X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FTarget%2FX86%2FUtils%2FX86ShuffleDecode.cpp;h=4fdd527d87c8a8b8aef729b4c289f6b51a22348d;hp=fe0b3a20c1f7af9f842db227ed47db94b590a4dc;hb=177b35e464b0a17afad4f2d4da61447da027d059;hpb=2eb4c2bcadfbef9d3c4e2fbb6478ed5dc3d65524 diff --git a/lib/Target/X86/Utils/X86ShuffleDecode.cpp b/lib/Target/X86/Utils/X86ShuffleDecode.cpp index fe0b3a20c1f..4fdd527d87c 100644 --- a/lib/Target/X86/Utils/X86ShuffleDecode.cpp +++ b/lib/Target/X86/Utils/X86ShuffleDecode.cpp @@ -13,6 +13,8 @@ //===----------------------------------------------------------------------===// #include "X86ShuffleDecode.h" +#include "llvm/IR/Constants.h" +#include "llvm/CodeGen/MachineValueType.h" //===----------------------------------------------------------------------===// // Vector Mask Decoding @@ -20,7 +22,7 @@ namespace llvm { -void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl &ShuffleMask) { +void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl &ShuffleMask) { // Defaults the copying the dest value. ShuffleMask.push_back(0); ShuffleMask.push_back(1); @@ -33,7 +35,7 @@ void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl &ShuffleMask) { unsigned CountS = (Imm >> 6) & 3; // CountS selects which input element to use. - unsigned InVal = 4+CountS; + unsigned InVal = 4 + CountS; // CountD specifies which element of destination to update. ShuffleMask[CountD] = InVal; // ZMask zaps values, potentially overriding the CountD elt. @@ -44,127 +46,208 @@ void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl &ShuffleMask) { } // <3,1> or <6,7,2,3> -void DecodeMOVHLPSMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - for (unsigned i = NElts/2; i != NElts; ++i) - ShuffleMask.push_back(NElts+i); +void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl &ShuffleMask) { + for (unsigned i = NElts / 2; i != NElts; ++i) + ShuffleMask.push_back(NElts + i); - for (unsigned i = NElts/2; i != NElts; ++i) + for (unsigned i = NElts / 2; i != NElts; ++i) ShuffleMask.push_back(i); } // <0,2> or <0,1,4,5> -void DecodeMOVLHPSMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - for (unsigned i = 0; i != NElts/2; ++i) +void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl &ShuffleMask) { + for (unsigned i = 0; i != NElts / 2; ++i) ShuffleMask.push_back(i); - for (unsigned i = 0; i != NElts/2; ++i) - ShuffleMask.push_back(NElts+i); + for (unsigned i = 0; i != NElts / 2; ++i) + ShuffleMask.push_back(NElts + i); } -void DecodePSHUFMask(unsigned NElts, unsigned Imm, - SmallVectorImpl &ShuffleMask) { - for (unsigned i = 0; i != NElts; ++i) { - ShuffleMask.push_back(Imm % NElts); - Imm /= NElts; +void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + for (int i = 0, e = NumElts / 2; i < e; ++i) { + ShuffleMask.push_back(2 * i); + ShuffleMask.push_back(2 * i); } } -void DecodePSHUFHWMask(unsigned Imm, - SmallVectorImpl &ShuffleMask) { - ShuffleMask.push_back(0); - ShuffleMask.push_back(1); - ShuffleMask.push_back(2); - ShuffleMask.push_back(3); - for (unsigned i = 0; i != 4; ++i) { - ShuffleMask.push_back(4+(Imm & 3)); - Imm >>= 2; +void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + for (int i = 0, e = NumElts / 2; i < e; ++i) { + ShuffleMask.push_back(2 * i + 1); + ShuffleMask.push_back(2 * i + 1); } } -void DecodePSHUFLWMask(unsigned Imm, - SmallVectorImpl &ShuffleMask) { - for (unsigned i = 0; i != 4; ++i) { - ShuffleMask.push_back((Imm & 3)); - Imm >>= 2; - } - ShuffleMask.push_back(4); - ShuffleMask.push_back(5); - ShuffleMask.push_back(6); - ShuffleMask.push_back(7); -} +void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl &ShuffleMask) { + unsigned VectorSizeInBits = VT.getSizeInBits(); + unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VectorSizeInBits / 128; + unsigned NumLaneElts = NumElts / NumLanes; + unsigned NumLaneSubElts = 64 / ScalarSizeInBits; -void DecodePUNPCKLBWMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i8, NElts), ShuffleMask); + for (unsigned l = 0; l < NumElts; l += NumLaneElts) + for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts) + for (unsigned s = 0; s != NumLaneSubElts; s++) + ShuffleMask.push_back(l + s); } -void DecodePUNPCKLWDMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i16, NElts), ShuffleMask); -} +void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl &ShuffleMask) { + unsigned VectorSizeInBits = VT.getSizeInBits(); + unsigned NumElts = VectorSizeInBits / 8; + unsigned NumLanes = VectorSizeInBits / 128; + unsigned NumLaneElts = NumElts / NumLanes; -void DecodePUNPCKLDQMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask); + for (unsigned l = 0; l < NumElts; l += NumLaneElts) + for (unsigned i = 0; i < NumLaneElts; ++i) { + int M = SM_SentinelZero; + if (i >= Imm) M = i - Imm + l; + ShuffleMask.push_back(M); + } } -void DecodePUNPCKLQDQMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask); -} +void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl &ShuffleMask) { + unsigned VectorSizeInBits = VT.getSizeInBits(); + unsigned NumElts = VectorSizeInBits / 8; + unsigned NumLanes = VectorSizeInBits / 128; + unsigned NumLaneElts = NumElts / NumLanes; -void DecodePUNPCKLMask(EVT VT, - SmallVectorImpl &ShuffleMask) { - DecodeUNPCKLPMask(VT, ShuffleMask); + for (unsigned l = 0; l < NumElts; l += NumLaneElts) + for (unsigned i = 0; i < NumLaneElts; ++i) { + unsigned Base = i + Imm; + int M = Base + l; + if (Base >= NumLaneElts) M = SM_SentinelZero; + ShuffleMask.push_back(M); + } } -void DecodePUNPCKHMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - for (unsigned i = 0; i != NElts/2; ++i) { - ShuffleMask.push_back(i+NElts/2); - ShuffleMask.push_back(i+NElts+NElts/2); +void DecodePALIGNRMask(MVT VT, unsigned Imm, + SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8); + + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = 0; i != NumLaneElts; ++i) { + unsigned Base = i + Offset; + // if i+offset is out of this lane then we actually need the other source + if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; + ShuffleMask.push_back(Base + l); + } } } -void DecodeSHUFPSMask(unsigned NElts, unsigned Imm, - SmallVectorImpl &ShuffleMask) { - // Part that reads from dest. - for (unsigned i = 0; i != NElts/2; ++i) { - ShuffleMask.push_back(Imm % NElts); - Imm /= NElts; +/// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*. +/// VT indicates the type of the vector allowing it to handle different +/// datatypes and vector widths. +void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + unsigned NumLanes = VT.getSizeInBits() / 128; + if (NumLanes == 0) NumLanes = 1; // Handle MMX + unsigned NumLaneElts = NumElts / NumLanes; + + unsigned NewImm = Imm; + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = 0; i != NumLaneElts; ++i) { + ShuffleMask.push_back(NewImm % NumLaneElts + l); + NewImm /= NumLaneElts; + } + if (NumLaneElts == 4) NewImm = Imm; // reload imm } - // Part that reads from src. - for (unsigned i = 0; i != NElts/2; ++i) { - ShuffleMask.push_back(Imm % NElts + NElts); - Imm /= NElts; +} + +void DecodePSHUFHWMask(MVT VT, unsigned Imm, + SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + for (unsigned l = 0; l != NumElts; l += 8) { + unsigned NewImm = Imm; + for (unsigned i = 0, e = 4; i != e; ++i) { + ShuffleMask.push_back(l + i); + } + for (unsigned i = 4, e = 8; i != e; ++i) { + ShuffleMask.push_back(l + 4 + (NewImm & 3)); + NewImm >>= 2; + } } } -void DecodeUNPCKHPMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - for (unsigned i = 0; i != NElts/2; ++i) { - ShuffleMask.push_back(i+NElts/2); // Reads from dest - ShuffleMask.push_back(i+NElts+NElts/2); // Reads from src +void DecodePSHUFLWMask(MVT VT, unsigned Imm, + SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + for (unsigned l = 0; l != NumElts; l += 8) { + unsigned NewImm = Imm; + for (unsigned i = 0, e = 4; i != e; ++i) { + ShuffleMask.push_back(l + (NewImm & 3)); + NewImm >>= 2; + } + for (unsigned i = 4, e = 8; i != e; ++i) { + ShuffleMask.push_back(l + i); + } } } -void DecodeUNPCKLPSMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask); +void DecodePSWAPMask(MVT VT, SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumHalfElts = NumElts / 2; + + for (unsigned l = 0; l != NumHalfElts; ++l) + ShuffleMask.push_back(l + NumHalfElts); + for (unsigned h = 0; h != NumHalfElts; ++h) + ShuffleMask.push_back(h); } -void DecodeUNPCKLPDMask(unsigned NElts, - SmallVectorImpl &ShuffleMask) { - DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask); +/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates +/// the type of the vector allowing it to handle different datatypes and vector +/// widths. +void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumLaneElts = NumElts / NumLanes; + + unsigned NewImm = Imm; + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + // each half of a lane comes from different source + for (unsigned s = 0; s != NumElts * 2; s += NumElts) { + for (unsigned i = 0; i != NumLaneElts / 2; ++i) { + ShuffleMask.push_back(NewImm % NumLaneElts + s + l); + NewImm /= NumLaneElts; + } + } + if (NumLaneElts == 4) NewImm = Imm; // reload imm + } } -/// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd -/// etc. VT indicates the type of the vector allowing it to handle different -/// datatypes and vector widths. -void DecodeUNPCKLPMask(EVT VT, - SmallVectorImpl &ShuffleMask) { +/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd +/// and punpckh*. VT indicates the type of the vector allowing it to handle +/// different datatypes and vector widths. +void DecodeUNPCKHMask(MVT VT, SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + + // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate + // independently on 128-bit lanes. + unsigned NumLanes = VT.getSizeInBits() / 128; + if (NumLanes == 0) NumLanes = 1; // Handle MMX + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { + ShuffleMask.push_back(i); // Reads from dest/src1 + ShuffleMask.push_back(i + NumElts); // Reads from src/src2 + } + } +} + +/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd +/// and punpckl*. VT indicates the type of the vector allowing it to handle +/// different datatypes and vector widths. +void DecodeUNPCKLMask(MVT VT, SmallVectorImpl &ShuffleMask) { unsigned NumElts = VT.getVectorNumElements(); // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate @@ -173,51 +256,374 @@ void DecodeUNPCKLPMask(EVT VT, if (NumLanes == 0 ) NumLanes = 1; // Handle MMX unsigned NumLaneElts = NumElts / NumLanes; - unsigned Start = 0; - unsigned End = NumLaneElts / 2; - for (unsigned s = 0; s < NumLanes; ++s) { - for (unsigned i = Start; i != End; ++i) { - ShuffleMask.push_back(i); // Reads from dest/src1 - ShuffleMask.push_back(i+NumLaneElts); // Reads from src/src2 + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { + ShuffleMask.push_back(i); // Reads from dest/src1 + ShuffleMask.push_back(i + NumElts); // Reads from src/src2 } - // Process the next 128 bits. - Start += NumLaneElts; - End += NumLaneElts; } } -// DecodeVPERMILPSMask - Decodes VPERMILPS permutes for any 128-bit 32-bit -// elements. For 256-bit vectors, it's considered as two 128 lanes, the -// referenced elements can't cross lanes and the mask of the first lane must -// be the same of the second. -void DecodeVPERMILPSMask(unsigned NumElts, unsigned Imm, - SmallVectorImpl &ShuffleMask) { - unsigned NumLanes = (NumElts*32)/128; - unsigned LaneSize = NumElts/NumLanes; +/// \brief Decode a shuffle packed values at 128-bit granularity +/// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2) +/// immediate mask into a shuffle mask. +void decodeVSHUF64x2FamilyMask(MVT VT, unsigned Imm, + SmallVectorImpl &ShuffleMask) { + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumElementsInLane = 128 / VT.getScalarSizeInBits(); + unsigned ControlBitsMask = NumLanes - 1; + unsigned NumControlBits = NumLanes / 2; for (unsigned l = 0; l != NumLanes; ++l) { - for (unsigned i = 0; i != LaneSize; ++i) { - unsigned Idx = (Imm >> (i*2)) & 0x3 ; - ShuffleMask.push_back(Idx+(l*LaneSize)); + unsigned LaneMask = (Imm >> (l * NumControlBits)) & ControlBitsMask; + // We actually need the other source. + if (l >= NumLanes / 2) + LaneMask += NumLanes; + for (unsigned i = 0; i != NumElementsInLane; ++i) + ShuffleMask.push_back(LaneMask * NumElementsInLane + i); + } +} + +void DecodeVPERM2X128Mask(MVT VT, unsigned Imm, + SmallVectorImpl &ShuffleMask) { + unsigned HalfSize = VT.getVectorNumElements() / 2; + + for (unsigned l = 0; l != 2; ++l) { + unsigned HalfMask = Imm >> (l * 4); + unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; + for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) + ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i); + } +} + +void DecodePSHUFBMask(const Constant *C, SmallVectorImpl &ShuffleMask) { + Type *MaskTy = C->getType(); + // It is not an error for the PSHUFB mask to not be a vector of i8 because the + // constant pool uniques constants by their bit representation. + // e.g. the following take up the same space in the constant pool: + // i128 -170141183420855150465331762880109871104 + // + // <2 x i64> + // + // <4 x i32> + +#ifndef NDEBUG + unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits(); + assert(MaskTySize == 128 || MaskTySize == 256 || MaskTySize == 512); +#endif + + // This is a straightforward byte vector. + if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) { + int NumElements = MaskTy->getVectorNumElements(); + ShuffleMask.reserve(NumElements); + + for (int i = 0; i < NumElements; ++i) { + // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte + // lane of the vector we're inside. + int Base = i & ~0xf; + Constant *COp = C->getAggregateElement(i); + if (!COp) { + ShuffleMask.clear(); + return; + } else if (isa(COp)) { + ShuffleMask.push_back(SM_SentinelUndef); + continue; + } + uint64_t Element = cast(COp)->getZExtValue(); + // If the high bit (7) of the byte is set, the element is zeroed. + if (Element & (1 << 7)) + ShuffleMask.push_back(SM_SentinelZero); + else { + // Only the least significant 4 bits of the byte are used. + int Index = Base + (Element & 0xf); + ShuffleMask.push_back(Index); + } } } + // TODO: Handle funny-looking vectors too. +} + +void DecodePSHUFBMask(ArrayRef RawMask, + SmallVectorImpl &ShuffleMask) { + for (int i = 0, e = RawMask.size(); i < e; ++i) { + uint64_t M = RawMask[i]; + if (M == (uint64_t)SM_SentinelUndef) { + ShuffleMask.push_back(M); + continue; + } + // For AVX vectors with 32 bytes the base of the shuffle is the half of + // the vector we're inside. + int Base = i < 16 ? 0 : 16; + // If the high bit (7) of the byte is set, the element is zeroed. + if (M & (1 << 7)) + ShuffleMask.push_back(SM_SentinelZero); + else { + // Only the least significant 4 bits of the byte are used. + int Index = Base + (M & 0xf); + ShuffleMask.push_back(Index); + } + } +} + +void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl &ShuffleMask) { + int ElementBits = VT.getScalarSizeInBits(); + int NumElements = VT.getVectorNumElements(); + for (int i = 0; i < NumElements; ++i) { + // If there are more than 8 elements in the vector, then any immediate blend + // mask applies to each 128-bit lane. There can never be more than + // 8 elements in a 128-bit lane with an immediate blend. + int Bit = NumElements > 8 ? i % (128 / ElementBits) : i; + assert(Bit < 8 && + "Immediate blends only operate over 8 elements at a time!"); + ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i); + } +} + +/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD. +/// No VT provided since it only works on 256-bit, 4 element vectors. +void DecodeVPERMMask(unsigned Imm, SmallVectorImpl &ShuffleMask) { + for (unsigned i = 0; i != 4; ++i) { + ShuffleMask.push_back((Imm >> (2 * i)) & 3); + } } -// DecodeVPERMILPDMask - Decodes VPERMILPD permutes for any 128-bit 64-bit -// elements. For 256-bit vectors, it's considered as two 128 lanes, the -// referenced elements can't cross lanes but the mask of the first lane can -// be the different of the second (not like VPERMILPS). -void DecodeVPERMILPDMask(unsigned NumElts, unsigned Imm, - SmallVectorImpl &ShuffleMask) { - unsigned NumLanes = (NumElts*64)/128; - unsigned LaneSize = NumElts/NumLanes; +void DecodeVPERMILPMask(const Constant *C, unsigned ElSize, + SmallVectorImpl &ShuffleMask) { + Type *MaskTy = C->getType(); + // It is not an error for the PSHUFB mask to not be a vector of i8 because the + // constant pool uniques constants by their bit representation. + // e.g. the following take up the same space in the constant pool: + // i128 -170141183420855150465331762880109871104 + // + // <2 x i64> + // + // <4 x i32> + + unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits(); + + if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512. + return; + + // Only support vector types. + if (!MaskTy->isVectorTy()) + return; + + // Make sure its an integer type. + Type *VecEltTy = MaskTy->getVectorElementType(); + if (!VecEltTy->isIntegerTy()) + return; - for (unsigned l = 0; l < NumLanes; ++l) { - for (unsigned i = l*LaneSize; i < LaneSize*(l+1); ++i) { - unsigned Idx = (Imm >> i) & 0x1; - ShuffleMask.push_back(Idx+(l*LaneSize)); + // Support any element type from byte up to element size. + // This is necesary primarily because 64-bit elements get split to 32-bit + // in the constant pool on 32-bit target. + unsigned EltTySize = VecEltTy->getIntegerBitWidth(); + if (EltTySize < 8 || EltTySize > ElSize) + return; + + unsigned NumElements = MaskTySize / ElSize; + assert((NumElements == 2 || NumElements == 4 || NumElements == 8) && + "Unexpected number of vector elements."); + ShuffleMask.reserve(NumElements); + unsigned NumElementsPerLane = 128 / ElSize; + unsigned Factor = ElSize / EltTySize; + + for (unsigned i = 0; i < NumElements; ++i) { + Constant *COp = C->getAggregateElement(i * Factor); + if (!COp) { + ShuffleMask.clear(); + return; + } else if (isa(COp)) { + ShuffleMask.push_back(SM_SentinelUndef); + continue; } + int Index = i & ~(NumElementsPerLane - 1); + uint64_t Element = cast(COp)->getZExtValue(); + if (ElSize == 64) + Index += (Element >> 1) & 0x1; + else + Index += Element & 0x3; + ShuffleMask.push_back(Index); } + + // TODO: Handle funny-looking vectors too. } +void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl &Mask) { + unsigned NumDstElts = DstVT.getVectorNumElements(); + unsigned SrcScalarBits = SrcVT.getScalarSizeInBits(); + unsigned DstScalarBits = DstVT.getScalarSizeInBits(); + unsigned Scale = DstScalarBits / SrcScalarBits; + assert(SrcScalarBits < DstScalarBits && + "Expected zero extension mask to increase scalar size"); + assert(SrcVT.getVectorNumElements() >= NumDstElts && + "Too many zero extension lanes"); + + for (unsigned i = 0; i != NumDstElts; i++) { + Mask.push_back(i); + for (unsigned j = 1; j != Scale; j++) + Mask.push_back(SM_SentinelZero); + } +} + +void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + ShuffleMask.push_back(0); + for (unsigned i = 1; i < NumElts; i++) + ShuffleMask.push_back(SM_SentinelZero); +} + +void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl &Mask) { + // First element comes from the first element of second source. + // Remaining elements: Load zero extends / Move copies from first source. + unsigned NumElts = VT.getVectorNumElements(); + Mask.push_back(NumElts); + for (unsigned i = 1; i < NumElts; i++) + Mask.push_back(IsLoad ? static_cast(SM_SentinelZero) : i); +} + +void DecodeEXTRQIMask(int Len, int Idx, + SmallVectorImpl &ShuffleMask) { + // Only the bottom 6 bits are valid for each immediate. + Len &= 0x3F; + Idx &= 0x3F; + + // We can only decode this bit extraction instruction as a shuffle if both the + // length and index work with whole bytes. + if (0 != (Len % 8) || 0 != (Idx % 8)) + return; + + // A length of zero is equivalent to a bit length of 64. + if (Len == 0) + Len = 64; + + // If the length + index exceeds the bottom 64 bits the result is undefined. + if ((Len + Idx) > 64) { + ShuffleMask.append(16, SM_SentinelUndef); + return; + } + + // Convert index and index to work with bytes. + Len /= 8; + Idx /= 8; + + // EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes + // of the lower 64-bits. The upper 64-bits are undefined. + for (int i = 0; i != Len; ++i) + ShuffleMask.push_back(i + Idx); + for (int i = Len; i != 8; ++i) + ShuffleMask.push_back(SM_SentinelZero); + for (int i = 8; i != 16; ++i) + ShuffleMask.push_back(SM_SentinelUndef); +} + +void DecodeINSERTQIMask(int Len, int Idx, + SmallVectorImpl &ShuffleMask) { + // Only the bottom 6 bits are valid for each immediate. + Len &= 0x3F; + Idx &= 0x3F; + + // We can only decode this bit insertion instruction as a shuffle if both the + // length and index work with whole bytes. + if (0 != (Len % 8) || 0 != (Idx % 8)) + return; + + // A length of zero is equivalent to a bit length of 64. + if (Len == 0) + Len = 64; + + // If the length + index exceeds the bottom 64 bits the result is undefined. + if ((Len + Idx) > 64) { + ShuffleMask.append(16, SM_SentinelUndef); + return; + } + + // Convert index and index to work with bytes. + Len /= 8; + Idx /= 8; + + // INSERTQ: Extract lowest Len bytes from lower half of second source and + // insert over first source starting at Idx byte. The upper 64-bits are + // undefined. + for (int i = 0; i != Idx; ++i) + ShuffleMask.push_back(i); + for (int i = 0; i != Len; ++i) + ShuffleMask.push_back(i + 16); + for (int i = Idx + Len; i != 8; ++i) + ShuffleMask.push_back(i); + for (int i = 8; i != 16; ++i) + ShuffleMask.push_back(SM_SentinelUndef); +} + +void DecodeVPERMVMask(ArrayRef RawMask, + SmallVectorImpl &ShuffleMask) { + for (int i = 0, e = RawMask.size(); i < e; ++i) { + uint64_t M = RawMask[i]; + ShuffleMask.push_back((int)M); + } +} + +void DecodeVPERMV3Mask(ArrayRef RawMask, + SmallVectorImpl &ShuffleMask) { + for (int i = 0, e = RawMask.size(); i < e; ++i) { + uint64_t M = RawMask[i]; + ShuffleMask.push_back((int)M); + } +} + +void DecodeVPERMVMask(const Constant *C, MVT VT, + SmallVectorImpl &ShuffleMask) { + Type *MaskTy = C->getType(); + if (MaskTy->isVectorTy()) { + unsigned NumElements = MaskTy->getVectorNumElements(); + if (NumElements == VT.getVectorNumElements()) { + for (unsigned i = 0; i < NumElements; ++i) { + Constant *COp = C->getAggregateElement(i); + if (!COp || (!isa(COp) && !isa(COp))) { + ShuffleMask.clear(); + return; + } + if (isa(COp)) + ShuffleMask.push_back(SM_SentinelUndef); + else { + uint64_t Element = cast(COp)->getZExtValue(); + Element &= (1 << NumElements) - 1; + ShuffleMask.push_back(Element); + } + } + } + return; + } + // Scalar value; just broadcast it + if (!isa(C)) + return; + uint64_t Element = cast(C)->getZExtValue(); + int NumElements = VT.getVectorNumElements(); + Element &= (1 << NumElements) - 1; + for (int i = 0; i < NumElements; ++i) + ShuffleMask.push_back(Element); +} + +void DecodeVPERMV3Mask(const Constant *C, MVT VT, + SmallVectorImpl &ShuffleMask) { + Type *MaskTy = C->getType(); + unsigned NumElements = MaskTy->getVectorNumElements(); + if (NumElements == VT.getVectorNumElements()) { + for (unsigned i = 0; i < NumElements; ++i) { + Constant *COp = C->getAggregateElement(i); + if (!COp) { + ShuffleMask.clear(); + return; + } + if (isa(COp)) + ShuffleMask.push_back(SM_SentinelUndef); + else { + uint64_t Element = cast(COp)->getZExtValue(); + Element &= (1 << NumElements*2) - 1; + ShuffleMask.push_back(Element); + } + } + } +} } // llvm namespace