X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86CallingConv.td;h=26100a56ee6bc0779b59b281a3ea6f0f3905178c;hp=40c5d91b6054611ae3490bd5ddec6953f181e670;hb=9889174eadb0f269ef132b3bd34a9f6fe3baa642;hpb=ac226bbf457f6b5e5210a4a82b1ce678298b2d89 diff --git a/lib/Target/X86/X86CallingConv.td b/lib/Target/X86/X86CallingConv.td index 40c5d91b605..26100a56ee6 100644 --- a/lib/Target/X86/X86CallingConv.td +++ b/lib/Target/X86/X86CallingConv.td @@ -14,7 +14,9 @@ /// CCIfSubtarget - Match if the current subtarget has a feature F. class CCIfSubtarget - : CCIf().", F), A>; + : CCIf" + "(State.getMachineFunction().getSubtarget()).", F), + A>; //===----------------------------------------------------------------------===// // Return Value Calling Conventions @@ -32,11 +34,22 @@ def RetCC_X86Common : CallingConv<[ // // For code that doesn't care about the ABI, we allow returning more than two // integer values in registers. + CCIfType<[i1], CCPromoteToType>, CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, + // Boolean vectors of AVX-512 are returned in SIMD registers. + // The call from AVX to AVX-512 function should work, + // since the boolean types in AVX/AVX2 are promoted by default. + CCIfType<[v2i1], CCPromoteToType>, + CCIfType<[v4i1], CCPromoteToType>, + CCIfType<[v8i1], CCPromoteToType>, + CCIfType<[v16i1], CCPromoteToType>, + CCIfType<[v32i1], CCPromoteToType>, + CCIfType<[v64i1], CCPromoteToType>, + // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 // can only be used by ABI non-compliant code. If the target doesn't have XMM // registers, it won't have vector types. @@ -49,24 +62,30 @@ def RetCC_X86Common : CallingConv<[ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3 + // can only be used by ABI non-compliant code. This vector type is only + // supported while using the AVX-512 target feature. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, + // MMX vector types are always returned in MM0. If the target doesn't have // MM0, it doesn't support these vector types. CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, - // Long double types are always returned in ST0 (even with SSE). - CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> + // Long double types are always returned in FP0 (even with SSE). + CCIfType<[f80], CCAssignToReg<[FP0, FP1]>> ]>; // X86-32 C return-value convention. def RetCC_X86_32_C : CallingConv<[ - // The X86-32 calling convention returns FP values in ST0, unless marked + // The X86-32 calling convention returns FP values in FP0, unless marked // with "inreg" (used here to distinguish one kind of reg from another, // weirdly; this is really the sse-regparm calling convention) in which // case they use XMM0, otherwise it is the same as the common X86 calling // conv. CCIfInReg>>>, - CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>, + CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>, CCDelegateTo ]>; @@ -99,6 +118,10 @@ def RetCC_Intel_OCL_BI : CallingConv<[ CCIfType<[v8f32, v4f64, v8i32, v4i64], CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + // 512-bit FP vectors + CCIfType<[v16f32, v8f64, v16i32, v8i64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, + // i32, i64 in the standard way CCDelegateTo ]>; @@ -112,11 +135,30 @@ def RetCC_X86_32_HiPE : CallingConv<[ CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> ]>; +// X86-32 HiPE return-value convention. +def RetCC_X86_32_VectorCall : CallingConv<[ + // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, + + // 256-bit FP vectors + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + + // 512-bit FP vectors + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, + + // Return integers in the standard way. + CCDelegateTo +]>; + // X86-64 C return-value convention. def RetCC_X86_64_C : CallingConv<[ // The X86-64 calling convention always returns FP values in XMM0. CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, + CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>, // MMX vector types are always returned in XMM0. CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, @@ -141,12 +183,43 @@ def RetCC_X86_64_HiPE : CallingConv<[ CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> ]>; +// X86-64 WebKit_JS return-value convention. +def RetCC_X86_64_WebKit_JS : CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType>, + + // Return: RAX + CCIfType<[i64], CCAssignToReg<[RAX]>> +]>; + +// X86-64 AnyReg return-value convention. No explicit register is specified for +// the return-value. The register allocator is allowed and expected to choose +// any free register. +// +// This calling convention is currently only supported by the stackmap and +// patchpoint intrinsics. All other uses will result in an assert on Debug +// builds. On Release builds we fallback to the X86 C calling convention. +def RetCC_X86_64_AnyReg : CallingConv<[ + CCCustom<"CC_X86_AnyReg_Error"> +]>; + +// X86-64 HHVM return-value convention. +def RetCC_X86_64_HHVM: CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType>, + + // Return: could return in any GP register save RSP and R12. + CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9, + RAX, R10, R11, R13, R14, R15]>> +]>; + // This is the root return-value convention for the X86-32 backend. def RetCC_X86_32 : CallingConv<[ // If FastCC, use RetCC_X86_32_Fast. CCIfCC<"CallingConv::Fast", CCDelegateTo>, // If HiPE, use RetCC_X86_32_HiPE. CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, // Otherwise, use RetCC_X86_32_C. CCDelegateTo @@ -157,10 +230,17 @@ def RetCC_X86_64 : CallingConv<[ // HiPE uses RetCC_X86_64_HiPE CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + // Handle JavaScript calls. + CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo>, + CCIfCC<"CallingConv::AnyReg", CCDelegateTo>, + // Handle explicit CC selection CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo>, CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo>, + // Handle HHVM calls. + CCIfCC<"CallingConv::HHVM", CCDelegateTo>, + // Mingw64 and native Win64 use Win64 CC CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, @@ -186,10 +266,11 @@ def CC_X86_64_C : CallingConv<[ // Handles byval parameters. CCIfByVal>, - // Promote i8/i16 arguments to i32. - CCIfType<[i8, i16], CCPromoteToType>, + // Promote i1/i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType>, // The 'nest' parameter, if any, is passed in R10. + CCIfNest>>, CCIfNest>, // The first 6 integer arguments are passed in integer registers. @@ -202,8 +283,18 @@ def CC_X86_64_C : CallingConv<[ CCIfSubtarget<"hasSSE2()", CCPromoteToType>>>, + // Boolean vectors of AVX-512 are passed in SIMD registers. + // The call from AVX to AVX-512 function should work, + // since the boolean types in AVX/AVX2 are promoted by default. + CCIfType<[v2i1], CCPromoteToType>, + CCIfType<[v4i1], CCPromoteToType>, + CCIfType<[v8i1], CCPromoteToType>, + CCIfType<[v16i1], CCPromoteToType>, + CCIfType<[v32i1], CCPromoteToType>, + CCIfType<[v64i1], CCPromoteToType>, + // The first 8 FP/Vector arguments are passed in XMM registers. - CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfSubtarget<"hasSSE1()", CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, @@ -213,24 +304,50 @@ def CC_X86_64_C : CallingConv<[ // fixed arguments to vararg functions are supposed to be passed in // registers. Actually modeling that would be a lot of work, though. CCIfNotVarArg>>>, + // The first 8 512-bit vector arguments are passed in ZMM registers. + CCIfNotVarArg>>>, + // Integer/FP values get stored in stack slots that are 8 bytes in size and // 8-byte aligned if there are no more registers to hold them. CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, // Long doubles get stack slots whose size and alignment depends on the // subtarget. - CCIfType<[f80], CCAssignToStack<0, 0>>, + CCIfType<[f80, f128], CCAssignToStack<0, 0>>, // Vectors get 16-byte stack slots that are 16-byte aligned. CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], - CCAssignToStack<32, 32>> + CCAssignToStack<32, 32>>, + + // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. + CCIfType<[v16i32, v8i64, v16f32, v8f64], + CCAssignToStack<64, 64>> +]>; + +// Calling convention for X86-64 HHVM. +def CC_X86_64_HHVM : CallingConv<[ + // Use all/any GP registers for args, except RSP. + CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15, + RDI, RSI, RDX, RCX, R8, R9, + RAX, R10, R11, R13, R14]>> +]>; + +// Calling convention for helper functions in HHVM. +def CC_X86_64_HHVM_C : CallingConv<[ + // Pass the first argument in RBP. + CCIfType<[i64], CCAssignToReg<[RBP]>>, + + // Otherwise it's the same as the regular C calling convention. + CCDelegateTo ]>; // Calling convention used on Win64 @@ -238,8 +355,8 @@ def CC_X86_Win64_C : CallingConv<[ // FIXME: Handle byval stuff. // FIXME: Handle varargs. - // Promote i8/i16 arguments to i32. - CCIfType<[i8, i16], CCPromoteToType>, + // Promote i1/i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType>, // The 'nest' parameter, if any, is passed in R10. CCIfNest>, @@ -251,16 +368,19 @@ def CC_X86_Win64_C : CallingConv<[ // 256 bit vectors are passed by pointer CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect>, + // 512 bit vectors are passed by pointer + CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect>, + // The first 4 MMX vector arguments are passed in GPRs. CCIfType<[x86mmx], CCBitConvertToType>, // The first 4 integer arguments are passed in integer registers. CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], [XMM0, XMM1, XMM2, XMM3]>>, - + // Do not pass the sret argument in RCX, the Win64 thiscall calling - // convention requires "this" to be passed in RCX. - CCIfCC<"CallingConv::X86_ThisCall", + // convention requires "this" to be passed in RCX. + CCIfCC<"CallingConv::X86_ThisCall", CCIfSRet>>>, @@ -281,6 +401,25 @@ def CC_X86_Win64_C : CallingConv<[ CCIfType<[f80], CCAssignToStack<0, 0>> ]>; +def CC_X86_Win64_VectorCall : CallingConv<[ + // The first 6 floating point and vector types of 128 bits or less use + // XMM0-XMM5. + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>, + + // 256-bit vectors use YMM registers. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>, + + // 512-bit vectors use ZMM registers. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>, + + // Delegate to fastcall to handle integer types. + CCDelegateTo +]>; + + def CC_X86_64_GHC : CallingConv<[ // Promote i8/i16/i32 arguments to i64. CCIfType<[i8, i16, i32], CCPromoteToType>, @@ -307,13 +446,91 @@ def CC_X86_64_HiPE : CallingConv<[ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> ]>; +def CC_X86_64_WebKit_JS : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType>, + + // Only the first integer argument is passed in register. + CCIfType<[i32], CCAssignToReg<[EAX]>>, + CCIfType<[i64], CCAssignToReg<[RAX]>>, + + // The remaining integer arguments are passed on the stack. 32bit integer and + // floating-point arguments are aligned to 4 byte and stored in 4 byte slots. + // 64bit integer and floating-point arguments are aligned to 8 byte and stored + // in 8 byte stack slots. + CCIfType<[i32, f32], CCAssignToStack<4, 4>>, + CCIfType<[i64, f64], CCAssignToStack<8, 8>> +]>; + +// No explicit register is specified for the AnyReg calling convention. The +// register allocator may assign the arguments to any free register. +// +// This calling convention is currently only supported by the stackmap and +// patchpoint intrinsics. All other uses will result in an assert on Debug +// builds. On Release builds we fallback to the X86 C calling convention. +def CC_X86_64_AnyReg : CallingConv<[ + CCCustom<"CC_X86_AnyReg_Error"> +]>; + //===----------------------------------------------------------------------===// // X86 C Calling Convention //===----------------------------------------------------------------------===// +/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector +/// values are spilled on the stack. +def CC_X86_32_Vector_Common : CallingConv<[ + // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, + + // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToStack<32, 32>>, + + // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToStack<64, 64>> +]>; + +// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in +// vector registers +def CC_X86_32_Vector_Standard : CallingConv<[ + // SSE vector arguments are passed in XMM registers. + CCIfNotVarArg>>, + + // AVX 256-bit vector arguments are passed in YMM registers. + CCIfNotVarArg>>>, + + // AVX 512-bit vector arguments are passed in ZMM registers. + CCIfNotVarArg>>, + + CCDelegateTo +]>; + +// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in +// vector registers. +def CC_X86_32_Vector_Darwin : CallingConv<[ + // SSE vector arguments are passed in XMM registers. + CCIfNotVarArg>>, + + // AVX 256-bit vector arguments are passed in YMM registers. + CCIfNotVarArg>>>, + + // AVX 512-bit vector arguments are passed in ZMM registers. + CCIfNotVarArg>>, + + CCDelegateTo +]>; + /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP -/// values are spilled on the stack, and the first 4 vector values go in XMM -/// regs. +/// values are spilled on the stack. def CC_X86_32_Common : CallingConv<[ // Handles byval parameters. CCIfByVal>, @@ -332,36 +549,37 @@ def CC_X86_32_Common : CallingConv<[ // Integer/Float values get stored in stack slots that are 4 bytes in // size and 4-byte aligned. CCIfType<[i32, f32], CCAssignToStack<4, 4>>, - + // Doubles get 8-byte slots that are 4-byte aligned. CCIfType<[f64], CCAssignToStack<8, 4>>, // Long doubles get slots whose size depends on the subtarget. CCIfType<[f80], CCAssignToStack<0, 4>>, - // The first 4 SSE vector arguments are passed in XMM registers. - CCIfNotVarArg>>, - - // The first 4 AVX 256-bit vector arguments are passed in YMM registers. - CCIfNotVarArg>>>, - - // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. - CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, - - // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. - CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], - CCAssignToStack<32, 32>>, + // Boolean vectors of AVX-512 are passed in SIMD registers. + // The call from AVX to AVX-512 function should work, + // since the boolean types in AVX/AVX2 are promoted by default. + CCIfType<[v2i1], CCPromoteToType>, + CCIfType<[v4i1], CCPromoteToType>, + CCIfType<[v8i1], CCPromoteToType>, + CCIfType<[v16i1], CCPromoteToType>, + CCIfType<[v32i1], CCPromoteToType>, + CCIfType<[v64i1], CCPromoteToType>, // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are // passed in the parameter area. - CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>; + CCIfType<[x86mmx], CCAssignToStack<8, 4>>, + + // Darwin passes vectors in a form that differs from the i386 psABI + CCIfSubtarget<"isTargetDarwin()", CCDelegateTo>, + + // Otherwise, drop to 'normal' X86-32 CC + CCDelegateTo +]>; def CC_X86_32_C : CallingConv<[ - // Promote i8/i16 arguments to i32. - CCIfType<[i8, i16], CCPromoteToType>, + // Promote i1/i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType>, // The 'nest' parameter, if any, is passed in ECX. CCIfNest>, @@ -375,8 +593,8 @@ def CC_X86_32_C : CallingConv<[ ]>; def CC_X86_32_FastCall : CallingConv<[ - // Promote i8/i16 arguments to i32. - CCIfType<[i8, i16], CCPromoteToType>, + // Promote i1/i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType>, // The 'nest' parameter, if any, is passed in EAX. CCIfNest>, @@ -388,13 +606,31 @@ def CC_X86_32_FastCall : CallingConv<[ CCDelegateTo ]>; -def CC_X86_32_ThisCall : CallingConv<[ - // Promote i8/i16 arguments to i32. - CCIfType<[i8, i16], CCPromoteToType>, +def CC_X86_32_VectorCall : CallingConv<[ + // The first 6 floating point and vector types of 128 bits or less use + // XMM0-XMM5. + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>, - // Pass sret arguments indirectly through stack. - CCIfSRet>, + // 256-bit vectors use YMM registers. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>, + + // 512-bit vectors use ZMM registers. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>, + + // Otherwise, pass it indirectly. + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, + v32i8, v16i16, v8i32, v4i64, v8f32, v4f64, + v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCCustom<"CC_X86_32_VectorCallIndirect">>, + + // Delegate to fastcall to handle integer types. + CCDelegateTo +]>; +def CC_X86_32_ThisCall_Common : CallingConv<[ // The first integer argument is passed in ECX CCIfType<[i32], CCAssignToReg<[ECX]>>, @@ -402,14 +638,36 @@ def CC_X86_32_ThisCall : CallingConv<[ CCDelegateTo ]>; +def CC_X86_32_ThisCall_Mingw : CallingConv<[ + // Promote i1/i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType>, + + CCDelegateTo +]>; + +def CC_X86_32_ThisCall_Win : CallingConv<[ + // Promote i1/i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType>, + + // Pass sret arguments indirectly through stack. + CCIfSRet>, + + CCDelegateTo +]>; + +def CC_X86_32_ThisCall : CallingConv<[ + CCIfSubtarget<"isTargetCygMing()", CCDelegateTo>, + CCDelegateTo +]>; + def CC_X86_32_FastCC : CallingConv<[ // Handles byval parameters. Note that we can't rely on the delegation // to CC_X86_32_Common for this because that happens after code that // puts arguments in registers. CCIfByVal>, - // Promote i8/i16 arguments to i32. - CCIfType<[i8, i16], CCPromoteToType>, + // Promote i1/i8/i16 arguments to i32. + CCIfType<[i1, i8, i16], CCPromoteToType>, // The 'nest' parameter, if any, is passed in EAX. CCIfNest>, @@ -469,11 +727,26 @@ def CC_Intel_OCL_BI : CallingConv<[ CCIfType<[v8f32, v4f64, v8i32, v4i64], CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, + // The 512-bit vector arguments are passed in ZMM registers. + CCIfType<[v16f32, v8f64, v16i32, v8i64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>, + + // Pass masks in mask registers + CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>, + CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, CCIfSubtarget<"is64Bit()", CCDelegateTo>, CCDelegateTo ]>; +def CC_X86_32_Intr : CallingConv<[ + CCAssignToStack<4, 4> +]>; + +def CC_X86_64_Intr : CallingConv<[ + CCAssignToStack<8, 8> +]>; + //===----------------------------------------------------------------------===// // X86 Root Argument Calling Conventions //===----------------------------------------------------------------------===// @@ -481,10 +754,12 @@ def CC_Intel_OCL_BI : CallingConv<[ // This is the root argument convention for the X86-32 backend. def CC_X86_32 : CallingConv<[ CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo>, CCIfCC<"CallingConv::Fast", CCDelegateTo>, CCIfCC<"CallingConv::GHC", CCDelegateTo>, CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + CCIfCC<"CallingConv::X86_INTR", CCDelegateTo>, // Otherwise, drop to normal X86-32 CC CCDelegateTo @@ -494,8 +769,14 @@ def CC_X86_32 : CallingConv<[ def CC_X86_64 : CallingConv<[ CCIfCC<"CallingConv::GHC", CCDelegateTo>, CCIfCC<"CallingConv::HiPE", CCDelegateTo>, + CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo>, + CCIfCC<"CallingConv::AnyReg", CCDelegateTo>, CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo>, CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo>, + CCIfCC<"CallingConv::HHVM", CCDelegateTo>, + CCIfCC<"CallingConv::HHVM_C", CCDelegateTo>, + CCIfCC<"CallingConv::X86_INTR", CCDelegateTo>, // Mingw64 and native Win64 use Win64 CC CCIfSubtarget<"isTargetWin64()", CCDelegateTo>, @@ -526,15 +807,46 @@ def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15, (sequence "XMM%u", 6, 15))>; -def CSR_MostRegs_64 : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, +// The function used by Darwin to obtain the address of a thread-local variable +// uses rdi to pass a single parameter and rax for the return value. All other +// GPRs are preserved. +def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI, + R8, R9, R10, R11)>; + +// All GPRs - except r11 +def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI, + R8, R9, R10, RSP)>; + +// All registers - except r11 +def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs, + (sequence "XMM%u", 0, 15))>; +def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs, + (sequence "YMM%u", 0, 15))>; + +def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15, RBP, (sequence "XMM%u", 0, 15))>; +def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI, + EDI, ESP)>; +def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs, + (sequence "XMM%u", 0, 7))>; + +def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX, RSP, + (sequence "XMM%u", 16, 31))>; +def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, RSP, + (sequence "YMM%u", 0, 31)), + (sequence "XMM%u", 0, 15))>; + // Standard C + YMM6-15 def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, - R13, R14, R15, + R13, R14, R15, (sequence "YMM%u", 6, 15))>; +def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, + R12, R13, R14, R15, + (sequence "ZMM%u", 6, 21), + K4, K5, K6, K7)>; //Standard C + XMM 8-15 def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, (sequence "XMM%u", 8, 15))>; @@ -542,3 +854,10 @@ def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, //Standard C + YMM 8-15 def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64, (sequence "YMM%u", 8, 15))>; + +def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15, + (sequence "ZMM%u", 16, 31), + K4, K5, K6, K7)>; + +// Only R12 is preserved for PHP calls in HHVM. +def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;