X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FTransforms%2FInstCombine%2FInstructionCombining.cpp;h=9b19732acfc6ed3eeb882fd6bd6b9232946cb7c7;hp=9d602c6a9e22a7eb6a8fc4856938187d9f7e4624;hb=0c065cf3eaa108e410fc5c0eb07b9ffd4226aaf9;hpb=9589ff8949271fe1f1e832040decbcd881b7ccf6 diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp index 9d602c6a9e2..9b19732acfc 100644 --- a/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -42,6 +42,7 @@ #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LibCallSemantics.h" #include "llvm/Analysis/LoopInfo.h" @@ -79,14 +80,12 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) { return llvm::EmitGEPOffset(Builder, DL, GEP); } -/// ShouldChangeType - Return true if it is desirable to convert a computation -/// from 'From' to 'To'. We don't want to convert from a legal to an illegal -/// type for example, or from a smaller to a larger illegal type. -bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { - assert(From->isIntegerTy() && To->isIntegerTy()); - - unsigned FromWidth = From->getPrimitiveSizeInBits(); - unsigned ToWidth = To->getPrimitiveSizeInBits(); +/// Return true if it is desirable to convert an integer computation from a +/// given bit width to a new bit width. +/// We don't want to convert from a legal to an illegal type for example or from +/// a smaller to a larger illegal type. +bool InstCombiner::ShouldChangeType(unsigned FromWidth, + unsigned ToWidth) const { bool FromLegal = DL.isLegalInteger(FromWidth); bool ToLegal = DL.isLegalInteger(ToWidth); @@ -103,6 +102,17 @@ bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { return true; } +/// Return true if it is desirable to convert a computation from 'From' to 'To'. +/// We don't want to convert from a legal to an illegal type for example or from +/// a smaller to a larger illegal type. +bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { + assert(From->isIntegerTy() && To->isIntegerTy()); + + unsigned FromWidth = From->getPrimitiveSizeInBits(); + unsigned ToWidth = To->getPrimitiveSizeInBits(); + return ShouldChangeType(FromWidth, ToWidth); +} + // Return true, if No Signed Wrap should be maintained for I. // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", // where both B and C should be ConstantInts, results in a constant that does @@ -156,27 +166,26 @@ static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { I.setFastMathFlags(FMF); } -/// SimplifyAssociativeOrCommutative - This performs a few simplifications for -/// operators which are associative or commutative: -// -// Commutative operators: -// -// 1. Order operands such that they are listed from right (least complex) to -// left (most complex). This puts constants before unary operators before -// binary operators. -// -// Associative operators: -// -// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. -// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. -// -// Associative and commutative operators: -// -// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. -// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. -// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" -// if C1 and C2 are constants. -// +/// This performs a few simplifications for operators that are associative or +/// commutative: +/// +/// Commutative operators: +/// +/// 1. Order operands such that they are listed from right (least complex) to +/// left (most complex). This puts constants before unary operators before +/// binary operators. +/// +/// Associative operators: +/// +/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. +/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. +/// +/// Associative and commutative operators: +/// +/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. +/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. +/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" +/// if C1 and C2 are constants. bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { Instruction::BinaryOps Opcode = I.getOpcode(); bool Changed = false; @@ -322,7 +331,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { } while (1); } -/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to +/// Return whether "X LOp (Y ROp Z)" is always equal to /// "(X LOp Y) ROp (X LOp Z)". static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp) { @@ -361,7 +370,7 @@ static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, } } -/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to +/// Return whether "(X LOp Y) ROp Z" is always equal to /// "(X ROp Z) LOp (Y ROp Z)". static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp) { @@ -519,7 +528,7 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder, if (isa(Op1)) HasNSW &= Op1->hasNoSignedWrap(); - // We can propogate 'nsw' if we know that + // We can propagate 'nsw' if we know that // %Y = mul nsw i16 %X, C // %Z = add nsw i16 %Y, %X // => @@ -537,11 +546,11 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder, return SimplifiedInst; } -/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations -/// which some other binary operation distributes over either by factorizing -/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this -/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is -/// a win). Returns the simplified value, or null if it didn't simplify. +/// This tries to simplify binary operations which some other binary operation +/// distributes over either by factorizing out common terms +/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in +/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). +/// Returns the simplified value, or null if it didn't simplify. Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); BinaryOperator *Op0 = dyn_cast(LHS); @@ -623,12 +632,38 @@ Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { } } + // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) + // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) + if (auto *SI0 = dyn_cast(LHS)) { + if (auto *SI1 = dyn_cast(RHS)) { + if (SI0->getCondition() == SI1->getCondition()) { + Value *SI = nullptr; + if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), + SI1->getFalseValue(), DL, TLI, DT, AC)) + SI = Builder->CreateSelect(SI0->getCondition(), + Builder->CreateBinOp(TopLevelOpcode, + SI0->getTrueValue(), + SI1->getTrueValue()), + V); + if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), + SI1->getTrueValue(), DL, TLI, DT, AC)) + SI = Builder->CreateSelect( + SI0->getCondition(), V, + Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), + SI1->getFalseValue())); + if (SI) { + SI->takeName(&I); + return SI; + } + } + } + } + return nullptr; } -// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction -// if the LHS is a constant zero (which is the 'negate' form). -// +/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a +/// constant zero (which is the 'negate' form). Value *InstCombiner::dyn_castNegVal(Value *V) const { if (BinaryOperator::isNeg(V)) return BinaryOperator::getNegArgument(V); @@ -644,10 +679,8 @@ Value *InstCombiner::dyn_castNegVal(Value *V) const { return nullptr; } -// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the -// instruction if the LHS is a constant negative zero (which is the 'negate' -// form). -// +/// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is +/// a constant negative zero (which is the 'negate' form). Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) return BinaryOperator::getFNegArgument(V); @@ -700,10 +733,10 @@ static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, llvm_unreachable("Unknown binary instruction type!"); } -// FoldOpIntoSelect - Given an instruction with a select as one operand and a -// constant as the other operand, try to fold the binary operator into the -// select arguments. This also works for Cast instructions, which obviously do -// not have a second operand. +/// Given an instruction with a select as one operand and a constant as the +/// other operand, try to fold the binary operator into the select arguments. +/// This also works for Cast instructions, which obviously do not have a second +/// operand. Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { // Don't modify shared select instructions if (!SI->hasOneUse()) return nullptr; @@ -752,10 +785,9 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { return nullptr; } -/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which -/// has a PHI node as operand #0, see if we can fold the instruction into the -/// PHI (which is only possible if all operands to the PHI are constants). -/// +/// Given a binary operator, cast instruction, or select which has a PHI node as +/// operand #0, see if we can fold the instruction into the PHI (which is only +/// possible if all operands to the PHI are constants). Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *PN = cast(I.getOperand(0)); unsigned NumPHIValues = PN->getNumIncomingValues(); @@ -819,7 +851,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { NewPN->takeName(PN); // If we are going to have to insert a new computation, do so right before the - // predecessors terminator. + // predecessor's terminator. if (NonConstBB) Builder->SetInsertPoint(NonConstBB->getTerminator()); @@ -893,10 +925,10 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { return ReplaceInstUsesWith(I, NewPN); } -/// FindElementAtOffset - Given a pointer type and a constant offset, determine -/// whether or not there is a sequence of GEP indices into the pointed type that -/// will land us at the specified offset. If so, fill them into NewIndices and -/// return the resultant element type, otherwise return null. +/// Given a pointer type and a constant offset, determine whether or not there +/// is a sequence of GEP indices into the pointed type that will land us at the +/// specified offset. If so, fill them into NewIndices and return the resultant +/// element type, otherwise return null. Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, SmallVectorImpl &NewIndices) { Type *Ty = PtrTy->getElementType(); @@ -965,8 +997,8 @@ static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { return true; } -/// Descale - Return a value X such that Val = X * Scale, or null if none. If -/// the multiplication is known not to overflow then NoSignedWrap is set. +/// Return a value X such that Val = X * Scale, or null if none. +/// If the multiplication is known not to overflow, then NoSignedWrap is set. Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { assert(isa(Val->getType()) && "Can only descale integers!"); assert(cast(Val->getType())->getBitWidth() == @@ -1008,11 +1040,11 @@ Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { // 0'th operand of Val. std::pair Parent; - // RequireNoSignedWrap - Set if the transform requires a descaling at deeper - // levels that doesn't overflow. + // Set if the transform requires a descaling at deeper levels that doesn't + // overflow. bool RequireNoSignedWrap = false; - // logScale - log base 2 of the scale. Negative if not a power of 2. + // Log base 2 of the scale. Negative if not a power of 2. int32_t logScale = Scale.exactLogBase2(); for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down @@ -1432,11 +1464,13 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // All the GEPs feeding the PHI differ at a single offset. Clone a GEP // into the current block so it can be merged, and create a new PHI to // set that index. - Instruction *InsertPt = Builder->GetInsertPoint(); - Builder->SetInsertPoint(PN); - PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), - PN->getNumOperands()); - Builder->SetInsertPoint(InsertPt); + PHINode *NewPN; + { + IRBuilderBase::InsertPointGuard Guard(*Builder); + Builder->SetInsertPoint(PN); + NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), + PN->getNumOperands()); + } for (auto &I : PN->operands()) NewPN->addIncoming(cast(I)->getOperand(DI), @@ -1790,7 +1824,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { if (Instruction *I = visitBitCast(*BCI)) { if (I != BCI) { I->takeName(BCI); - BCI->getParent()->getInstList().insert(BCI, I); + BCI->getParent()->getInstList().insert(BCI->getIterator(), I); ReplaceInstUsesWith(*BCI, I); } return &GEP; @@ -2125,7 +2159,7 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { // Truncate the condition operand if the new type is equal to or larger than // the largest legal integer type. We need to be conservative here since - // x86 generates redundant zero-extenstion instructions if the operand is + // x86 generates redundant zero-extension instructions if the operand is // truncated to i8 or i16. bool TruncCond = false; if (NewWidth > 0 && BitWidth > NewWidth && @@ -2174,16 +2208,9 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { if (!EV.hasIndices()) return ReplaceInstUsesWith(EV, Agg); - if (Constant *C = dyn_cast(Agg)) { - if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) { - if (EV.getNumIndices() == 0) - return ReplaceInstUsesWith(EV, C2); - // Extract the remaining indices out of the constant indexed by the - // first index - return ExtractValueInst::Create(C2, EV.getIndices().slice(1)); - } - return nullptr; // Can't handle other constants - } + if (Value *V = + SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC)) + return ReplaceInstUsesWith(EV, V); if (InsertValueInst *IV = dyn_cast(Agg)) { // We're extracting from an insertvalue instruction, compare the indices @@ -2301,7 +2328,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { // We need to insert these at the location of the old load, not at that of // the extractvalue. - Builder->SetInsertPoint(L->getParent(), L); + Builder->SetInsertPoint(L); Value *GEP = Builder->CreateInBoundsGEP(L->getType(), L->getPointerOperand(), Indices); // Returning the load directly will cause the main loop to insert it in @@ -2319,7 +2346,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { return nullptr; } -/// isCatchAll - Return 'true' if the given typeinfo will match anything. +/// Return 'true' if the given typeinfo will match anything. static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { switch (Personality) { case EHPersonality::GNU_C: @@ -2337,6 +2364,7 @@ static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { case EHPersonality::MSVC_X86SEH: case EHPersonality::MSVC_Win64SEH: case EHPersonality::MSVC_CXX: + case EHPersonality::CoreCLR: return TypeInfo->isNullValue(); } llvm_unreachable("invalid enum"); @@ -2353,7 +2381,8 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { // The logic here should be correct for any real-world personality function. // However if that turns out not to be true, the offending logic can always // be conditioned on the personality function, like the catch-all logic is. - EHPersonality Personality = classifyEHPersonality(LI.getPersonalityFn()); + EHPersonality Personality = + classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); // Simplify the list of clauses, eg by removing repeated catch clauses // (these are often created by inlining). @@ -2620,7 +2649,6 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { // with a new one. if (MakeNewInstruction) { LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), - LI.getPersonalityFn(), NewClauses.size()); for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) NLI->addClause(NewClauses[i]); @@ -2644,15 +2672,15 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { return nullptr; } -/// TryToSinkInstruction - Try to move the specified instruction from its -/// current block into the beginning of DestBlock, which can only happen if it's -/// safe to move the instruction past all of the instructions between it and the -/// end of its block. +/// Try to move the specified instruction from its current block into the +/// beginning of DestBlock, which can only happen if it's safe to move the +/// instruction past all of the instructions between it and the end of its +/// block. static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { assert(I->hasOneUse() && "Invariants didn't hold!"); // Cannot move control-flow-involving, volatile loads, vaarg, etc. - if (isa(I) || isa(I) || I->mayHaveSideEffects() || + if (isa(I) || I->isEHPad() || I->mayHaveSideEffects() || isa(I)) return false; @@ -2664,14 +2692,15 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { // We can only sink load instructions if there is nothing between the load and // the end of block that could change the value. if (I->mayReadFromMemory()) { - for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); + for (BasicBlock::iterator Scan = I->getIterator(), + E = I->getParent()->end(); Scan != E; ++Scan) if (Scan->mayWriteToMemory()) return false; } BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); - I->moveBefore(InsertPos); + I->moveBefore(&*InsertPos); ++NumSunkInst; return true; } @@ -2691,7 +2720,8 @@ bool InstCombiner::run() { } // Instruction isn't dead, see if we can constant propagate it. - if (!I->use_empty() && isa(I->getOperand(0))) { + if (!I->use_empty() && + (I->getNumOperands() == 0 || isa(I->getOperand(0)))) { if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) { DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); @@ -2744,7 +2774,7 @@ bool InstCombiner::run() { } // Now that we have an instruction, try combining it to simplify it. - Builder->SetInsertPoint(I->getParent(), I); + Builder->SetInsertPoint(I); Builder->SetCurrentDebugLocation(I->getDebugLoc()); #ifndef NDEBUG @@ -2774,7 +2804,7 @@ bool InstCombiner::run() { // Insert the new instruction into the basic block... BasicBlock *InstParent = I->getParent(); - BasicBlock::iterator InsertPos = I; + BasicBlock::iterator InsertPos = I->getIterator(); // If we replace a PHI with something that isn't a PHI, fix up the // insertion point. @@ -2807,8 +2837,8 @@ bool InstCombiner::run() { return MadeIRChange; } -/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding -/// all reachable code to the worklist. +/// Walk the function in depth-first order, adding all reachable code to the +/// worklist. /// /// This has a couple of tricks to make the code faster and more powerful. In /// particular, we constant fold and DCE instructions as we go, to avoid adding @@ -2835,7 +2865,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, continue; for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { - Instruction *Inst = BBI++; + Instruction *Inst = &*BBI++; // DCE instruction if trivially dead. if (isInstructionTriviallyDead(Inst, TLI)) { @@ -2846,7 +2876,8 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, } // ConstantProp instruction if trivially constant. - if (!Inst->use_empty() && isa(Inst->getOperand(0))) + if (!Inst->use_empty() && + (Inst->getNumOperands() == 0 || isa(Inst->getOperand(0)))) if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst << '\n'); @@ -2905,8 +2936,8 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, } } - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) - Worklist.push_back(TI->getSuccessor(i)); + for (BasicBlock *SuccBB : TI->successors()) + Worklist.push_back(SuccBB); } while (!Worklist.empty()); // Once we've found all of the instructions to add to instcombine's worklist, @@ -2914,8 +2945,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, // of the function down. This jives well with the way that it adds all uses // of instructions to the worklist after doing a transformation, thus avoiding // some N^2 behavior in pathological cases. - ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], - InstrsForInstCombineWorklist.size()); + ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); return MadeIRChange; } @@ -2935,13 +2965,13 @@ static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, // track of which blocks we visit. SmallPtrSet Visited; MadeIRChange |= - AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI); + AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); // Do a quick scan over the function. If we find any blocks that are // unreachable, remove any instructions inside of them. This prevents // the instcombine code from having to deal with some bad special cases. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { - if (Visited.count(BB)) + if (Visited.count(&*BB)) continue; // Delete the instructions backwards, as it has a reduced likelihood of @@ -2949,11 +2979,10 @@ static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. while (EndInst != BB->begin()) { // Delete the next to last instruction. - BasicBlock::iterator I = EndInst; - Instruction *Inst = --I; + Instruction *Inst = &*--EndInst->getIterator(); if (!Inst->use_empty()) Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); - if (isa(Inst)) { + if (Inst->isEHPad()) { EndInst = Inst; continue; } @@ -2970,10 +2999,9 @@ static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, static bool combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, - AssumptionCache &AC, TargetLibraryInfo &TLI, - DominatorTree &DT, LoopInfo *LI = nullptr) { - // Minimizing size? - bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize); + AliasAnalysis *AA, AssumptionCache &AC, + TargetLibraryInfo &TLI, DominatorTree &DT, + LoopInfo *LI = nullptr) { auto &DL = F.getParent()->getDataLayout(); /// Builder - This is an IRBuilder that automatically inserts new @@ -2996,7 +3024,8 @@ combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist)) Changed = true; - InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI); + InstCombiner IC(Worklist, &Builder, F.optForMinSize(), + AA, &AC, &TLI, &DT, DL, LI); if (IC.run()) Changed = true; @@ -3015,7 +3044,8 @@ PreservedAnalyses InstCombinePass::run(Function &F, auto *LI = AM->getCachedResult(F); - if (!combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI)) + // FIXME: The AliasAnalysis is not yet supported in the new pass manager + if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, LI)) // No changes, all analyses are preserved. return PreservedAnalyses::all(); @@ -3048,10 +3078,12 @@ public: void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); + AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); + AU.addPreserved(); } bool InstructionCombiningPass::runOnFunction(Function &F) { @@ -3059,6 +3091,7 @@ bool InstructionCombiningPass::runOnFunction(Function &F) { return false; // Required analyses. + auto AA = &getAnalysis().getAAResults(); auto &AC = getAnalysis().getAssumptionCache(F); auto &TLI = getAnalysis().getTLI(); auto &DT = getAnalysis().getDomTree(); @@ -3067,7 +3100,7 @@ bool InstructionCombiningPass::runOnFunction(Function &F) { auto *LIWP = getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; - return combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI); + return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, LI); } char InstructionCombiningPass::ID = 0; @@ -3076,6 +3109,8 @@ INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", "Combine redundant instructions", false, false)