X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86CallingConv.td;h=75a2ec004685beeab59ef97ca0a681e3a71b8261;hp=3206e183eb7bbaf0426c9e77ffae0499e501dbb0;hb=d5de327da0b174c5d44f776f827c1ea8bfe99095;hpb=8f88cb08999187b143c6772216dd2ef18d9b7824 diff --git a/lib/Target/X86/X86CallingConv.td b/lib/Target/X86/X86CallingConv.td index 3206e183eb7..75a2ec00468 100644 --- a/lib/Target/X86/X86CallingConv.td +++ b/lib/Target/X86/X86CallingConv.td @@ -1,10 +1,10 @@ -//===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===// -// +//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===// +// // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. -// +// //===----------------------------------------------------------------------===// // // This describes the calling conventions for the X86-32 and X86-64 @@ -14,7 +14,9 @@ /// CCIfSubtarget - Match if the current subtarget has a feature F. class CCIfSubtarget - : CCIf().", F), A>; + : CCIf" + "(State.getMachineFunction().getSubtarget()).", F), + A>; //===----------------------------------------------------------------------===// // Return Value Calling Conventions @@ -22,87 +24,200 @@ class CCIfSubtarget // Return-value conventions common to all X86 CC's. def RetCC_X86Common : CallingConv<[ - // Scalar values are returned in AX first, then DX. - CCIfType<[i8] , CCAssignToReg<[AL]>>, - CCIfType<[i16], CCAssignToReg<[AX]>>, - CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>, - CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>, - - // Vector types are returned in XMM0 and XMM1, when they fit. If the target - // doesn't have XMM registers, it won't have vector types. + // Scalar values are returned in AX first, then DX. For i8, the ABI + // requires the values to be in AL and AH, however this code uses AL and DL + // instead. This is because using AH for the second register conflicts with + // the way LLVM does multiple return values -- a return of {i16,i8} would end + // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI + // for functions that return two i8 values are currently expected to pack the + // values into an i16 (which uses AX, and thus AL:AH). + // + // For code that doesn't care about the ABI, we allow returning more than two + // integer values in registers. + CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, + CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, + CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, + CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, + + // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 + // can only be used by ABI non-compliant code. If the target doesn't have XMM + // registers, it won't have vector types. CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], - CCAssignToReg<[XMM0,XMM1]>>, + CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, + + // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 + // can only be used by ABI non-compliant code. This vector type is only + // supported while using the AVX target feature. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + + // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3 + // can only be used by ABI non-compliant code. This vector type is only + // supported while using the AVX-512 target feature. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, // MMX vector types are always returned in MM0. If the target doesn't have // MM0, it doesn't support these vector types. - CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[MM0]>>, + CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, - // Long double types are always returned in ST0 (even with SSE). - CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> + // Long double types are always returned in FP0 (even with SSE). + CCIfType<[f80], CCAssignToReg<[FP0, FP1]>> ]>; // X86-32 C return-value convention. def RetCC_X86_32_C : CallingConv<[ - // The X86-32 calling convention returns FP values in ST0, otherwise it is the - // same as the common X86 calling conv. - CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, - CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, + // The X86-32 calling convention returns FP values in FP0, unless marked + // with "inreg" (used here to distinguish one kind of reg from another, + // weirdly; this is really the sse-regparm calling convention) in which + // case they use XMM0, otherwise it is the same as the common X86 calling + // conv. + CCIfInReg>>>, + CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>, CCDelegateTo ]>; // X86-32 FastCC return-value convention. def RetCC_X86_32_Fast : CallingConv<[ // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has - // SSE2, otherwise it is the the C calling conventions. + // SSE2. // This can happen when a float, 2 x float, or 3 x float vector is split by // target lowering, and is returned in 1-3 sse regs. CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, + + // For integers, ECX can be used as an extra return register + CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, + CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, + CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, + + // Otherwise, it is the same as the common X86 calling convention. CCDelegateTo ]>; -// X86-32 SSEregparm return-value convention. -def RetCC_X86_32_SSE : CallingConv<[ - // The X86-32 sseregparm calling convention returns FP values in XMM0 if the - // target has SSE2, otherwise it is the C calling convention. - CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0]>>>, - CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0]>>>, +// Intel_OCL_BI return-value convention. +def RetCC_Intel_OCL_BI : CallingConv<[ + // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. + CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, + + // 256-bit FP vectors + // No more than 4 registers + CCIfType<[v8f32, v4f64, v8i32, v4i64], + CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + + // 512-bit FP vectors + CCIfType<[v16f32, v8f64, v16i32, v8i64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, + + // i32, i64 in the standard way + CCDelegateTo +]>; + +// X86-32 HiPE return-value convention. +def RetCC_X86_32_HiPE : CallingConv<[ + // Promote all types to i32 + CCIfType<[i8, i16], CCPromoteToType>, + + // Return: HP, P, VAL1, VAL2 + CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> +]>; + +// X86-32 HiPE return-value convention. +def RetCC_X86_32_VectorCall : CallingConv<[ + // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, + + // 256-bit FP vectors + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + + // 512-bit FP vectors + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, + + // Return integers in the standard way. CCDelegateTo ]>; // X86-64 C return-value convention. def RetCC_X86_64_C : CallingConv<[ // The X86-64 calling convention always returns FP values in XMM0. - CCIfType<[f32], CCAssignToReg<[XMM0]>>, - CCIfType<[f64], CCAssignToReg<[XMM0]>>, + CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, + CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, + + // MMX vector types are always returned in XMM0. + CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, CCDelegateTo ]>; // X86-Win64 C return-value convention. def RetCC_X86_Win64_C : CallingConv<[ - // The X86-Win64 calling convention always returns __m64 values in RAX - CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[RAX]>>, + // The X86-Win64 calling convention always returns __m64 values in RAX. + CCIfType<[x86mmx], CCBitConvertToType>, - // Otherwise, everything is the same as 'norma' X86-64 C CC + // Otherwise, everything is the same as 'normal' X86-64 C CC. CCDelegateTo ]>; +// X86-64 HiPE return-value convention. +def RetCC_X86_64_HiPE : CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType>, + + // Return: HP, P, VAL1, VAL2 + CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> +]>; + +// X86-64 WebKit_JS return-value convention. +def RetCC_X86_64_WebKit_JS : CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType>, + + // Return: RAX + CCIfType<[i64], CCAssignToReg<[RAX]>> +]>; + +// X86-64 AnyReg return-value convention. No explicit register is specified for +// the return-value. The register allocator is allowed and expected to choose +// any free register. +// +// This calling convention is currently only supported by the stackmap and +// patchpoint intrinsics. All other uses will result in an assert on Debug +// builds. On Release builds we fallback to the X86 C calling convention. +def RetCC_X86_64_AnyReg : CallingConv<[ + CCCustom<"CC_X86_AnyReg_Error"> +]>; // This is the root return-value convention for the X86-32 backend. def RetCC_X86_32 : CallingConv<[ // If FastCC, use RetCC_X86_32_Fast. CCIfCC<"CallingConv::Fast", CCDelegateTo>, - // If SSECC, use RetCC_X86_32_SSE. - CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo>, + // If HiPE, use RetCC_X86_32_HiPE. + CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, + // Otherwise, use RetCC_X86_32_C. CCDelegateTo ]>; // This is the root return-value convention for the X86-64 backend. def RetCC_X86_64 : CallingConv<[ + // HiPE uses RetCC_X86_64_HiPE + CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + + // Handle JavaScript calls. + CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo>, + CCIfCC<"CallingConv::AnyReg", CCDelegateTo>, + + // Handle explicit CC selection + CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo>, + CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo>, + // Mingw64 and native Win64 use Win64 CC - CCIfSubtarget<"isTargetMingw()", CCDelegateTo>, - CCIfSubtarget<"isTargetWindows()", CCDelegateTo>, + CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, // Otherwise, drop to normal X86-64 CC CCDelegateTo @@ -110,6 +225,10 @@ def RetCC_X86_64 : CallingConv<[ // This is the return-value convention used for the entire X86 backend. def RetCC_X86 : CallingConv<[ + + // Check if this is the Intel OpenCL built-ins calling convention + CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo>, + CCIfSubtarget<"is64Bit()", CCDelegateTo>, CCDelegateTo ]>; @@ -126,24 +245,43 @@ def CC_X86_64_C : CallingConv<[ CCIfType<[i8, i16], CCPromoteToType>, // The 'nest' parameter, if any, is passed in R10. + CCIfNest>>, CCIfNest>, // The first 6 integer arguments are passed in integer registers. CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, - + + // The first 8 MMX vector arguments are passed in XMM registers on Darwin. + CCIfType<[x86mmx], + CCIfSubtarget<"isTargetDarwin()", + CCIfSubtarget<"hasSSE2()", + CCPromoteToType>>>, + // The first 8 FP/Vector arguments are passed in XMM registers. CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], - CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>, - - // The first 8 MMX vector arguments are passed in GPRs. - CCIfType<[v8i8, v4i16, v2i32, v1i64], - CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, + CCIfSubtarget<"hasSSE1()", + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, + + // The first 8 256-bit vector arguments are passed in YMM registers, unless + // this is a vararg function. + // FIXME: This isn't precisely correct; the x86-64 ABI document says that + // fixed arguments to vararg functions are supposed to be passed in + // registers. Actually modeling that would be a lot of work, though. + CCIfNotVarArg>>>, + + // The first 8 512-bit vector arguments are passed in ZMM registers. + CCIfNotVarArg>>>, // Integer/FP values get stored in stack slots that are 8 bytes in size and // 8-byte aligned if there are no more registers to hold them. CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, - + // Long doubles get stack slots whose size and alignment depends on the // subtarget. CCIfType<[f80], CCAssignToStack<0, 0>>, @@ -151,76 +289,136 @@ def CC_X86_64_C : CallingConv<[ // Vectors get 16-byte stack slots that are 16-byte aligned. CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, - // __m64 vectors get 8-byte stack slots that are 8-byte aligned. - CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>> + // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToStack<32, 32>>, + + // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. + CCIfType<[v16i32, v8i64, v16f32, v8f64], + CCAssignToStack<64, 64>> ]>; // Calling convention used on Win64 def CC_X86_Win64_C : CallingConv<[ - // FIXME: Handle byval stuff - // FIXME: Handle fp80 - // FIXME: Handle shadowed arguments + // FIXME: Handle byval stuff. + // FIXME: Handle varargs. // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType>, + // The 'nest' parameter, if any, is passed in R10. + CCIfNest>, + + // 128 bit vectors are passed by pointer + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect>, + + + // 256 bit vectors are passed by pointer + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect>, + + // 512 bit vectors are passed by pointer + CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect>, + + // The first 4 MMX vector arguments are passed in GPRs. + CCIfType<[x86mmx], CCBitConvertToType>, + // The first 4 integer arguments are passed in integer registers. - CCIfType<[i32], CCAssignToReg<[ECX, EDX, R8D, R9D]>>, - CCIfType<[i64], CCAssignToReg<[RCX, RDX, R8 , R9 ]>>, + CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], + [XMM0, XMM1, XMM2, XMM3]>>, + + // Do not pass the sret argument in RCX, the Win64 thiscall calling + // convention requires "this" to be passed in RCX. + CCIfCC<"CallingConv::X86_ThisCall", + CCIfSRet>>>, + + CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], + [XMM0, XMM1, XMM2, XMM3]>>, // The first 4 FP/Vector arguments are passed in XMM registers. CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], - CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, - - // The first 4 MMX vector arguments are passed in GPRs. - CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[RCX, RDX, R8, R9]>>, + CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], + [RCX , RDX , R8 , R9 ]>>, // Integer/FP values get stored in stack slots that are 8 bytes in size and - // 16-byte aligned if there are no more registers to hold them. - CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 16>>, + // 8-byte aligned if there are no more registers to hold them. + CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, - // Vectors get 16-byte stack slots that are 16-byte aligned. - CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, + // Long doubles get stack slots whose size and alignment depends on the + // subtarget. + CCIfType<[f80], CCAssignToStack<0, 0>> +]>; + +def CC_X86_Win64_VectorCall : CallingConv<[ + // The first 6 floating point and vector types of 128 bits or less use + // XMM0-XMM5. + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>, + + // 256-bit vectors use YMM registers. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>, - // __m64 vectors get 8-byte stack slots that are 16-byte aligned. - CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 16>> + // 512-bit vectors use ZMM registers. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>, + + // Delegate to fastcall to handle integer types. + CCDelegateTo ]>; -// Tail call convention (fast): One register is reserved for target address, -// namely R9 -def CC_X86_64_TailCall : CallingConv<[ - // Handles byval parameters. - CCIfByVal>, - // Promote i8/i16 arguments to i32. - CCIfType<[i8, i16], CCPromoteToType>, +def CC_X86_64_GHC : CallingConv<[ + // Promote i8/i16/i32 arguments to i64. + CCIfType<[i8, i16, i32], CCPromoteToType>, - // The 'nest' parameter, if any, is passed in R10. - CCIfNest>, + // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim + CCIfType<[i64], + CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, - // The first 6 integer arguments are passed in integer registers. - CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D]>>, - CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>, - - // The first 8 FP/Vector arguments are passed in XMM registers. + // Pass in STG registers: F1, F2, F3, F4, D1, D2 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], - CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>, + CCIfSubtarget<"hasSSE1()", + CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>> +]>; - // The first 8 MMX vector arguments are passed in GPRs. - CCIfType<[v8i8, v4i16, v2i32, v1i64], - CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>, +def CC_X86_64_HiPE : CallingConv<[ + // Promote i8/i16/i32 arguments to i64. + CCIfType<[i8, i16, i32], CCPromoteToType>, + + // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 + CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, // Integer/FP values get stored in stack slots that are 8 bytes in size and // 8-byte aligned if there are no more registers to hold them. - CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, - - // Vectors get 16-byte stack slots that are 16-byte aligned. - CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, + CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> +]>; - // __m64 vectors get 8-byte stack slots that are 8-byte aligned. - CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>> +def CC_X86_64_WebKit_JS : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType>, + + // Only the first integer argument is passed in register. + CCIfType<[i32], CCAssignToReg<[EAX]>>, + CCIfType<[i64], CCAssignToReg<[RAX]>>, + + // The remaining integer arguments are passed on the stack. 32bit integer and + // floating-point arguments are aligned to 4 byte and stored in 4 byte slots. + // 64bit integer and floating-point arguments are aligned to 8 byte and stored + // in 8 byte stack slots. + CCIfType<[i32, f32], CCAssignToStack<4, 4>>, + CCIfType<[i64, f64], CCAssignToStack<8, 8>> ]>; +// No explicit register is specified for the AnyReg calling convention. The +// register allocator may assign the arguments to any free register. +// +// This calling convention is currently only supported by the stackmap and +// patchpoint intrinsics. All other uses will result in an assert on Debug +// builds. On Release builds we fallback to the X86 C calling convention. +def CC_X86_64_AnyReg : CallingConv<[ + CCCustom<"CC_X86_AnyReg_Error"> +]>; //===----------------------------------------------------------------------===// // X86 C Calling Convention @@ -235,13 +433,19 @@ def CC_X86_32_Common : CallingConv<[ // The first 3 float or double arguments, if marked 'inreg' and if the call // is not a vararg call and if SSE2 is available, are passed in SSE registers. - CCIfNotVarArg>>>>, + // The first 3 __m64 vector arguments are passed in mmx registers if the + // call is not a vararg call. + CCIfNotVarArg>>, + // Integer/Float values get stored in stack slots that are 4 bytes in // size and 4-byte aligned. CCIfType<[i32, f32], CCAssignToStack<4, 4>>, - + // Doubles get 8-byte slots that are 4-byte aligned. CCIfType<[f64], CCAssignToStack<8, 4>>, @@ -252,13 +456,21 @@ def CC_X86_32_Common : CallingConv<[ CCIfNotVarArg>>, + // The first 4 AVX 256-bit vector arguments are passed in YMM registers. + CCIfNotVarArg>>>, + // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, + // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToStack<32, 32>>, + // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are // passed in the parameter area. - CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 4>> -]>; + CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>; def CC_X86_32_C : CallingConv<[ // Promote i8/i16 arguments to i32. @@ -275,23 +487,80 @@ def CC_X86_32_C : CallingConv<[ CCDelegateTo ]>; -/// Same as C calling convention except for non-free ECX which is used for storing -/// a potential pointer to the tail called function. -def CC_X86_32_TailCall : CallingConv<[ +def CC_X86_32_FastCall : CallingConv<[ // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType>, - // Nested function trampolines are currently not supported by fastcc. - - // The first 3 integer arguments, if marked 'inreg' and if the call is not - // a vararg call, are passed in integer registers. - CCIfNotVarArg>>>, + // The 'nest' parameter, if any, is passed in EAX. + CCIfNest>, + + // The first 2 integer arguments are passed in ECX/EDX + CCIfInReg>>, // Otherwise, same as everything else. CCDelegateTo ]>; -def CC_X86_32_FastCall : CallingConv<[ +def CC_X86_32_VectorCall : CallingConv<[ + // The first 6 floating point and vector types of 128 bits or less use + // XMM0-XMM5. + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>, + + // 256-bit vectors use YMM registers. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>, + + // 512-bit vectors use ZMM registers. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>, + + // Otherwise, pass it indirectly. + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, + v32i8, v16i16, v8i32, v4i64, v8f32, v4f64, + v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCCustom<"CC_X86_32_VectorCallIndirect">>, + + // Delegate to fastcall to handle integer types. + CCDelegateTo +]>; + +def CC_X86_32_ThisCall_Common : CallingConv<[ + // The first integer argument is passed in ECX + CCIfType<[i32], CCAssignToReg<[ECX]>>, + + // Otherwise, same as everything else. + CCDelegateTo +]>; + +def CC_X86_32_ThisCall_Mingw : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType>, + + CCDelegateTo +]>; + +def CC_X86_32_ThisCall_Win : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType>, + + // Pass sret arguments indirectly through stack. + CCIfSRet>, + + CCDelegateTo +]>; + +def CC_X86_32_ThisCall : CallingConv<[ + CCIfSubtarget<"isTargetCygMing()", CCDelegateTo>, + CCDelegateTo +]>; + +def CC_X86_32_FastCC : CallingConv<[ + // Handles byval parameters. Note that we can't rely on the delegation + // to CC_X86_32_Common for this because that happens after code that + // puts arguments in registers. + CCIfByVal>, + // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType>, @@ -301,6 +570,160 @@ def CC_X86_32_FastCall : CallingConv<[ // The first 2 integer arguments are passed in ECX/EDX CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, + // The first 3 float or double arguments, if the call is not a vararg + // call and if SSE2 is available, are passed in SSE registers. + CCIfNotVarArg>>>, + + // Doubles get 8-byte slots that are 8-byte aligned. + CCIfType<[f64], CCAssignToStack<8, 8>>, + // Otherwise, same as everything else. CCDelegateTo ]>; + +def CC_X86_32_GHC : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType>, + + // Pass in STG registers: Base, Sp, Hp, R1 + CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> +]>; + +def CC_X86_32_HiPE : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType>, + + // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 + CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, + + // Integer/Float values get stored in stack slots that are 4 bytes in + // size and 4-byte aligned. + CCIfType<[i32, f32], CCAssignToStack<4, 4>> +]>; + +// X86-64 Intel OpenCL built-ins calling convention. +def CC_Intel_OCL_BI : CallingConv<[ + + CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, + CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, + + CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, + CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, + + CCIfType<[i32], CCAssignToStack<4, 4>>, + + // The SSE vector arguments are passed in XMM registers. + CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + + // The 256-bit vector arguments are passed in YMM registers. + CCIfType<[v8f32, v4f64, v8i32, v4i64], + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, + + // The 512-bit vector arguments are passed in ZMM registers. + CCIfType<[v16f32, v8f64, v16i32, v8i64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>, + + CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, + CCIfSubtarget<"is64Bit()", CCDelegateTo>, + CCDelegateTo +]>; + +//===----------------------------------------------------------------------===// +// X86 Root Argument Calling Conventions +//===----------------------------------------------------------------------===// + +// This is the root argument convention for the X86-32 backend. +def CC_X86_32 : CallingConv<[ + CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, + CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo>, + CCIfCC<"CallingConv::Fast", CCDelegateTo>, + CCIfCC<"CallingConv::GHC", CCDelegateTo>, + CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + + // Otherwise, drop to normal X86-32 CC + CCDelegateTo +]>; + +// This is the root argument convention for the X86-64 backend. +def CC_X86_64 : CallingConv<[ + CCIfCC<"CallingConv::GHC", CCDelegateTo>, + CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo>, + CCIfCC<"CallingConv::AnyReg", CCDelegateTo>, + CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo>, + CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, + + // Mingw64 and native Win64 use Win64 CC + CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, + + // Otherwise, drop to normal X86-64 CC + CCDelegateTo +]>; + +// This is the argument convention used for the entire X86 backend. +def CC_X86 : CallingConv<[ + CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo>, + CCIfSubtarget<"is64Bit()", CCDelegateTo>, + CCDelegateTo +]>; + +//===----------------------------------------------------------------------===// +// Callee-saved Registers. +//===----------------------------------------------------------------------===// + +def CSR_NoRegs : CalleeSavedRegs<(add)>; + +def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; +def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>; + +def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>; +def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; + +def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15, + (sequence "XMM%u", 6, 15))>; + +// All GPRs - except r11 +def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI, + R8, R9, R10, RSP)>; + +// All registers - except r11 +def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs, + (sequence "XMM%u", 0, 15))>; +def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs, + (sequence "YMM%u", 0, 15))>; + +def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, + R11, R12, R13, R14, R15, RBP, + (sequence "XMM%u", 0, 15))>; + +def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX, RSP, + (sequence "XMM%u", 16, 31))>; +def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, RSP, + (sequence "YMM%u", 0, 31)), + (sequence "XMM%u", 0, 15))>; + +// Standard C + YMM6-15 +def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, + R13, R14, R15, + (sequence "YMM%u", 6, 15))>; + +def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, + R12, R13, R14, R15, + (sequence "ZMM%u", 6, 21), + K4, K5, K6, K7)>; +//Standard C + XMM 8-15 +def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, + (sequence "XMM%u", 8, 15))>; + +//Standard C + YMM 8-15 +def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64, + (sequence "YMM%u", 8, 15))>; + +def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15, + (sequence "ZMM%u", 16, 31), + K4, K5, K6, K7)>;