min(CallSiteTailKind, ChildTCK); + CI->setTailCallKind(ChildTCK); + InlinedMustTailCalls |= CI->isMustTailCall(); + + // Calls inlined through a 'nounwind' call site should be marked + // 'nounwind'. + if (MarkNoUnwind) + CI->setDoesNotThrow(); + } + } + } + + // Leave lifetime markers for the static alloca's, scoping them to the + // function we just inlined. + if (InsertLifetime && !IFI.StaticAllocas.empty()) { + IRBuilder<> builder(FirstNewBlock->begin()); + for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { + AllocaInst *AI = IFI.StaticAllocas[ai]; + + // If the alloca is already scoped to something smaller than the whole + // function then there's no need to add redundant, less accurate markers. + if (hasLifetimeMarkers(AI)) + continue; + + // Try to determine the size of the allocation. + ConstantInt *AllocaSize = nullptr; + if (ConstantInt *AIArraySize = + dyn_cast(AI->getArraySize())) { + if (IFI.DL) { + Type *AllocaType = AI->getAllocatedType(); + uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); + uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); + assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); + // Check that array size doesn't saturate uint64_t and doesn't + // overflow when it's multiplied by type size. + if (AllocaArraySize != ~0ULL && + UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { + AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), + AllocaArraySize * AllocaTypeSize); + } + } + } + + builder.CreateLifetimeStart(AI, AllocaSize); + for (ReturnInst *RI : Returns) { + // Don't insert llvm.lifetime.end calls between a musttail call and a + // return. The return kills all local allocas. + if (InlinedMustTailCalls && getPrecedingMustTailCall(RI)) + continue; + IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); + } + } + } + // If the inlined code contained dynamic alloca instructions, wrap the inlined // code with llvm.stacksave/llvm.stackrestore intrinsics. if (InlinedFunctionInfo.ContainsDynamicAllocas) { @@ -429,77 +881,61 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); - // If we are preserving the callgraph, add edges to the stacksave/restore - // functions for the calls we insert. - CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0; - if (CallGraph *CG = IFI.CG) { - StackSaveCGN = CG->getOrInsertFunction(StackSave); - StackRestoreCGN = CG->getOrInsertFunction(StackRestore); - CallerNode = (*CG)[Caller]; - } - // Insert the llvm.stacksave. - CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack", - FirstNewBlock->begin()); - if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN); + CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) + .CreateCall(StackSave, "savedstack"); // Insert a call to llvm.stackrestore before any return instructions in the // inlined function. - for (unsigned i = 0, e = Returns.size(); i != e; ++i) { - CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]); - if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); - } - - // Count the number of StackRestore calls we insert. - unsigned NumStackRestores = Returns.size(); - - // If we are inlining an invoke instruction, insert restores before each - // unwind. These unwinds will be rewritten into branches later. - if (InlinedFunctionInfo.ContainsUnwinds && isa(TheCall)) { - for (Function::iterator BB = FirstNewBlock, E = Caller->end(); - BB != E; ++BB) - if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { - CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI); - if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); - ++NumStackRestores; - } + for (ReturnInst *RI : Returns) { + // Don't insert llvm.stackrestore calls between a musttail call and a + // return. The return will restore the stack pointer. + if (InlinedMustTailCalls && getPrecedingMustTailCall(RI)) + continue; + IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); } } - // If we are inlining tail call instruction through a call site that isn't - // marked 'tail', we must remove the tail marker for any calls in the inlined - // code. Also, calls inlined through a 'nounwind' call site should be marked - // 'nounwind'. - if (InlinedFunctionInfo.ContainsCalls && - (MustClearTailCallFlags || MarkNoUnwind)) { - for (Function::iterator BB = FirstNewBlock, E = Caller->end(); - BB != E; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) - if (CallInst *CI = dyn_cast(I)) { - if (MustClearTailCallFlags) - CI->setTailCall(false); - if (MarkNoUnwind) - CI->setDoesNotThrow(); - } - } + // If we are inlining for an invoke instruction, we must make sure to rewrite + // any call instructions into invoke instructions. + if (InvokeInst *II = dyn_cast(TheCall)) + HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); - // If we are inlining through a 'nounwind' call site then any inlined 'unwind' - // instructions are unreachable. - if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) - for (Function::iterator BB = FirstNewBlock, E = Caller->end(); - BB != E; ++BB) { - TerminatorInst *Term = BB->getTerminator(); - if (isa(Term)) { - new UnreachableInst(Context, Term); - BB->getInstList().erase(Term); + // Handle any inlined musttail call sites. In order for a new call site to be + // musttail, the source of the clone and the inlined call site must have been + // musttail. Therefore it's safe to return without merging control into the + // phi below. + if (InlinedMustTailCalls) { + // Check if we need to bitcast the result of any musttail calls. + Type *NewRetTy = Caller->getReturnType(); + bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; + + // Handle the returns preceded by musttail calls separately. + SmallVector NormalReturns; + for (ReturnInst *RI : Returns) { + CallInst *ReturnedMustTail = getPrecedingMustTailCall(RI); + if (!ReturnedMustTail) { + NormalReturns.push_back(RI); + continue; } + if (!NeedBitCast) + continue; + + // Delete the old return and any preceding bitcast. + BasicBlock *CurBB = RI->getParent(); + auto *OldCast = dyn_cast_or_null(RI->getReturnValue()); + RI->eraseFromParent(); + if (OldCast) + OldCast->eraseFromParent(); + + // Insert a new bitcast and return with the right type. + IRBuilder<> Builder(CurBB); + Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); } - // If we are inlining for an invoke instruction, we must make sure to rewrite - // any inlined 'unwind' instructions into branches to the invoke exception - // destination, and call instructions into invoke instructions. - if (InvokeInst *II = dyn_cast(TheCall)) - HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); + // Leave behind the normal returns so we can merge control flow. + std::swap(Returns, NormalReturns); + } // If we cloned in _exactly one_ basic block, and if that block ends in a // return instruction, we splice the body of the inlined callee directly into @@ -513,8 +949,10 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // If the call site was an invoke instruction, add a branch to the normal // destination. - if (InvokeInst *II = dyn_cast(TheCall)) - BranchInst::Create(II->getNormalDest(), TheCall); + if (InvokeInst *II = dyn_cast(TheCall)) { + BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); + NewBr->setDebugLoc(Returns[0]->getDebugLoc()); + } // If the return instruction returned a value, replace uses of the call with // uses of the returned value. @@ -542,15 +980,16 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // "starter" and "ender" blocks. How we accomplish this depends on whether // this is an invoke instruction or a call instruction. BasicBlock *AfterCallBB; + BranchInst *CreatedBranchToNormalDest = nullptr; if (InvokeInst *II = dyn_cast(TheCall)) { // Add an unconditional branch to make this look like the CallInst case... - BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); + CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); // Split the basic block. This guarantees that no PHI nodes will have to be // updated due to new incoming edges, and make the invoke case more // symmetric to the call case. - AfterCallBB = OrigBB->splitBasicBlock(NewBr, + AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, CalledFunc->getName()+".exit"); } else { // It's a call @@ -578,14 +1017,14 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // Handle all of the return instructions that we just cloned in, and eliminate // any users of the original call/invoke instruction. - const Type *RTy = CalledFunc->getReturnType(); + Type *RTy = CalledFunc->getReturnType(); - PHINode *PHI = 0; + PHINode *PHI = nullptr; if (Returns.size() > 1) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. if (!TheCall->use_empty()) { - PHI = PHINode::Create(RTy, TheCall->getName(), + PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), AfterCallBB->begin()); // Anything that used the result of the function call should now use the // PHI node as their operand. @@ -605,11 +1044,20 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // Add a branch to the merge points and remove return instructions. + DebugLoc Loc; for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; - BranchInst::Create(AfterCallBB, RI); + BranchInst* BI = BranchInst::Create(AfterCallBB, RI); + Loc = RI->getDebugLoc(); + BI->setDebugLoc(Loc); RI->eraseFromParent(); } + // We need to set the debug location to *somewhere* inside the + // inlined function. The line number may be nonsensical, but the + // instruction will at least be associated with the right + // function. + if (CreatedBranchToNormalDest) + CreatedBranchToNormalDest->setDebugLoc(Loc); } else if (!Returns.empty()) { // Otherwise, if there is exactly one return value, just replace anything // using the return value of the call with the computed value. @@ -620,14 +1068,17 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); } + // Update PHI nodes that use the ReturnBB to use the AfterCallBB. + BasicBlock *ReturnBB = Returns[0]->getParent(); + ReturnBB->replaceAllUsesWith(AfterCallBB); + // Splice the code from the return block into the block that it will return // to, which contains the code that was after the call. - BasicBlock *ReturnBB = Returns[0]->getParent(); AfterCallBB->getInstList().splice(AfterCallBB->begin(), ReturnBB->getInstList()); - // Update PHI nodes that use the ReturnBB to use the AfterCallBB. - ReturnBB->replaceAllUsesWith(AfterCallBB); + if (CreatedBranchToNormalDest) + CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); // Delete the return instruction now and empty ReturnBB now. Returns[0]->eraseFromParent(); @@ -641,6 +1092,11 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); + // If we inlined any musttail calls and the original return is now + // unreachable, delete it. It can only contain a bitcast and ret. + if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) + AfterCallBB->eraseFromParent(); + // We should always be able to fold the entry block of the function into the // single predecessor of the block... assert(cast(Br)->isUnconditional() && "splitBasicBlock broken!"); @@ -648,8 +1104,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // Splice the code entry block into calling block, right before the // unconditional branch. - OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes + OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); // Remove the unconditional branch. OrigBB->getInstList().erase(Br); @@ -660,11 +1116,12 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { // If we inserted a phi node, check to see if it has a single value (e.g. all // the entries are the same or undef). If so, remove the PHI so it doesn't // block other optimizations. - if (PHI) - if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { + if (PHI) { + if (Value *V = SimplifyInstruction(PHI, IFI.DL)) { PHI->replaceAllUsesWith(V); PHI->eraseFromParent(); } + } return true; }