X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FTarget%2FX86%2FMCTargetDesc%2FX86BaseInfo.h;h=00c4750809b2f207f961adb839261e7065544ce0;hp=213a79d670bad18d77b0f998c9cfa57ce9e51ba6;hb=c6a8ba4da613c7620711221ba3dacb303644dfb8;hpb=1b9b377975b3f437acef8c2ba90de582add52f65 diff --git a/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h index 213a79d670b..00c4750809b 100644 --- a/lib/Target/X86/MCTargetDesc/X86BaseInfo.h +++ b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h @@ -14,12 +14,13 @@ // //===----------------------------------------------------------------------===// -#ifndef X86BASEINFO_H -#define X86BASEINFO_H +#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H +#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H #include "X86MCTargetDesc.h" +#include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/DataTypes.h" -#include +#include "llvm/Support/ErrorHandling.h" namespace llvm { @@ -41,7 +42,6 @@ namespace X86 { AddrNumOperands = 5 }; } // end namespace X86; - /// X86II - This namespace holds all of the target specific flags that /// instruction info tracks. @@ -94,40 +94,83 @@ namespace X86II { MO_PLT, /// MO_TLSGD - On a symbol operand this indicates that the immediate is - /// some TLS offset. + /// the offset of the GOT entry with the TLS index structure that contains + /// the module number and variable offset for the symbol. Used in the + /// general dynamic TLS access model. /// /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TLSGD MO_TLSGD, + /// MO_TLSLD - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the TLS index for the module that + /// contains the symbol. When this index is passed to a call to + /// __tls_get_addr, the function will return the base address of the TLS + /// block for the symbol. Used in the x86-64 local dynamic TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TLSLD + MO_TLSLD, + + /// MO_TLSLDM - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the TLS index for the module that + /// contains the symbol. When this index is passed to a call to + /// ___tls_get_addr, the function will return the base address of the TLS + /// block for the symbol. Used in the IA32 local dynamic TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TLSLDM + MO_TLSLDM, + /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is - /// some TLS offset. + /// the offset of the GOT entry with the thread-pointer offset for the + /// symbol. Used in the x86-64 initial exec TLS access model. /// /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @GOTTPOFF MO_GOTTPOFF, /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is - /// some TLS offset. + /// the absolute address of the GOT entry with the negative thread-pointer + /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access + /// model. /// /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @INDNTPOFF MO_INDNTPOFF, /// MO_TPOFF - On a symbol operand this indicates that the immediate is - /// some TLS offset. + /// the thread-pointer offset for the symbol. Used in the x86-64 local + /// exec TLS access model. /// /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @TPOFF MO_TPOFF, + /// MO_DTPOFF - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the TLS offset of the symbol. Used + /// in the local dynamic TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @DTPOFF + MO_DTPOFF, + /// MO_NTPOFF - On a symbol operand this indicates that the immediate is - /// some TLS offset. + /// the negative thread-pointer offset for the symbol. Used in the IA32 + /// local exec TLS access model. /// /// See 'ELF Handling for Thread-Local Storage' for more details. /// SYMBOL_LABEL @NTPOFF MO_NTPOFF, + /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is + /// the offset of the GOT entry with the negative thread-pointer offset for + /// the symbol. Used in the PIC IA32 initial exec TLS access model. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @GOTNTPOFF + MO_GOTNTPOFF, + /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the /// reference is actually to the "__imp_FOO" symbol. This is used for /// dllimport linkage on windows. @@ -164,10 +207,16 @@ namespace X86II { /// is some TLS offset from the picbase. /// /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. - MO_TLVP_PIC_BASE + MO_TLVP_PIC_BASE, + + /// MO_SECREL - On a symbol operand this indicates that the immediate is + /// the offset from beginning of section. + /// + /// This is the TLS offset for the COFF/Windows TLS mechanism. + MO_SECREL }; - enum { + enum : uint64_t { //===------------------------------------------------------------------===// // Instruction encodings. These are the standard/most common forms for X86 // instructions. @@ -206,6 +255,38 @@ namespace X86II { /// MRMSrcMem = 6, + /// RawFrmMemOffs - This form is for instructions that store an absolute + /// memory offset as an immediate with a possible segment override. + RawFrmMemOffs = 7, + + /// RawFrmSrc - This form is for instructions that use the source index + /// register SI/ESI/RSI with a possible segment override. + RawFrmSrc = 8, + + /// RawFrmDst - This form is for instructions that use the destination index + /// register DI/EDI/ESI. + RawFrmDst = 9, + + /// RawFrmSrc - This form is for instructions that use the source index + /// register SI/ESI/ERI with a possible segment override, and also the + /// destination index register DI/ESI/RDI. + RawFrmDstSrc = 10, + + /// RawFrmImm8 - This is used for the ENTER instruction, which has two + /// immediates, the first of which is a 16-bit immediate (specified by + /// the imm encoding) and the second is a 8-bit fixed value. + RawFrmImm8 = 11, + + /// RawFrmImm16 - This is used for CALL FAR instructions, which have two + /// immediates, the first of which is a 16 or 32-bit immediate (specified by + /// the imm encoding) and the second is a 16-bit fixed value. In the AMD + /// manual, this operand is described as pntr16:32 and pntr16:16 + RawFrmImm16 = 12, + + /// MRMX[rm] - The forms are used to represent instructions that use a + /// Mod/RM byte, and don't use the middle field for anything. + MRMXr = 14, MRMXm = 15, + /// MRM[0-7][rm] - These forms are used to represent instructions that use /// a Mod/RM byte, and use the middle field to hold extended opcode /// information. In the intel manual these are represented as /0, /1, ... @@ -219,90 +300,93 @@ namespace X86II { MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7 - // MRMInitReg - This form is used for instructions whose source and - // destinations are the same register. - MRMInitReg = 32, - - //// MRM_C1 - A mod/rm byte of exactly 0xC1. - MRM_C1 = 33, - MRM_C2 = 34, - MRM_C3 = 35, - MRM_C4 = 36, - MRM_C8 = 37, - MRM_C9 = 38, - MRM_E8 = 39, - MRM_F0 = 40, - MRM_F8 = 41, - MRM_F9 = 42, - MRM_D0 = 45, - MRM_D1 = 46, + //// MRM_XX - A mod/rm byte of exactly 0xXX. + MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, + MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39, + MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43, + MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47, + MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51, + MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55, + MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59, + MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63, + MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67, + MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71, + MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75, + MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79, + MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83, + MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87, + MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91, + MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95, + + FormMask = 127, - /// RawFrmImm8 - This is used for the ENTER instruction, which has two - /// immediates, the first of which is a 16-bit immediate (specified by - /// the imm encoding) and the second is a 8-bit fixed value. - RawFrmImm8 = 43, - - /// RawFrmImm16 - This is used for CALL FAR instructions, which have two - /// immediates, the first of which is a 16 or 32-bit immediate (specified by - /// the imm encoding) and the second is a 16-bit fixed value. In the AMD - /// manual, this operand is described as pntr16:32 and pntr16:16 - RawFrmImm16 = 44, + //===------------------------------------------------------------------===// + // Actual flags... - FormMask = 63, + // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. + // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in + // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 + // prefix in 16-bit mode. + OpSizeShift = 7, + OpSizeMask = 0x3 << OpSizeShift, + + OpSizeFixed = 0 << OpSizeShift, + OpSize16 = 1 << OpSizeShift, + OpSize32 = 2 << OpSizeShift, + + // AsSize - AdSizeX implies this instruction determines its need of 0x67 + // prefix from a normal ModRM memory operand. The other types indicate that + // an operand is encoded with a specific width and a prefix is needed if + // it differs from the current mode. + AdSizeShift = OpSizeShift + 2, + AdSizeMask = 0x3 << AdSizeShift, + + AdSizeX = 1 << AdSizeShift, + AdSize16 = 1 << AdSizeShift, + AdSize32 = 2 << AdSizeShift, + AdSize64 = 3 << AdSizeShift, //===------------------------------------------------------------------===// - // Actual flags... + // OpPrefix - There are several prefix bytes that are used as opcode + // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is + // no prefix. + // + OpPrefixShift = AdSizeShift + 2, + OpPrefixMask = 0x7 << OpPrefixShift, - // OpSize - Set if this instruction requires an operand size prefix (0x66), - // which most often indicates that the instruction operates on 16 bit data - // instead of 32 bit data. - OpSize = 1 << 6, + // PS, PD - Prefix code for packed single and double precision vector + // floating point operations performed in the SSE registers. + PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift, - // AsSize - Set if this instruction requires an operand size prefix (0x67), - // which most often indicates that the instruction address 16 bit address - // instead of 32 bit address (or 32 bit address in 64 bit mode). - AdSize = 1 << 7, + // XS, XD - These prefix codes are for single and double precision scalar + // floating point operations performed in the SSE registers. + XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift, //===------------------------------------------------------------------===// - // Op0Mask - There are several prefix bytes that are used to form two byte - // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is - // used to obtain the setting of this field. If no bits in this field is - // set, there is no prefix byte for obtaining a multibyte opcode. + // OpMap - This field determines which opcode map this instruction + // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. // - Op0Shift = 8, - Op0Mask = 0x1F << Op0Shift, + OpMapShift = OpPrefixShift + 3, + OpMapMask = 0x7 << OpMapShift, + + // OB - OneByte - Set if this instruction has a one byte opcode. + OB = 0 << OpMapShift, // TB - TwoByte - Set if this instruction has a two byte opcode, which // starts with a 0x0F byte before the real opcode. - TB = 1 << Op0Shift, - - // REP - The 0xF3 prefix byte indicating repetition of the following - // instruction. - REP = 2 << Op0Shift, - - // D8-DF - These escape opcodes are used by the floating point unit. These - // values must remain sequential. - D8 = 3 << Op0Shift, D9 = 4 << Op0Shift, - DA = 5 << Op0Shift, DB = 6 << Op0Shift, - DC = 7 << Op0Shift, DD = 8 << Op0Shift, - DE = 9 << Op0Shift, DF = 10 << Op0Shift, - - // XS, XD - These prefix codes are for single and double precision scalar - // floating point operations performed in the SSE registers. - XD = 11 << Op0Shift, XS = 12 << Op0Shift, + TB = 1 << OpMapShift, - // T8, TA, A6, A7 - Prefix after the 0x0F prefix. - T8 = 13 << Op0Shift, TA = 14 << Op0Shift, - A6 = 15 << Op0Shift, A7 = 16 << Op0Shift, + // T8, TA - Prefix after the 0x0F prefix. + T8 = 2 << OpMapShift, TA = 3 << OpMapShift, - // T8XD - Prefix before and after 0x0F. Combination of T8 and XD. - T8XD = 17 << Op0Shift, + // XOP8 - Prefix to include use of imm byte. + XOP8 = 4 << OpMapShift, - // T8XS - Prefix before and after 0x0F. Combination of T8 and XS. - T8XS = 18 << Op0Shift, + // XOP9 - Prefix to exclude use of imm byte. + XOP9 = 5 << OpMapShift, - // TAXD - Prefix before and after 0x0F. Combination of TA and XD. - TAXD = 19 << Op0Shift, + // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. + XOPA = 6 << OpMapShift, //===------------------------------------------------------------------===// // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. @@ -310,27 +394,28 @@ namespace X86II { // etc. We only cares about REX.W and REX.R bits and only the former is // statically determined. // - REXShift = Op0Shift + 5, + REXShift = OpMapShift + 3, REX_W = 1 << REXShift, //===------------------------------------------------------------------===// // This three-bit field describes the size of an immediate operand. Zero is // unused so that we can tell if we forgot to set a value. ImmShift = REXShift + 1, - ImmMask = 7 << ImmShift, + ImmMask = 15 << ImmShift, Imm8 = 1 << ImmShift, Imm8PCRel = 2 << ImmShift, Imm16 = 3 << ImmShift, Imm16PCRel = 4 << ImmShift, Imm32 = 5 << ImmShift, Imm32PCRel = 6 << ImmShift, - Imm64 = 7 << ImmShift, + Imm32S = 7 << ImmShift, + Imm64 = 8 << ImmShift, //===------------------------------------------------------------------===// // FP Instruction Classification... Zero is non-fp instruction. // FPTypeMask - Mask for all of the FP types... - FPTypeShift = ImmShift + 3, + FPTypeShift = ImmShift + 4, FPTypeMask = 7 << FPTypeShift, // NotFP - The default, set for instructions that do not use FP registers. @@ -366,51 +451,94 @@ namespace X86II { LOCKShift = FPTypeShift + 3, LOCK = 1 << LOCKShift, - // Segment override prefixes. Currently we just need ability to address - // stuff in gs and fs segments. - SegOvrShift = LOCKShift + 1, - SegOvrMask = 3 << SegOvrShift, - FS = 1 << SegOvrShift, - GS = 2 << SegOvrShift, + // REP prefix + REPShift = LOCKShift + 1, + REP = 1 << REPShift, - // Execution domain for SSE instructions in bits 23, 24. - // 0 in bits 23-24 means normal, non-SSE instruction. - SSEDomainShift = SegOvrShift + 2, + // Execution domain for SSE instructions. + // 0 means normal, non-SSE instruction. + SSEDomainShift = REPShift + 1, - OpcodeShift = SSEDomainShift + 2, + // Encoding + EncodingShift = SSEDomainShift + 2, + EncodingMask = 0x3 << EncodingShift, - //===------------------------------------------------------------------===// - /// VEX - The opcode prefix used by AVX instructions - VEXShift = OpcodeShift + 8, - VEX = 1U << 0, + // VEX - encoding using 0xC4/0xC5 + VEX = 1 << EncodingShift, + + /// XOP - Opcode prefix used by XOP instructions. + XOP = 2 << EncodingShift, + + // VEX_EVEX - Specifies that this instruction use EVEX form which provides + // syntax support up to 32 512-bit register operands and up to 7 16-bit + // mask operands as well as source operand data swizzling/memory operand + // conversion, eviction hint, and rounding mode. + EVEX = 3 << EncodingShift, + + // Opcode + OpcodeShift = EncodingShift + 2, /// VEX_W - Has a opcode specific functionality, but is used in the same /// way as REX_W is for regular SSE instructions. - VEX_W = 1U << 1, + VEX_WShift = OpcodeShift + 8, + VEX_W = 1ULL << VEX_WShift, /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 /// address instructions in SSE are represented as 3 address ones in AVX /// and the additional register is encoded in VEX_VVVV prefix. - VEX_4V = 1U << 2, + VEX_4VShift = VEX_WShift + 1, + VEX_4V = 1ULL << VEX_4VShift, /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode /// operand 3 with VEX.vvvv. - VEX_4VOp3 = 1U << 3, + VEX_4VOp3Shift = VEX_4VShift + 1, + VEX_4VOp3 = 1ULL << VEX_4VOp3Shift, /// VEX_I8IMM - Specifies that the last register used in a AVX instruction, /// must be encoded in the i8 immediate field. This usually happens in /// instructions with 4 operands. - VEX_I8IMM = 1U << 4, + VEX_I8IMMShift = VEX_4VOp3Shift + 1, + VEX_I8IMM = 1ULL << VEX_I8IMMShift, /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current /// instruction uses 256-bit wide registers. This is usually auto detected /// if a VR256 register is used, but some AVX instructions also have this /// field marked when using a f256 memory references. - VEX_L = 1U << 5, + VEX_LShift = VEX_I8IMMShift + 1, + VEX_L = 1ULL << VEX_LShift, // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX // prefix. Usually used for scalar instructions. Needed by disassembler. - VEX_LIG = 1U << 6, + VEX_LIGShift = VEX_LShift + 1, + VEX_LIG = 1ULL << VEX_LIGShift, + + // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field + // with following encoding: + // - 00 V128 + // - 01 V256 + // - 10 V512 + // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros. + // this will save 1 tsflag bit + + // EVEX_K - Set if this instruction requires masking + EVEX_KShift = VEX_LIGShift + 1, + EVEX_K = 1ULL << EVEX_KShift, + + // EVEX_Z - Set if this instruction has EVEX.Z field set. + EVEX_ZShift = EVEX_KShift + 1, + EVEX_Z = 1ULL << EVEX_ZShift, + + // EVEX_L2 - Set if this instruction has EVEX.L' field set. + EVEX_L2Shift = EVEX_ZShift + 1, + EVEX_L2 = 1ULL << EVEX_L2Shift, + + // EVEX_B - Set if this instruction has EVEX.B field set. + EVEX_BShift = EVEX_L2Shift + 1, + EVEX_B = 1ULL << EVEX_BShift, + + // The scaling factor for the AVX512's 8-bit compressed displacement. + CD8_Scale_Shift = EVEX_BShift + 1, + CD8_Scale_Mask = 127ULL << CD8_Scale_Shift, /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents @@ -418,35 +546,41 @@ namespace X86II { /// storing a classifier in the imm8 field. To simplify our implementation, /// we handle this by storeing the classifier in the opcode field and using /// this flag to indicate that the encoder should do the wacky 3DNow! thing. - Has3DNow0F0FOpcode = 1U << 7, + Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7, + Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift, - /// XOP_W - Same bit as VEX_W. Used to indicate swapping of - /// operand 3 and 4 to be encoded in ModRM or I8IMM. This is used - /// for FMA4 and XOP instructions. - XOP_W = 1U << 8 + /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in + /// ModRM or I8IMM. This is used for FMA4 and XOP instructions. + MemOp4Shift = Has3DNow0F0FOpcodeShift + 1, + MemOp4 = 1ULL << MemOp4Shift, + + /// Explicitly specified rounding control + EVEX_RCShift = MemOp4Shift + 1, + EVEX_RC = 1ULL << EVEX_RCShift }; // getBaseOpcodeFor - This function returns the "base" X86 opcode for the // specified machine instruction. // - static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { + inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { return TSFlags >> X86II::OpcodeShift; } - static inline bool hasImm(uint64_t TSFlags) { + inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field /// of the specified instruction. - static inline unsigned getSizeOfImm(uint64_t TSFlags) { + inline unsigned getSizeOfImm(uint64_t TSFlags) { switch (TSFlags & X86II::ImmMask) { - default: assert(0 && "Unknown immediate size"); + default: llvm_unreachable("Unknown immediate size"); case X86II::Imm8: case X86II::Imm8PCRel: return 1; case X86II::Imm16: case X86II::Imm16PCRel: return 2; case X86II::Imm32: + case X86II::Imm32S: case X86II::Imm32PCRel: return 4; case X86II::Imm64: return 8; } @@ -454,9 +588,9 @@ namespace X86II { /// isImmPCRel - Return true if the immediate of the specified instruction's /// TSFlags indicates that it is pc relative. - static inline unsigned isImmPCRel(uint64_t TSFlags) { + inline unsigned isImmPCRel(uint64_t TSFlags) { switch (TSFlags & X86II::ImmMask) { - default: assert(0 && "Unknown immediate size"); + default: llvm_unreachable("Unknown immediate size"); case X86II::Imm8PCRel: case X86II::Imm16PCRel: case X86II::Imm32PCRel: @@ -464,11 +598,57 @@ namespace X86II { case X86II::Imm8: case X86II::Imm16: case X86II::Imm32: + case X86II::Imm32S: case X86II::Imm64: return false; } } + /// isImmSigned - Return true if the immediate of the specified instruction's + /// TSFlags indicates that it is signed. + inline unsigned isImmSigned(uint64_t TSFlags) { + switch (TSFlags & X86II::ImmMask) { + default: llvm_unreachable("Unknown immediate signedness"); + case X86II::Imm32S: + return true; + case X86II::Imm8: + case X86II::Imm8PCRel: + case X86II::Imm16: + case X86II::Imm16PCRel: + case X86II::Imm32: + case X86II::Imm32PCRel: + case X86II::Imm64: + return false; + } + } + + /// getOperandBias - compute any additional adjustment needed to + /// the offset to the start of the memory operand + /// in this instruction. + /// If this is a two-address instruction,skip one of the register operands. + /// FIXME: This should be handled during MCInst lowering. + inline int getOperandBias(const MCInstrDesc& Desc) + { + unsigned NumOps = Desc.getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) + ++CurOp; + else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && + Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) + // Special case for AVX-512 GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && + Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1) + // Special case for GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0) + // SCATTER + ++CurOp; + return CurOp; + } + /// getMemoryOperandNo - The function returns the MCInst operand # for the /// first field of the memory operand. If the instruction doesn't have a /// memory operand, this returns -1. @@ -477,10 +657,13 @@ namespace X86II { /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only /// counted as one operand. /// - static inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) { + inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) { + bool HasVEX_4V = TSFlags & X86II::VEX_4V; + bool HasMemOp4 = TSFlags & X86II::MemOp4; + bool HasEVEX_K = TSFlags & X86II::EVEX_K; + switch (TSFlags & X86II::FormMask) { - case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form"); - default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!"); + default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); case X86II::Pseudo: case X86II::RawFrm: case X86II::AddRegFrm: @@ -488,57 +671,63 @@ namespace X86II { case X86II::MRMSrcReg: case X86II::RawFrmImm8: case X86II::RawFrmImm16: - return -1; + case X86II::RawFrmMemOffs: + case X86II::RawFrmSrc: + case X86II::RawFrmDst: + case X86II::RawFrmDstSrc: + return -1; case X86II::MRMDestMem: return 0; - case X86II::MRMSrcMem: { - bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; - bool HasXOP_W = (TSFlags >> X86II::VEXShift) & X86II::XOP_W; - unsigned FirstMemOp = 1; - if (HasVEX_4V) - ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV). - if (HasXOP_W) - ++FirstMemOp;// Skip the register source (which is encoded in I8IMM). - - // FIXME: Maybe lea should have its own form? This is a horrible hack. - //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || - // Opcode == X86::LEA16r || Opcode == X86::LEA32r) - return FirstMemOp; - } + case X86II::MRMSrcMem: + // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a + // mask register. + return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K; + case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: return -1; + case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: - case X86II::MRM6m: case X86II::MRM7m: { - bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; - unsigned FirstMemOp = 0; - if (HasVEX_4V) - ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV). - return FirstMemOp; - } - case X86II::MRM_C1: - case X86II::MRM_C2: - case X86II::MRM_C3: - case X86II::MRM_C4: - case X86II::MRM_C8: - case X86II::MRM_C9: - case X86II::MRM_E8: - case X86II::MRM_F0: - case X86II::MRM_F8: - case X86II::MRM_F9: - case X86II::MRM_D0: - case X86II::MRM_D1: + case X86II::MRM6m: case X86II::MRM7m: + // Start from 0, skip registers encoded in VEX_VVVV or a mask register. + return 0 + HasVEX_4V + HasEVEX_K; + case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: + case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8: + case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: + case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: + case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: + case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9: + case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: + case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: + case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2: + case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5: + case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA: + case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED: + case X86II::MRM_EE: case X86II::MRM_EF: case X86II::MRM_F0: + case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3: + case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6: + case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9: + case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC: + case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF: return -1; } } /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or /// higher) register? e.g. r8, xmm8, xmm13, etc. - static inline bool isX86_64ExtendedReg(unsigned RegNo) { + inline bool isX86_64ExtendedReg(unsigned RegNo) { + if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) || + (RegNo > X86::XMM23 && RegNo <= X86::XMM31) || + (RegNo > X86::YMM7 && RegNo <= X86::YMM15) || + (RegNo > X86::YMM23 && RegNo <= X86::YMM31) || + (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) || + (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31)) + return true; + switch (RegNo) { default: break; case X86::R8: case X86::R9: case X86::R10: case X86::R11: @@ -549,18 +738,23 @@ namespace X86II { case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: - case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: - case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: - case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11: - case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15: case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: - return true; + return true; } return false; } - - static inline bool isX86_64NonExtLowByteReg(unsigned reg) { + + /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher) + /// registers? e.g. zmm21, etc. + static inline bool is32ExtendedReg(unsigned RegNo) { + return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) || + (RegNo > X86::YMM15 && RegNo <= X86::YMM31) || + (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31)); + } + + + inline bool isX86_64NonExtLowByteReg(unsigned reg) { return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || reg == X86::DIL); }