X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FTarget%2FAMDGPU%2FSIISelLowering.cpp;h=4206e6fb869fbab8b1cdf67d2704be2cbbd43fb5;hp=9970251128a9687d0b4cc3f0ac5fe7d906dcf8cc;hb=fe319de414dd46a01c94f4dee1ed978dae7f2378;hpb=23dc769a9b592b356accb74a2e8816e6630ebaa8 diff --git a/lib/Target/AMDGPU/SIISelLowering.cpp b/lib/Target/AMDGPU/SIISelLowering.cpp index 9970251128a..4206e6fb869 100644 --- a/lib/Target/AMDGPU/SIISelLowering.cpp +++ b/lib/Target/AMDGPU/SIISelLowering.cpp @@ -7,189 +7,2630 @@ // //===----------------------------------------------------------------------===// // -// Most of the DAG lowering is handled in AMDGPUISelLowering.cpp. This file is -// mostly EmitInstrWithCustomInserter(). +/// \file +/// \brief Custom DAG lowering for SI // //===----------------------------------------------------------------------===// +#ifdef _MSC_VER +// Provide M_PI. +#define _USE_MATH_DEFINES +#include +#endif + #include "SIISelLowering.h" +#include "AMDGPU.h" +#include "AMDGPUDiagnosticInfoUnsupported.h" +#include "AMDGPUIntrinsicInfo.h" +#include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" +#include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/IR/Function.h" +#include "llvm/ADT/SmallString.h" using namespace llvm; -SITargetLowering::SITargetLowering(TargetMachine &TM) : - AMDGPUTargetLowering(TM), - TII(static_cast(TM.getInstrInfo())) -{ - addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); - addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass); - addRegisterClass(MVT::i32, &AMDGPU::VReg_32RegClass); - addRegisterClass(MVT::i64, &AMDGPU::VReg_64RegClass); +SITargetLowering::SITargetLowering(TargetMachine &TM, + const AMDGPUSubtarget &STI) + : AMDGPUTargetLowering(TM, STI) { + addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); + addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); + + addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass); + addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass); + + addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); + addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); + + addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); + addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); + addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); + + addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); + addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); + addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); + addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); + addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); - computeRegisterProperties(); + addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); + addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); + + computeRegisterProperties(STI.getRegisterInfo()); + + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); - setOperationAction(ISD::ADD, MVT::i64, Legal); setOperationAction(ISD::ADD, MVT::i32, Legal); + setOperationAction(ISD::ADDC, MVT::i32, Legal); + setOperationAction(ISD::ADDE, MVT::i32, Legal); + setOperationAction(ISD::SUBC, MVT::i32, Legal); + setOperationAction(ISD::SUBE, MVT::i32, Legal); + + setOperationAction(ISD::FSIN, MVT::f32, Custom); + setOperationAction(ISD::FCOS, MVT::f32, Custom); + + setOperationAction(ISD::FMINNUM, MVT::f64, Legal); + setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); + + // We need to custom lower vector stores from local memory + setOperationAction(ISD::LOAD, MVT::v4i32, Custom); + setOperationAction(ISD::LOAD, MVT::v8i32, Custom); + setOperationAction(ISD::LOAD, MVT::v16i32, Custom); + + setOperationAction(ISD::STORE, MVT::v8i32, Custom); + setOperationAction(ISD::STORE, MVT::v16i32, Custom); + + setOperationAction(ISD::STORE, MVT::i1, Custom); + setOperationAction(ISD::STORE, MVT::v4i32, Custom); + + setOperationAction(ISD::SELECT, MVT::i64, Custom); + setOperationAction(ISD::SELECT, MVT::f64, Promote); + AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); + + setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); + + setOperationAction(ISD::SETCC, MVT::v2i1, Expand); + setOperationAction(ISD::SETCC, MVT::v4i1, Expand); + + setOperationAction(ISD::BSWAP, MVT::i32, Legal); + setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); + + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); + + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); + + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); + + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); + + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); + + setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + + for (MVT VT : MVT::integer_valuetypes()) { + if (VT == MVT::i64) + continue; + + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); + + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); + + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); + } + + for (MVT VT : MVT::integer_vector_valuetypes()) { + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand); + } + for (MVT VT : MVT::fp_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); + + setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); + + setTruncStoreAction(MVT::i64, MVT::i32, Expand); + setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); + setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); + setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); + + + setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); + + setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); + setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); + + setOperationAction(ISD::LOAD, MVT::i1, Custom); + + setOperationAction(ISD::LOAD, MVT::v2i64, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); + + setOperationAction(ISD::STORE, MVT::v2i64, Promote); + AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); + + setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand); + + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + setOperationAction(ISD::FrameIndex, MVT::i32, Custom); + + // These should use UDIVREM, so set them to expand + setOperationAction(ISD::UDIV, MVT::i64, Expand); + setOperationAction(ISD::UREM, MVT::i64, Expand); + + setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); + setOperationAction(ISD::SELECT, MVT::i1, Promote); + + setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); + + + setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); + + // We only support LOAD/STORE and vector manipulation ops for vectors + // with > 4 elements. + for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) { + for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { + switch(Op) { + case ISD::LOAD: + case ISD::STORE: + case ISD::BUILD_VECTOR: + case ISD::BITCAST: + case ISD::EXTRACT_VECTOR_ELT: + case ISD::INSERT_VECTOR_ELT: + case ISD::INSERT_SUBVECTOR: + case ISD::EXTRACT_SUBVECTOR: + case ISD::SCALAR_TO_VECTOR: + break; + case ISD::CONCAT_VECTORS: + setOperationAction(Op, VT, Custom); + break; + default: + setOperationAction(Op, VT, Expand); + break; + } + } + } + + // Most operations are naturally 32-bit vector operations. We only support + // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. + for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { + setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); + AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); + AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); + + setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); + AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); + + setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); + AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); + } + + if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { + setOperationAction(ISD::FTRUNC, MVT::f64, Legal); + setOperationAction(ISD::FCEIL, MVT::f64, Legal); + setOperationAction(ISD::FRINT, MVT::f64, Legal); + } + + setOperationAction(ISD::FFLOOR, MVT::f64, Legal); + setOperationAction(ISD::FDIV, MVT::f32, Custom); + setOperationAction(ISD::FDIV, MVT::f64, Custom); + + setTargetDAGCombine(ISD::FADD); + setTargetDAGCombine(ISD::FSUB); + setTargetDAGCombine(ISD::FMINNUM); + setTargetDAGCombine(ISD::FMAXNUM); + setTargetDAGCombine(ISD::SMIN); + setTargetDAGCombine(ISD::SMAX); + setTargetDAGCombine(ISD::UMIN); + setTargetDAGCombine(ISD::UMAX); + setTargetDAGCombine(ISD::SETCC); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::UINT_TO_FP); + + // All memory operations. Some folding on the pointer operand is done to help + // matching the constant offsets in the addressing modes. + setTargetDAGCombine(ISD::LOAD); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::ATOMIC_LOAD); + setTargetDAGCombine(ISD::ATOMIC_STORE); + setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); + setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); + setTargetDAGCombine(ISD::ATOMIC_SWAP); + setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); + setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); + setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); + setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); + setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); + setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); + setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); + setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); + setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); + setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); + + setSchedulingPreference(Sched::RegPressure); } -MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( - MachineInstr * MI, MachineBasicBlock * BB) const -{ - const TargetInstrInfo * TII = getTargetMachine().getInstrInfo(); - MachineRegisterInfo & MRI = BB->getParent()->getRegInfo(); - MachineBasicBlock::iterator I = MI; - - if (TII->get(MI->getOpcode()).TSFlags & SIInstrFlags::NEED_WAIT) { - AppendS_WAITCNT(MI, *BB, llvm::next(I)); - return BB; +//===----------------------------------------------------------------------===// +// TargetLowering queries +//===----------------------------------------------------------------------===// + +bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl &, + EVT) const { + // SI has some legal vector types, but no legal vector operations. Say no + // shuffles are legal in order to prefer scalarizing some vector operations. + return false; +} + +bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { + // Flat instructions do not have offsets, and only have the register + // address. + return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1); +} + +bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { + // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and + // additionally can do r + r + i with addr64. 32-bit has more addressing + // mode options. Depending on the resource constant, it can also do + // (i64 r0) + (i32 r1) * (i14 i). + // + // Private arrays end up using a scratch buffer most of the time, so also + // assume those use MUBUF instructions. Scratch loads / stores are currently + // implemented as mubuf instructions with offen bit set, so slightly + // different than the normal addr64. + if (!isUInt<12>(AM.BaseOffs)) + return false; + + // FIXME: Since we can split immediate into soffset and immediate offset, + // would it make sense to allow any immediate? + + switch (AM.Scale) { + case 0: // r + i or just i, depending on HasBaseReg. + return true; + case 1: + return true; // We have r + r or r + i. + case 2: + if (AM.HasBaseReg) { + // Reject 2 * r + r. + return false; + } + + // Allow 2 * r as r + r + // Or 2 * r + i is allowed as r + r + i. + return true; + default: // Don't allow n * r + return false; + } +} + +bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + switch (AS) { + case AMDGPUAS::GLOBAL_ADDRESS: { + if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { + // Assume the we will use FLAT for all global memory accesses + // on VI. + // FIXME: This assumption is currently wrong. On VI we still use + // MUBUF instructions for the r + i addressing mode. As currently + // implemented, the MUBUF instructions only work on buffer < 4GB. + // It may be possible to support > 4GB buffers with MUBUF instructions, + // by setting the stride value in the resource descriptor which would + // increase the size limit to (stride * 4GB). However, this is risky, + // because it has never been validated. + return isLegalFlatAddressingMode(AM); + } + + return isLegalMUBUFAddressingMode(AM); + } + case AMDGPUAS::CONSTANT_ADDRESS: { + // If the offset isn't a multiple of 4, it probably isn't going to be + // correctly aligned. + if (AM.BaseOffs % 4 != 0) + return isLegalMUBUFAddressingMode(AM); + + // There are no SMRD extloads, so if we have to do a small type access we + // will use a MUBUF load. + // FIXME?: We also need to do this if unaligned, but we don't know the + // alignment here. + if (DL.getTypeStoreSize(Ty) < 4) + return isLegalMUBUFAddressingMode(AM); + + if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { + // SMRD instructions have an 8-bit, dword offset on SI. + if (!isUInt<8>(AM.BaseOffs / 4)) + return false; + } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { + // On CI+, this can also be a 32-bit literal constant offset. If it fits + // in 8-bits, it can use a smaller encoding. + if (!isUInt<32>(AM.BaseOffs / 4)) + return false; + } else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) { + // On VI, these use the SMEM format and the offset is 20-bit in bytes. + if (!isUInt<20>(AM.BaseOffs)) + return false; + } else + llvm_unreachable("unhandled generation"); + + if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. + return true; + + if (AM.Scale == 1 && AM.HasBaseReg) + return true; + + return false; + } + + case AMDGPUAS::PRIVATE_ADDRESS: + case AMDGPUAS::UNKNOWN_ADDRESS_SPACE: + return isLegalMUBUFAddressingMode(AM); + + case AMDGPUAS::LOCAL_ADDRESS: + case AMDGPUAS::REGION_ADDRESS: { + // Basic, single offset DS instructions allow a 16-bit unsigned immediate + // field. + // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have + // an 8-bit dword offset but we don't know the alignment here. + if (!isUInt<16>(AM.BaseOffs)) + return false; + + if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. + return true; + + if (AM.Scale == 1 && AM.HasBaseReg) + return true; + + return false; + } + case AMDGPUAS::FLAT_ADDRESS: + return isLegalFlatAddressingMode(AM); + + default: + llvm_unreachable("unhandled address space"); + } +} + +bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, + unsigned AddrSpace, + unsigned Align, + bool *IsFast) const { + if (IsFast) + *IsFast = false; + + // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, + // which isn't a simple VT. + if (!VT.isSimple() || VT == MVT::Other) + return false; + + // TODO - CI+ supports unaligned memory accesses, but this requires driver + // support. + + // XXX - The only mention I see of this in the ISA manual is for LDS direct + // reads the "byte address and must be dword aligned". Is it also true for the + // normal loads and stores? + if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) { + // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte + // aligned, 8 byte access in a single operation using ds_read2/write2_b32 + // with adjacent offsets. + bool AlignedBy4 = (Align % 4 == 0); + if (IsFast) + *IsFast = AlignedBy4; + return AlignedBy4; + } + + // Smaller than dword value must be aligned. + // FIXME: This should be allowed on CI+ + if (VT.bitsLT(MVT::i32)) + return false; + + // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the + // byte-address are ignored, thus forcing Dword alignment. + // This applies to private, global, and constant memory. + if (IsFast) + *IsFast = true; + + return VT.bitsGT(MVT::i32) && Align % 4 == 0; +} + +EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, + unsigned SrcAlign, bool IsMemset, + bool ZeroMemset, + bool MemcpyStrSrc, + MachineFunction &MF) const { + // FIXME: Should account for address space here. + + // The default fallback uses the private pointer size as a guess for a type to + // use. Make sure we switch these to 64-bit accesses. + + if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global + return MVT::v4i32; + + if (Size >= 8 && DstAlign >= 4) + return MVT::v2i32; + + // Use the default. + return MVT::Other; +} + +static bool isFlatGlobalAddrSpace(unsigned AS) { + return AS == AMDGPUAS::GLOBAL_ADDRESS || + AS == AMDGPUAS::FLAT_ADDRESS || + AS == AMDGPUAS::CONSTANT_ADDRESS; +} + +bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, + unsigned DestAS) const { + return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS); +} + + +bool SITargetLowering::isMemOpUniform(const SDNode *N) const { + const MemSDNode *MemNode = cast(N); + const Value *Ptr = MemNode->getMemOperand()->getValue(); + + // UndefValue means this is a load of a kernel input. These are uniform. + // Sometimes LDS instructions have constant pointers + if (isa(Ptr) || isa(Ptr) || isa(Ptr) || + isa(Ptr)) + return true; + + const Instruction *I = dyn_cast_or_null(Ptr); + return I && I->getMetadata("amdgpu.uniform"); +} + +TargetLoweringBase::LegalizeTypeAction +SITargetLowering::getPreferredVectorAction(EVT VT) const { + if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) + return TypeSplitVector; + + return TargetLoweringBase::getPreferredVectorAction(VT); +} + +bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, + Type *Ty) const { + const SIInstrInfo *TII = + static_cast(Subtarget->getInstrInfo()); + return TII->isInlineConstant(Imm); +} + +SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT, + SDLoc SL, SDValue Chain, + unsigned Offset, bool Signed) const { + const DataLayout &DL = DAG.getDataLayout(); + MachineFunction &MF = DAG.getMachineFunction(); + const SIRegisterInfo *TRI = + static_cast(Subtarget->getRegisterInfo()); + unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); + + Type *Ty = VT.getTypeForEVT(*DAG.getContext()); + + MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); + PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); + SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, + MRI.getLiveInVirtReg(InputPtrReg), PtrVT); + SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, + DAG.getConstant(Offset, SL, PtrVT)); + SDValue PtrOffset = DAG.getUNDEF(PtrVT); + MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); + + unsigned Align = DL.getABITypeAlignment(Ty); + + ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD; + if (MemVT.isFloatingPoint()) + ExtTy = ISD::EXTLOAD; + + return DAG.getLoad(ISD::UNINDEXED, ExtTy, + VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT, + false, // isVolatile + true, // isNonTemporal + true, // isInvariant + Align); // Alignment +} + +SDValue SITargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl &InVals) const { + const SIRegisterInfo *TRI = + static_cast(Subtarget->getRegisterInfo()); + + MachineFunction &MF = DAG.getMachineFunction(); + FunctionType *FType = MF.getFunction()->getFunctionType(); + SIMachineFunctionInfo *Info = MF.getInfo(); + const AMDGPUSubtarget &ST = MF.getSubtarget(); + + if (Subtarget->isAmdHsaOS() && Info->getShaderType() != ShaderType::COMPUTE) { + const Function *Fn = MF.getFunction(); + DiagnosticInfoUnsupported NoGraphicsHSA(*Fn, "non-compute shaders with HSA"); + DAG.getContext()->diagnose(NoGraphicsHSA); + return SDValue(); + } + + // FIXME: We currently assume all calling conventions are kernels. + + SmallVector Splits; + BitVector Skipped(Ins.size()); + + for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { + const ISD::InputArg &Arg = Ins[i]; + + // First check if it's a PS input addr + if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() && + !Arg.Flags.isByVal() && PSInputNum <= 15) { + + if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) { + // We can safely skip PS inputs + Skipped.set(i); + ++PSInputNum; + continue; + } + + Info->markPSInputAllocated(PSInputNum); + if (Arg.Used) + Info->PSInputEna |= 1 << PSInputNum; + + ++PSInputNum; + } + + // Second split vertices into their elements + if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) { + ISD::InputArg NewArg = Arg; + NewArg.Flags.setSplit(); + NewArg.VT = Arg.VT.getVectorElementType(); + + // We REALLY want the ORIGINAL number of vertex elements here, e.g. a + // three or five element vertex only needs three or five registers, + // NOT four or eight. + Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); + unsigned NumElements = ParamType->getVectorNumElements(); + + for (unsigned j = 0; j != NumElements; ++j) { + Splits.push_back(NewArg); + NewArg.PartOffset += NewArg.VT.getStoreSize(); + } + + } else if (Info->getShaderType() != ShaderType::COMPUTE) { + Splits.push_back(Arg); + } + } + + SmallVector ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + // At least one interpolation mode must be enabled or else the GPU will hang. + // + // Check PSInputAddr instead of PSInputEna. The idea is that if the user set + // PSInputAddr, the user wants to enable some bits after the compilation + // based on run-time states. Since we can't know what the final PSInputEna + // will look like, so we shouldn't do anything here and the user should take + // responsibility for the correct programming. + if (Info->getShaderType() == ShaderType::PIXEL && + (Info->getPSInputAddr() & 0x7F) == 0) { + CCInfo.AllocateReg(AMDGPU::VGPR0); + CCInfo.AllocateReg(AMDGPU::VGPR1); + Info->markPSInputAllocated(0); + Info->PSInputEna |= 1; + } + + if (Info->getShaderType() == ShaderType::COMPUTE) { + getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins, + Splits); + } + + // FIXME: How should these inputs interact with inreg / custom SGPR inputs? + if (Info->hasPrivateSegmentBuffer()) { + unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI); + MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass); + CCInfo.AllocateReg(PrivateSegmentBufferReg); + } + + if (Info->hasDispatchPtr()) { + unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI); + MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass); + CCInfo.AllocateReg(DispatchPtrReg); + } + + if (Info->hasKernargSegmentPtr()) { + unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI); + MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass); + CCInfo.AllocateReg(InputPtrReg); + } + + AnalyzeFormalArguments(CCInfo, Splits); + + SmallVector Chains; + + for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { + + const ISD::InputArg &Arg = Ins[i]; + if (Skipped[i]) { + InVals.push_back(DAG.getUNDEF(Arg.VT)); + continue; + } + + CCValAssign &VA = ArgLocs[ArgIdx++]; + MVT VT = VA.getLocVT(); + + if (VA.isMemLoc()) { + VT = Ins[i].VT; + EVT MemVT = Splits[i].VT; + const unsigned Offset = Subtarget->getExplicitKernelArgOffset() + + VA.getLocMemOffset(); + // The first 36 bytes of the input buffer contains information about + // thread group and global sizes. + SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain, + Offset, Ins[i].Flags.isSExt()); + Chains.push_back(Arg.getValue(1)); + + auto *ParamTy = + dyn_cast(FType->getParamType(Ins[i].getOrigArgIndex())); + if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && + ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { + // On SI local pointers are just offsets into LDS, so they are always + // less than 16-bits. On CI and newer they could potentially be + // real pointers, so we can't guarantee their size. + Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, + DAG.getValueType(MVT::i16)); + } + + InVals.push_back(Arg); + Info->ABIArgOffset = Offset + MemVT.getStoreSize(); + continue; + } + assert(VA.isRegLoc() && "Parameter must be in a register!"); + + unsigned Reg = VA.getLocReg(); + + if (VT == MVT::i64) { + // For now assume it is a pointer + Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, + &AMDGPU::SReg_64RegClass); + Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); + SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); + InVals.push_back(Copy); + continue; + } + + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); + + Reg = MF.addLiveIn(Reg, RC); + SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); + + if (Arg.VT.isVector()) { + + // Build a vector from the registers + Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); + unsigned NumElements = ParamType->getVectorNumElements(); + + SmallVector Regs; + Regs.push_back(Val); + for (unsigned j = 1; j != NumElements; ++j) { + Reg = ArgLocs[ArgIdx++].getLocReg(); + Reg = MF.addLiveIn(Reg, RC); + + SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); + Regs.push_back(Copy); + } + + // Fill up the missing vector elements + NumElements = Arg.VT.getVectorNumElements() - NumElements; + Regs.append(NumElements, DAG.getUNDEF(VT)); + + InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs)); + continue; + } + + InVals.push_back(Val); + } + + // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read + // these from the dispatch pointer. + + // Start adding system SGPRs. + if (Info->hasWorkGroupIDX()) { + unsigned Reg = Info->addWorkGroupIDX(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); + CCInfo.AllocateReg(Reg); + } else + llvm_unreachable("work group id x is always enabled"); + + if (Info->hasWorkGroupIDY()) { + unsigned Reg = Info->addWorkGroupIDY(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info->hasWorkGroupIDZ()) { + unsigned Reg = Info->addWorkGroupIDZ(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info->hasWorkGroupInfo()) { + unsigned Reg = Info->addWorkGroupInfo(); + MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info->hasPrivateSegmentWaveByteOffset()) { + // Scratch wave offset passed in system SGPR. + unsigned PrivateSegmentWaveByteOffsetReg + = Info->addPrivateSegmentWaveByteOffset(); + + MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); + CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); + } + + // Now that we've figured out where the scratch register inputs are, see if + // should reserve the arguments and use them directly. + + bool HasStackObjects = MF.getFrameInfo()->hasStackObjects(); + + if (ST.isAmdHsaOS()) { + // TODO: Assume we will spill without optimizations. + if (HasStackObjects) { + // If we have stack objects, we unquestionably need the private buffer + // resource. For the HSA ABI, this will be the first 4 user SGPR + // inputs. We can reserve those and use them directly. + + unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue( + MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER); + Info->setScratchRSrcReg(PrivateSegmentBufferReg); + + unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue( + MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); + Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg); + } else { + unsigned ReservedBufferReg + = TRI->reservedPrivateSegmentBufferReg(MF); + unsigned ReservedOffsetReg + = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF); + + // We tentatively reserve the last registers (skipping the last two + // which may contain VCC). After register allocation, we'll replace + // these with the ones immediately after those which were really + // allocated. In the prologue copies will be inserted from the argument + // to these reserved registers. + Info->setScratchRSrcReg(ReservedBufferReg); + Info->setScratchWaveOffsetReg(ReservedOffsetReg); + } + } else { + unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF); + + // Without HSA, relocations are used for the scratch pointer and the + // buffer resource setup is always inserted in the prologue. Scratch wave + // offset is still in an input SGPR. + Info->setScratchRSrcReg(ReservedBufferReg); + + if (HasStackObjects) { + unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue( + MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); + Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg); + } else { + unsigned ReservedOffsetReg + = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF); + Info->setScratchWaveOffsetReg(ReservedOffsetReg); + } + } + + if (Info->hasWorkItemIDX()) { + unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X); + MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); + CCInfo.AllocateReg(Reg); + } else + llvm_unreachable("workitem id x should always be enabled"); + + if (Info->hasWorkItemIDY()) { + unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y); + MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Info->hasWorkItemIDZ()) { + unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z); + MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); + CCInfo.AllocateReg(Reg); + } + + if (Chains.empty()) + return Chain; + + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); +} + +SDValue SITargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl &Outs, + const SmallVectorImpl &OutVals, + SDLoc DL, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *Info = MF.getInfo(); + + if (Info->getShaderType() == ShaderType::COMPUTE) + return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, + OutVals, DL, DAG); + + Info->setIfReturnsVoid(Outs.size() == 0); + + SmallVector Splits; + SmallVector SplitVals; + + // Split vectors into their elements. + for (unsigned i = 0, e = Outs.size(); i != e; ++i) { + const ISD::OutputArg &Out = Outs[i]; + + if (Out.VT.isVector()) { + MVT VT = Out.VT.getVectorElementType(); + ISD::OutputArg NewOut = Out; + NewOut.Flags.setSplit(); + NewOut.VT = VT; + + // We want the original number of vector elements here, e.g. + // three or five, not four or eight. + unsigned NumElements = Out.ArgVT.getVectorNumElements(); + + for (unsigned j = 0; j != NumElements; ++j) { + SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i], + DAG.getConstant(j, DL, MVT::i32)); + SplitVals.push_back(Elem); + Splits.push_back(NewOut); + NewOut.PartOffset += NewOut.VT.getStoreSize(); + } + } else { + SplitVals.push_back(OutVals[i]); + Splits.push_back(Out); + } + } + + // CCValAssign - represent the assignment of the return value to a location. + SmallVector RVLocs; + + // CCState - Info about the registers and stack slots. + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + // Analyze outgoing return values. + AnalyzeReturn(CCInfo, Splits); + + SDValue Flag; + SmallVector RetOps; + RetOps.push_back(Chain); // Operand #0 = Chain (updated below) + + // Copy the result values into the output registers. + for (unsigned i = 0, realRVLocIdx = 0; + i != RVLocs.size(); + ++i, ++realRVLocIdx) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + SDValue Arg = SplitVals[realRVLocIdx]; + + // Copied from other backends. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); + break; + } + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } + // Update chain and glue. + RetOps[0] = Chain; + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, RetOps); +} + +MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( + MachineInstr * MI, MachineBasicBlock * BB) const { + switch (MI->getOpcode()) { default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); + case AMDGPU::BRANCH: + return BB; + } + return BB; +} - case AMDGPU::CLAMP_SI: - BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::V_MOV_B32_e64)) - .addOperand(MI->getOperand(0)) - .addOperand(MI->getOperand(1)) - // VSRC1-2 are unused, but we still need to fill all the - // operand slots, so we just reuse the VSRC0 operand - .addOperand(MI->getOperand(1)) - .addOperand(MI->getOperand(1)) - .addImm(0) // ABS - .addImm(1) // CLAMP - .addImm(0) // OMOD - .addImm(0); // NEG - MI->eraseFromParent(); - break; +bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { + // This currently forces unfolding various combinations of fsub into fma with + // free fneg'd operands. As long as we have fast FMA (controlled by + // isFMAFasterThanFMulAndFAdd), we should perform these. - case AMDGPU::FABS_SI: - BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::V_MOV_B32_e64)) - .addOperand(MI->getOperand(0)) - .addOperand(MI->getOperand(1)) - // VSRC1-2 are unused, but we still need to fill all the - // operand slots, so we just reuse the VSRC0 operand - .addOperand(MI->getOperand(1)) - .addOperand(MI->getOperand(1)) - .addImm(1) // ABS - .addImm(0) // CLAMP - .addImm(0) // OMOD - .addImm(0); // NEG - MI->eraseFromParent(); - break; + // When fma is quarter rate, for f64 where add / sub are at best half rate, + // most of these combines appear to be cycle neutral but save on instruction + // count / code size. + return true; +} - case AMDGPU::SI_INTERP: - LowerSI_INTERP(MI, *BB, I, MRI); - break; - case AMDGPU::SI_INTERP_CONST: - LowerSI_INTERP_CONST(MI, *BB, I); - break; - case AMDGPU::SI_V_CNDLT: - LowerSI_V_CNDLT(MI, *BB, I, MRI); - break; - case AMDGPU::USE_SGPR_32: - case AMDGPU::USE_SGPR_64: - lowerUSE_SGPR(MI, BB->getParent(), MRI); - MI->eraseFromParent(); - break; - case AMDGPU::VS_LOAD_BUFFER_INDEX: - addLiveIn(MI, BB->getParent(), MRI, TII, AMDGPU::VGPR0); - MI->eraseFromParent(); - break; +EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, + EVT VT) const { + if (!VT.isVector()) { + return MVT::i1; } - return BB; + return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); } -void SITargetLowering::AppendS_WAITCNT(MachineInstr *MI, MachineBasicBlock &BB, - MachineBasicBlock::iterator I) const -{ - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_WAITCNT)) - .addImm(0); +MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const { + return MVT::i32; } -void SITargetLowering::LowerSI_INTERP(MachineInstr *MI, MachineBasicBlock &BB, - MachineBasicBlock::iterator I, MachineRegisterInfo & MRI) const -{ - unsigned tmp = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass); - MachineOperand dst = MI->getOperand(0); - MachineOperand iReg = MI->getOperand(1); - MachineOperand jReg = MI->getOperand(2); - MachineOperand attr_chan = MI->getOperand(3); - MachineOperand attr = MI->getOperand(4); - MachineOperand params = MI->getOperand(5); +// Answering this is somewhat tricky and depends on the specific device which +// have different rates for fma or all f64 operations. +// +// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other +// regardless of which device (although the number of cycles differs between +// devices), so it is always profitable for f64. +// +// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable +// only on full rate devices. Normally, we should prefer selecting v_mad_f32 +// which we can always do even without fused FP ops since it returns the same +// result as the separate operations and since it is always full +// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 +// however does not support denormals, so we do report fma as faster if we have +// a fast fma device and require denormals. +// +bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + VT = VT.getScalarType(); + + if (!VT.isSimple()) + return false; + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: + // This is as fast on some subtargets. However, we always have full rate f32 + // mad available which returns the same result as the separate operations + // which we should prefer over fma. We can't use this if we want to support + // denormals, so only report this in these cases. + return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32(); + case MVT::f64: + return true; + default: + break; + } - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_MOV_B32)) - .addReg(AMDGPU::M0) - .addOperand(params); + return false; +} - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_INTERP_P1_F32), tmp) - .addOperand(iReg) - .addOperand(attr_chan) - .addOperand(attr); +//===----------------------------------------------------------------------===// +// Custom DAG Lowering Operations +//===----------------------------------------------------------------------===// - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_INTERP_P2_F32)) - .addOperand(dst) - .addReg(tmp) - .addOperand(jReg) - .addOperand(attr_chan) - .addOperand(attr); +SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); + case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::LOAD: { + SDValue Result = LowerLOAD(Op, DAG); + assert((!Result.getNode() || + Result.getNode()->getNumValues() == 2) && + "Load should return a value and a chain"); + return Result; + } - MI->eraseFromParent(); + case ISD::FSIN: + case ISD::FCOS: + return LowerTrig(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::FDIV: return LowerFDIV(Op, DAG); + case ISD::STORE: return LowerSTORE(Op, DAG); + case ISD::GlobalAddress: { + MachineFunction &MF = DAG.getMachineFunction(); + SIMachineFunctionInfo *MFI = MF.getInfo(); + return LowerGlobalAddress(MFI, Op, DAG); + } + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); + } + return SDValue(); } -void SITargetLowering::LowerSI_INTERP_CONST(MachineInstr *MI, - MachineBasicBlock &BB, MachineBasicBlock::iterator I) const -{ - MachineOperand dst = MI->getOperand(0); - MachineOperand attr_chan = MI->getOperand(1); - MachineOperand attr = MI->getOperand(2); - MachineOperand params = MI->getOperand(3); +/// \brief Helper function for LowerBRCOND +static SDNode *findUser(SDValue Value, unsigned Opcode) { - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_MOV_B32)) - .addReg(AMDGPU::M0) - .addOperand(params); + SDNode *Parent = Value.getNode(); + for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); + I != E; ++I) { - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_INTERP_MOV_F32)) - .addOperand(dst) - .addOperand(attr_chan) - .addOperand(attr); + if (I.getUse().get() != Value) + continue; - MI->eraseFromParent(); + if (I->getOpcode() == Opcode) + return *I; + } + return nullptr; } -void SITargetLowering::LowerSI_V_CNDLT(MachineInstr *MI, MachineBasicBlock &BB, - MachineBasicBlock::iterator I, MachineRegisterInfo & MRI) const -{ - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_CMP_LT_F32_e32)) - .addOperand(MI->getOperand(1)) - .addReg(AMDGPU::SREG_LIT_0); +SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { - BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::V_CNDMASK_B32)) - .addOperand(MI->getOperand(0)) - .addOperand(MI->getOperand(2)) - .addOperand(MI->getOperand(3)); + SDLoc SL(Op); + FrameIndexSDNode *FINode = cast(Op); + unsigned FrameIndex = FINode->getIndex(); - MI->eraseFromParent(); -} + // A FrameIndex node represents a 32-bit offset into scratch memory. If + // the high bit of a frame index offset were to be set, this would mean + // that it represented an offset of ~2GB * 64 = ~128GB from the start of the + // scratch buffer, with 64 being the number of threads per wave. + // + // If we know the machine uses less than 128GB of scratch, then we can + // amrk the high bit of the FrameIndex node as known zero, + // which is important, because it means in most situations we can + // prove that values derived from FrameIndex nodes are non-negative. + // This enables us to take advantage of more addressing modes when + // accessing scratch buffers, since for scratch reads/writes, the register + // offset must always be positive. -void SITargetLowering::lowerUSE_SGPR(MachineInstr *MI, - MachineFunction * MF, MachineRegisterInfo & MRI) const -{ - const TargetInstrInfo * TII = getTargetMachine().getInstrInfo(); - unsigned dstReg = MI->getOperand(0).getReg(); - int64_t newIndex = MI->getOperand(1).getImm(); - const TargetRegisterClass * dstClass = MRI.getRegClass(dstReg); - unsigned DwordWidth = dstClass->getSize() / 4; - assert(newIndex % DwordWidth == 0 && "USER_SGPR not properly aligned"); - newIndex = newIndex / DwordWidth; + SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32); + if (Subtarget->enableHugeScratchBuffer()) + return TFI; - unsigned newReg = dstClass->getRegister(newIndex); - addLiveIn(MI, MF, MRI, TII, newReg); + return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI, + DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31))); } +/// This transforms the control flow intrinsics to get the branch destination as +/// last parameter, also switches branch target with BR if the need arise +SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, + SelectionDAG &DAG) const { + + SDLoc DL(BRCOND); + + SDNode *Intr = BRCOND.getOperand(1).getNode(); + SDValue Target = BRCOND.getOperand(2); + SDNode *BR = nullptr; + + if (Intr->getOpcode() == ISD::SETCC) { + // As long as we negate the condition everything is fine + SDNode *SetCC = Intr; + assert(SetCC->getConstantOperandVal(1) == 1); + assert(cast(SetCC->getOperand(2).getNode())->get() == + ISD::SETNE); + Intr = SetCC->getOperand(0).getNode(); + + } else { + // Get the target from BR if we don't negate the condition + BR = findUser(BRCOND, ISD::BR); + Target = BR->getOperand(1); + } + + assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN); + + // Build the result and + ArrayRef Res(Intr->value_begin() + 1, Intr->value_end()); + + // operands of the new intrinsic call + SmallVector Ops; + Ops.push_back(BRCOND.getOperand(0)); + Ops.append(Intr->op_begin() + 1, Intr->op_end()); + Ops.push_back(Target); + + // build the new intrinsic call + SDNode *Result = DAG.getNode( + Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, + DAG.getVTList(Res), Ops).getNode(); + + if (BR) { + // Give the branch instruction our target + SDValue Ops[] = { + BR->getOperand(0), + BRCOND.getOperand(2) + }; + SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); + DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); + BR = NewBR.getNode(); + } + + SDValue Chain = SDValue(Result, Result->getNumValues() - 1); + + // Copy the intrinsic results to registers + for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { + SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); + if (!CopyToReg) + continue; + + Chain = DAG.getCopyToReg( + Chain, DL, + CopyToReg->getOperand(1), + SDValue(Result, i - 1), + SDValue()); + + DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); + } + + // Remove the old intrinsic from the chain + DAG.ReplaceAllUsesOfValueWith( + SDValue(Intr, Intr->getNumValues() - 1), + Intr->getOperand(0)); + + return Chain; +} + +SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, + SDValue Op, + SelectionDAG &DAG) const { + GlobalAddressSDNode *GSD = cast(Op); + + if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) + return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); + + SDLoc DL(GSD); + const GlobalValue *GV = GSD->getGlobal(); + MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace()); + + SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); + return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT, GA); +} + +SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL, + SDValue V) const { + // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, + // so we will end up with redundant moves to m0. + // + // We can't use S_MOV_B32, because there is no way to specify m0 as the + // destination register. + // + // We have to use them both. Machine cse will combine all the S_MOV_B32 + // instructions and the register coalescer eliminate the extra copies. + SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V); + return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32), + SDValue(M0, 0), SDValue()); // Glue + // A Null SDValue creates + // a glue result. +} + +SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, + SDValue Op, + MVT VT, + unsigned Offset) const { + SDLoc SL(Op); + SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL, + DAG.getEntryNode(), Offset, false); + // The local size values will have the hi 16-bits as zero. + return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, + DAG.getValueType(VT)); +} + +SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + auto MFI = MF.getInfo(); + const SIRegisterInfo *TRI = + static_cast(Subtarget->getRegisterInfo()); + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + unsigned IntrinsicID = cast(Op.getOperand(0))->getZExtValue(); + + // TODO: Should this propagate fast-math-flags? + + switch (IntrinsicID) { + case Intrinsic::amdgcn_dispatch_ptr: + if (!Subtarget->isAmdHsaOS()) { + DiagnosticInfoUnsupported BadIntrin(*MF.getFunction(), + "hsa intrinsic without hsa target"); + DAG.getContext()->diagnose(BadIntrin); + return DAG.getUNDEF(VT); + } + + return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, + TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_PTR), VT); + + case Intrinsic::r600_read_ngroups_x: + return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::NGROUPS_X, false); + case Intrinsic::r600_read_ngroups_y: + return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::NGROUPS_Y, false); + case Intrinsic::r600_read_ngroups_z: + return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::NGROUPS_Z, false); + case Intrinsic::r600_read_global_size_x: + return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::GLOBAL_SIZE_X, false); + case Intrinsic::r600_read_global_size_y: + return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); + case Intrinsic::r600_read_global_size_z: + return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), + SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); + case Intrinsic::r600_read_local_size_x: + return lowerImplicitZextParam(DAG, Op, MVT::i16, + SI::KernelInputOffsets::LOCAL_SIZE_X); + case Intrinsic::r600_read_local_size_y: + return lowerImplicitZextParam(DAG, Op, MVT::i16, + SI::KernelInputOffsets::LOCAL_SIZE_Y); + case Intrinsic::r600_read_local_size_z: + return lowerImplicitZextParam(DAG, Op, MVT::i16, + SI::KernelInputOffsets::LOCAL_SIZE_Z); + case Intrinsic::AMDGPU_read_workdim: + // Really only 2 bits. + return lowerImplicitZextParam(DAG, Op, MVT::i8, + getImplicitParameterOffset(MFI, GRID_DIM)); + case Intrinsic::r600_read_tgid_x: + return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, + TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT); + case Intrinsic::r600_read_tgid_y: + return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, + TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT); + case Intrinsic::r600_read_tgid_z: + return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, + TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT); + case Intrinsic::r600_read_tidig_x: + return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, + TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT); + case Intrinsic::r600_read_tidig_y: + return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, + TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT); + case Intrinsic::r600_read_tidig_z: + return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, + TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT); + case AMDGPUIntrinsic::SI_load_const: { + SDValue Ops[] = { + Op.getOperand(1), + Op.getOperand(2) + }; + + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo(), + MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, + VT.getStoreSize(), 4); + return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, + Op->getVTList(), Ops, VT, MMO); + } + case AMDGPUIntrinsic::SI_sample: + return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG); + case AMDGPUIntrinsic::SI_sampleb: + return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG); + case AMDGPUIntrinsic::SI_sampled: + return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG); + case AMDGPUIntrinsic::SI_samplel: + return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG); + case AMDGPUIntrinsic::SI_vs_load_input: + return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT, + Op.getOperand(1), + Op.getOperand(2), + Op.getOperand(3)); + + case AMDGPUIntrinsic::AMDGPU_fract: + case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name. + return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1), + DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1))); + case AMDGPUIntrinsic::SI_fs_constant: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); + SDValue Glue = M0.getValue(1); + return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, + DAG.getConstant(2, DL, MVT::i32), // P0 + Op.getOperand(1), Op.getOperand(2), Glue); + } + case AMDGPUIntrinsic::SI_packf16: + if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef()) + return DAG.getUNDEF(MVT::i32); + return Op; + case AMDGPUIntrinsic::SI_fs_interp: { + SDValue IJ = Op.getOperand(4); + SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, + DAG.getConstant(0, DL, MVT::i32)); + SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, + DAG.getConstant(1, DL, MVT::i32)); + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); + SDValue Glue = M0.getValue(1); + SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL, + DAG.getVTList(MVT::f32, MVT::Glue), + I, Op.getOperand(1), Op.getOperand(2), Glue); + Glue = SDValue(P1.getNode(), 1); + return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J, + Op.getOperand(1), Op.getOperand(2), Glue); + } + case Intrinsic::amdgcn_interp_p1: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); + SDValue Glue = M0.getValue(1); + return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3), Glue); + } + case Intrinsic::amdgcn_interp_p2: { + SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); + SDValue Glue = SDValue(M0.getNode(), 1); + return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), + Glue); + } + default: + return AMDGPUTargetLowering::LowerOperation(Op, DAG); + } +} + +SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + SDLoc DL(Op); + SDValue Chain = Op.getOperand(0); + unsigned IntrinsicID = cast(Op.getOperand(1))->getZExtValue(); + + switch (IntrinsicID) { + case AMDGPUIntrinsic::SI_sendmsg: { + Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); + SDValue Glue = Chain.getValue(1); + return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain, + Op.getOperand(2), Glue); + } + case AMDGPUIntrinsic::SI_tbuffer_store: { + SDValue Ops[] = { + Chain, + Op.getOperand(2), + Op.getOperand(3), + Op.getOperand(4), + Op.getOperand(5), + Op.getOperand(6), + Op.getOperand(7), + Op.getOperand(8), + Op.getOperand(9), + Op.getOperand(10), + Op.getOperand(11), + Op.getOperand(12), + Op.getOperand(13), + Op.getOperand(14) + }; + + EVT VT = Op.getOperand(3).getValueType(); + + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo(), + MachineMemOperand::MOStore, + VT.getStoreSize(), 4); + return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL, + Op->getVTList(), Ops, VT, MMO); + } + default: + return SDValue(); + } +} + +SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + LoadSDNode *Load = cast(Op); + + if (Op.getValueType().isVector()) { + assert(Op.getValueType().getVectorElementType() == MVT::i32 && + "Custom lowering for non-i32 vectors hasn't been implemented."); + unsigned NumElements = Op.getValueType().getVectorNumElements(); + assert(NumElements != 2 && "v2 loads are supported for all address spaces."); + + switch (Load->getAddressSpace()) { + default: break; + case AMDGPUAS::CONSTANT_ADDRESS: + if (isMemOpUniform(Load)) + break; + // Non-uniform loads will be selected to MUBUF instructions, so they + // have the same legalization requires ments as global and private + // loads. + // + // Fall-through + case AMDGPUAS::GLOBAL_ADDRESS: + case AMDGPUAS::PRIVATE_ADDRESS: + if (NumElements >= 8) + return SplitVectorLoad(Op, DAG); + + // v4 loads are supported for private and global memory. + if (NumElements <= 4) + break; + // fall-through + case AMDGPUAS::LOCAL_ADDRESS: + // If properly aligned, if we split we might be able to use ds_read_b64. + return SplitVectorLoad(Op, DAG); + } + } + + return AMDGPUTargetLowering::LowerLOAD(Op, DAG); +} + +SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode, + const SDValue &Op, + SelectionDAG &DAG) const { + return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1), + Op.getOperand(2), + Op.getOperand(3), + Op.getOperand(4)); +} + +SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { + if (Op.getValueType() != MVT::i64) + return SDValue(); + + SDLoc DL(Op); + SDValue Cond = Op.getOperand(0); + + SDValue Zero = DAG.getConstant(0, DL, MVT::i32); + SDValue One = DAG.getConstant(1, DL, MVT::i32); + + SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); + SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); + + SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); + SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); + + SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); + + SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); + SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); + + SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); + + SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi); + return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); +} + +// Catch division cases where we can use shortcuts with rcp and rsq +// instructions. +SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + EVT VT = Op.getValueType(); + bool Unsafe = DAG.getTarget().Options.UnsafeFPMath; + + if (const ConstantFPSDNode *CLHS = dyn_cast(LHS)) { + if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) && + CLHS->isExactlyValue(1.0)) { + // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to + // the CI documentation has a worst case error of 1 ulp. + // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to + // use it as long as we aren't trying to use denormals. + + // 1.0 / sqrt(x) -> rsq(x) + // + // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP + // error seems really high at 2^29 ULP. + if (RHS.getOpcode() == ISD::FSQRT) + return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); + + // 1.0 / x -> rcp(x) + return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); + } + } + + if (Unsafe) { + // Turn into multiply by the reciprocal. + // x / y -> x * (1.0 / y) + SDNodeFlags Flags; + Flags.setUnsafeAlgebra(true); + SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); + return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags); + } + + return SDValue(); +} + +SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { + SDValue FastLowered = LowerFastFDIV(Op, DAG); + if (FastLowered.getNode()) + return FastLowered; + + // This uses v_rcp_f32 which does not handle denormals. Let this hit a + // selection error for now rather than do something incorrect. + if (Subtarget->hasFP32Denormals()) + return SDValue(); + + SDLoc SL(Op); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + + SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); + + const APFloat K0Val(BitsToFloat(0x6f800000)); + const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); + + const APFloat K1Val(BitsToFloat(0x2f800000)); + const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); + + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); + + SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); + + SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); + + // TODO: Should this propagate fast-math-flags? + + r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); + + SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); + + SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); + + return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); +} + +SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { + if (DAG.getTarget().Options.UnsafeFPMath) + return LowerFastFDIV(Op, DAG); + + SDLoc SL(Op); + SDValue X = Op.getOperand(0); + SDValue Y = Op.getOperand(1); + + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); + + SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); + + SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); + + SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); + + SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); + + SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); + + SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); + + SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); + + SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); + + SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); + SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); + + SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, + NegDivScale0, Mul, DivScale1); + + SDValue Scale; + + if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { + // Workaround a hardware bug on SI where the condition output from div_scale + // is not usable. + + const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); + + // Figure out if the scale to use for div_fmas. + SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); + SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); + SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); + SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); + + SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); + SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); + + SDValue Scale0Hi + = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); + SDValue Scale1Hi + = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); + + SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); + SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); + Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); + } else { + Scale = DivScale1.getValue(1); + } + + SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, + Fma4, Fma3, Mul, Scale); + + return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); +} + +SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + + if (VT == MVT::f32) + return LowerFDIV32(Op, DAG); + + if (VT == MVT::f64) + return LowerFDIV64(Op, DAG); + + llvm_unreachable("Unexpected type for fdiv"); +} + +SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + StoreSDNode *Store = cast(Op); + EVT VT = Store->getMemoryVT(); + + // These stores are legal. + if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { + if (VT.isVector() && VT.getVectorNumElements() > 4) + return ScalarizeVectorStore(Op, DAG); + return SDValue(); + } + + SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG); + if (Ret.getNode()) + return Ret; + + if (VT.isVector() && VT.getVectorNumElements() >= 8) + return SplitVectorStore(Op, DAG); + + if (VT == MVT::i1) + return DAG.getTruncStore(Store->getChain(), DL, + DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), + Store->getBasePtr(), MVT::i1, Store->getMemOperand()); + + return SDValue(); +} + +SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue Arg = Op.getOperand(0); + // TODO: Should this propagate fast-math-flags? + SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, + DAG.getNode(ISD::FMUL, DL, VT, Arg, + DAG.getConstantFP(0.5/M_PI, DL, + VT))); + + switch (Op.getOpcode()) { + case ISD::FCOS: + return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); + case ISD::FSIN: + return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); + default: + llvm_unreachable("Wrong trig opcode"); + } +} + +//===----------------------------------------------------------------------===// +// Custom DAG optimizations +//===----------------------------------------------------------------------===// + +SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + EVT ScalarVT = VT.getScalarType(); + if (ScalarVT != MVT::f32) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + SDValue Src = N->getOperand(0); + EVT SrcVT = Src.getValueType(); + + // TODO: We could try to match extracting the higher bytes, which would be + // easier if i8 vectors weren't promoted to i32 vectors, particularly after + // types are legalized. v4i8 -> v4f32 is probably the only case to worry + // about in practice. + if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { + if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { + SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); + DCI.AddToWorklist(Cvt.getNode()); + return Cvt; + } + } + + // We are primarily trying to catch operations on illegal vector types + // before they are expanded. + // For scalars, we can use the more flexible method of checking masked bits + // after legalization. + if (!DCI.isBeforeLegalize() || + !SrcVT.isVector() || + SrcVT.getVectorElementType() != MVT::i8) { + return SDValue(); + } + + assert(DCI.isBeforeLegalize() && "Unexpected legal type"); + + // Weird sized vectors are a pain to handle, but we know 3 is really the same + // size as 4. + unsigned NElts = SrcVT.getVectorNumElements(); + if (!SrcVT.isSimple() && NElts != 3) + return SDValue(); + + // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to + // prevent a mess from expanding to v4i32 and repacking. + if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) { + EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT); + EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT); + EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts); + LoadSDNode *Load = cast(Src); + + unsigned AS = Load->getAddressSpace(); + unsigned Align = Load->getAlignment(); + Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext()); + unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); + + // Don't try to replace the load if we have to expand it due to alignment + // problems. Otherwise we will end up scalarizing the load, and trying to + // repack into the vector for no real reason. + if (Align < ABIAlignment && + !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) { + return SDValue(); + } + + SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT, + Load->getChain(), + Load->getBasePtr(), + LoadVT, + Load->getMemOperand()); + + // Make sure successors of the original load stay after it by updating + // them to use the new Chain. + DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1)); + + SmallVector Elts; + if (RegVT.isVector()) + DAG.ExtractVectorElements(NewLoad, Elts); + else + Elts.push_back(NewLoad); + + SmallVector Ops; + + unsigned EltIdx = 0; + for (SDValue Elt : Elts) { + unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx); + for (unsigned I = 0; I < ComponentsInElt; ++I) { + unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I; + SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt); + DCI.AddToWorklist(Cvt.getNode()); + Ops.push_back(Cvt); + } + + ++EltIdx; + } + + assert(Ops.size() == NElts); + + return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops); + } + + return SDValue(); +} + +/// \brief Return true if the given offset Size in bytes can be folded into +/// the immediate offsets of a memory instruction for the given address space. +static bool canFoldOffset(unsigned OffsetSize, unsigned AS, + const AMDGPUSubtarget &STI) { + switch (AS) { + case AMDGPUAS::GLOBAL_ADDRESS: { + // MUBUF instructions a 12-bit offset in bytes. + return isUInt<12>(OffsetSize); + } + case AMDGPUAS::CONSTANT_ADDRESS: { + // SMRD instructions have an 8-bit offset in dwords on SI and + // a 20-bit offset in bytes on VI. + if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) + return isUInt<20>(OffsetSize); + else + return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4); + } + case AMDGPUAS::LOCAL_ADDRESS: + case AMDGPUAS::REGION_ADDRESS: { + // The single offset versions have a 16-bit offset in bytes. + return isUInt<16>(OffsetSize); + } + case AMDGPUAS::PRIVATE_ADDRESS: + // Indirect register addressing does not use any offsets. + default: + return 0; + } +} + +// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) + +// This is a variant of +// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), +// +// The normal DAG combiner will do this, but only if the add has one use since +// that would increase the number of instructions. +// +// This prevents us from seeing a constant offset that can be folded into a +// memory instruction's addressing mode. If we know the resulting add offset of +// a pointer can be folded into an addressing offset, we can replace the pointer +// operand with the add of new constant offset. This eliminates one of the uses, +// and may allow the remaining use to also be simplified. +// +SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, + unsigned AddrSpace, + DAGCombinerInfo &DCI) const { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + if (N0.getOpcode() != ISD::ADD) + return SDValue(); + + const ConstantSDNode *CN1 = dyn_cast(N1); + if (!CN1) + return SDValue(); + + const ConstantSDNode *CAdd = dyn_cast(N0.getOperand(1)); + if (!CAdd) + return SDValue(); + + // If the resulting offset is too large, we can't fold it into the addressing + // mode offset. + APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); + if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget)) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + EVT VT = N->getValueType(0); + + SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); + SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); + + return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset); +} + +SDValue SITargetLowering::performAndCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (DCI.isBeforeLegalize()) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + + // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> + // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + if (LHS.getOpcode() == ISD::SETCC && + RHS.getOpcode() == ISD::SETCC) { + ISD::CondCode LCC = cast(LHS.getOperand(2))->get(); + ISD::CondCode RCC = cast(RHS.getOperand(2))->get(); + + SDValue X = LHS.getOperand(0); + SDValue Y = RHS.getOperand(0); + if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) + return SDValue(); + + if (LCC == ISD::SETO) { + if (X != LHS.getOperand(1)) + return SDValue(); + + if (RCC == ISD::SETUNE) { + const ConstantFPSDNode *C1 = dyn_cast(RHS.getOperand(1)); + if (!C1 || !C1->isInfinity() || C1->isNegative()) + return SDValue(); + + const uint32_t Mask = SIInstrFlags::N_NORMAL | + SIInstrFlags::N_SUBNORMAL | + SIInstrFlags::N_ZERO | + SIInstrFlags::P_ZERO | + SIInstrFlags::P_SUBNORMAL | + SIInstrFlags::P_NORMAL; + + static_assert(((~(SIInstrFlags::S_NAN | + SIInstrFlags::Q_NAN | + SIInstrFlags::N_INFINITY | + SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, + "mask not equal"); + + SDLoc DL(N); + return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, + X, DAG.getConstant(Mask, DL, MVT::i32)); + } + } + } + + return SDValue(); +} + +SDValue SITargetLowering::performOrCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) + if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && + RHS.getOpcode() == AMDGPUISD::FP_CLASS) { + SDValue Src = LHS.getOperand(0); + if (Src != RHS.getOperand(0)) + return SDValue(); + + const ConstantSDNode *CLHS = dyn_cast(LHS.getOperand(1)); + const ConstantSDNode *CRHS = dyn_cast(RHS.getOperand(1)); + if (!CLHS || !CRHS) + return SDValue(); + + // Only 10 bits are used. + static const uint32_t MaxMask = 0x3ff; + + uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; + SDLoc DL(N); + return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, + Src, DAG.getConstant(NewMask, DL, MVT::i32)); + } + + return SDValue(); +} + +SDValue SITargetLowering::performClassCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue Mask = N->getOperand(1); + + // fp_class x, 0 -> false + if (const ConstantSDNode *CMask = dyn_cast(Mask)) { + if (CMask->isNullValue()) + return DAG.getConstant(0, SDLoc(N), MVT::i1); + } + + return SDValue(); +} + +static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { + switch (Opc) { + case ISD::FMAXNUM: + return AMDGPUISD::FMAX3; + case ISD::SMAX: + return AMDGPUISD::SMAX3; + case ISD::UMAX: + return AMDGPUISD::UMAX3; + case ISD::FMINNUM: + return AMDGPUISD::FMIN3; + case ISD::SMIN: + return AMDGPUISD::SMIN3; + case ISD::UMIN: + return AMDGPUISD::UMIN3; + default: + llvm_unreachable("Not a min/max opcode"); + } +} + +SDValue SITargetLowering::performMin3Max3Combine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + + unsigned Opc = N->getOpcode(); + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // Only do this if the inner op has one use since this will just increases + // register pressure for no benefit. + + // max(max(a, b), c) + if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { + SDLoc DL(N); + return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), + DL, + N->getValueType(0), + Op0.getOperand(0), + Op0.getOperand(1), + Op1); + } + + // max(a, max(b, c)) + if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { + SDLoc DL(N); + return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), + DL, + N->getValueType(0), + Op0, + Op1.getOperand(0), + Op1.getOperand(1)); + } + + return SDValue(); +} + +SDValue SITargetLowering::performSetCCCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + EVT VT = LHS.getValueType(); + + if (VT != MVT::f32 && VT != MVT::f64) + return SDValue(); + + // Match isinf pattern + // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) + ISD::CondCode CC = cast(N->getOperand(2))->get(); + if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) { + const ConstantFPSDNode *CRHS = dyn_cast(RHS); + if (!CRHS) + return SDValue(); + + const APFloat &APF = CRHS->getValueAPF(); + if (APF.isInfinity() && !APF.isNegative()) { + unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; + return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), + DAG.getConstant(Mask, SL, MVT::i32)); + } + } + + return SDValue(); +} + +SDValue SITargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + switch (N->getOpcode()) { + default: + return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); + case ISD::SETCC: + return performSetCCCombine(N, DCI); + case ISD::FMAXNUM: // TODO: What about fmax_legacy? + case ISD::FMINNUM: + case ISD::SMAX: + case ISD::SMIN: + case ISD::UMAX: + case ISD::UMIN: { + if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG && + N->getValueType(0) != MVT::f64 && + getTargetMachine().getOptLevel() > CodeGenOpt::None) + return performMin3Max3Combine(N, DCI); + break; + } + + case AMDGPUISD::CVT_F32_UBYTE0: + case AMDGPUISD::CVT_F32_UBYTE1: + case AMDGPUISD::CVT_F32_UBYTE2: + case AMDGPUISD::CVT_F32_UBYTE3: { + unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; + + SDValue Src = N->getOperand(0); + APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); + + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLO.ShrinkDemandedConstant(Src, Demanded) || + TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) { + DCI.CommitTargetLoweringOpt(TLO); + } + + break; + } + + case ISD::UINT_TO_FP: { + return performUCharToFloatCombine(N, DCI); + } + case ISD::FADD: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + break; + + EVT VT = N->getValueType(0); + if (VT != MVT::f32) + break; + + // Only do this if we are not trying to support denormals. v_mad_f32 does + // not support denormals ever. + if (Subtarget->hasFP32Denormals()) + break; + + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + // These should really be instruction patterns, but writing patterns with + // source modiifiers is a pain. + + // fadd (fadd (a, a), b) -> mad 2.0, a, b + if (LHS.getOpcode() == ISD::FADD) { + SDValue A = LHS.getOperand(0); + if (A == LHS.getOperand(1)) { + const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); + return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS); + } + } + + // fadd (b, fadd (a, a)) -> mad 2.0, a, b + if (RHS.getOpcode() == ISD::FADD) { + SDValue A = RHS.getOperand(0); + if (A == RHS.getOperand(1)) { + const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); + return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS); + } + } + + return SDValue(); + } + case ISD::FSUB: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + break; + + EVT VT = N->getValueType(0); + + // Try to get the fneg to fold into the source modifier. This undoes generic + // DAG combines and folds them into the mad. + // + // Only do this if we are not trying to support denormals. v_mad_f32 does + // not support denormals ever. + if (VT == MVT::f32 && + !Subtarget->hasFP32Denormals()) { + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + if (LHS.getOpcode() == ISD::FADD) { + // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) + + SDValue A = LHS.getOperand(0); + if (A == LHS.getOperand(1)) { + const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); + SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS); + + return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS); + } + } + + if (RHS.getOpcode() == ISD::FADD) { + // (fsub c, (fadd a, a)) -> mad -2.0, a, c + + SDValue A = RHS.getOperand(0); + if (A == RHS.getOperand(1)) { + const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32); + return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS); + } + } + + return SDValue(); + } + + break; + } + case ISD::LOAD: + case ISD::STORE: + case ISD::ATOMIC_LOAD: + case ISD::ATOMIC_STORE: + case ISD::ATOMIC_CMP_SWAP: + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics. + if (DCI.isBeforeLegalize()) + break; + + MemSDNode *MemNode = cast(N); + SDValue Ptr = MemNode->getBasePtr(); + + // TODO: We could also do this for multiplies. + unsigned AS = MemNode->getAddressSpace(); + if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) { + SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI); + if (NewPtr) { + SmallVector NewOps(MemNode->op_begin(), MemNode->op_end()); + + NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; + return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0); + } + } + break; + } + case ISD::AND: + return performAndCombine(N, DCI); + case ISD::OR: + return performOrCombine(N, DCI); + case AMDGPUISD::FP_CLASS: + return performClassCombine(N, DCI); + } + return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); +} + +/// \brief Analyze the possible immediate value Op +/// +/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate +/// and the immediate value if it's a literal immediate +int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { + + const SIInstrInfo *TII = + static_cast(Subtarget->getInstrInfo()); + + if (const ConstantSDNode *Node = dyn_cast(N)) { + if (TII->isInlineConstant(Node->getAPIntValue())) + return 0; + + uint64_t Val = Node->getZExtValue(); + return isUInt<32>(Val) ? Val : -1; + } + + if (const ConstantFPSDNode *Node = dyn_cast(N)) { + if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt())) + return 0; + + if (Node->getValueType(0) == MVT::f32) + return FloatToBits(Node->getValueAPF().convertToFloat()); + + return -1; + } + + return -1; +} + +/// \brief Helper function for adjustWritemask +static unsigned SubIdx2Lane(unsigned Idx) { + switch (Idx) { + default: return 0; + case AMDGPU::sub0: return 0; + case AMDGPU::sub1: return 1; + case AMDGPU::sub2: return 2; + case AMDGPU::sub3: return 3; + } +} + +/// \brief Adjust the writemask of MIMG instructions +void SITargetLowering::adjustWritemask(MachineSDNode *&Node, + SelectionDAG &DAG) const { + SDNode *Users[4] = { }; + unsigned Lane = 0; + unsigned OldDmask = Node->getConstantOperandVal(0); + unsigned NewDmask = 0; + + // Try to figure out the used register components + for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); + I != E; ++I) { + + // Abort if we can't understand the usage + if (!I->isMachineOpcode() || + I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) + return; + + // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used. + // Note that subregs are packed, i.e. Lane==0 is the first bit set + // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit + // set, etc. + Lane = SubIdx2Lane(I->getConstantOperandVal(1)); + + // Set which texture component corresponds to the lane. + unsigned Comp; + for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { + assert(Dmask); + Comp = countTrailingZeros(Dmask); + Dmask &= ~(1 << Comp); + } + + // Abort if we have more than one user per component + if (Users[Lane]) + return; + + Users[Lane] = *I; + NewDmask |= 1 << Comp; + } + + // Abort if there's no change + if (NewDmask == OldDmask) + return; + + // Adjust the writemask in the node + std::vector Ops; + Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); + Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end()); + Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops); + + // If we only got one lane, replace it with a copy + // (if NewDmask has only one bit set...) + if (NewDmask && (NewDmask & (NewDmask-1)) == 0) { + SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(), + MVT::i32); + SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, + SDLoc(), Users[Lane]->getValueType(0), + SDValue(Node, 0), RC); + DAG.ReplaceAllUsesWith(Users[Lane], Copy); + return; + } + + // Update the users of the node with the new indices + for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { + + SDNode *User = Users[i]; + if (!User) + continue; + + SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); + DAG.UpdateNodeOperands(User, User->getOperand(0), Op); + + switch (Idx) { + default: break; + case AMDGPU::sub0: Idx = AMDGPU::sub1; break; + case AMDGPU::sub1: Idx = AMDGPU::sub2; break; + case AMDGPU::sub2: Idx = AMDGPU::sub3; break; + } + } +} + +static bool isFrameIndexOp(SDValue Op) { + if (Op.getOpcode() == ISD::AssertZext) + Op = Op.getOperand(0); + + return isa(Op); +} + +/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) +/// with frame index operands. +/// LLVM assumes that inputs are to these instructions are registers. +void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, + SelectionDAG &DAG) const { + + SmallVector Ops; + for (unsigned i = 0; i < Node->getNumOperands(); ++i) { + if (!isFrameIndexOp(Node->getOperand(i))) { + Ops.push_back(Node->getOperand(i)); + continue; + } + + SDLoc DL(Node); + Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, + Node->getOperand(i).getValueType(), + Node->getOperand(i)), 0)); + } + + DAG.UpdateNodeOperands(Node, Ops); +} + +/// \brief Fold the instructions after selecting them. +SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, + SelectionDAG &DAG) const { + const SIInstrInfo *TII = + static_cast(Subtarget->getInstrInfo()); + + if (TII->isMIMG(Node->getMachineOpcode())) + adjustWritemask(Node, DAG); + + if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG || + Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) { + legalizeTargetIndependentNode(Node, DAG); + return Node; + } + return Node; +} + +/// \brief Assign the register class depending on the number of +/// bits set in the writemask +void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, + SDNode *Node) const { + const SIInstrInfo *TII = + static_cast(Subtarget->getInstrInfo()); + + MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); + + if (TII->isVOP3(MI->getOpcode())) { + // Make sure constant bus requirements are respected. + TII->legalizeOperandsVOP3(MRI, MI); + return; + } + + if (TII->isMIMG(*MI)) { + unsigned VReg = MI->getOperand(0).getReg(); + unsigned Writemask = MI->getOperand(1).getImm(); + unsigned BitsSet = 0; + for (unsigned i = 0; i < 4; ++i) + BitsSet += Writemask & (1 << i) ? 1 : 0; + + const TargetRegisterClass *RC; + switch (BitsSet) { + default: return; + case 1: RC = &AMDGPU::VGPR_32RegClass; break; + case 2: RC = &AMDGPU::VReg_64RegClass; break; + case 3: RC = &AMDGPU::VReg_96RegClass; break; + } + + unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet); + MI->setDesc(TII->get(NewOpcode)); + MRI.setRegClass(VReg, RC); + return; + } + + // Replace unused atomics with the no return version. + int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode()); + if (NoRetAtomicOp != -1) { + if (!Node->hasAnyUseOfValue(0)) { + MI->setDesc(TII->get(NoRetAtomicOp)); + MI->RemoveOperand(0); + } + + return; + } +} + +static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) { + SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); + return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); +} + +MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, + SDLoc DL, + SDValue Ptr) const { + const SIInstrInfo *TII = + static_cast(Subtarget->getInstrInfo()); + + // Build the half of the subregister with the constants before building the + // full 128-bit register. If we are building multiple resource descriptors, + // this will allow CSEing of the 2-component register. + const SDValue Ops0[] = { + DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), + buildSMovImm32(DAG, DL, 0), + DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), + buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), + DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) + }; + + SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, + MVT::v2i32, Ops0), 0); + + // Combine the constants and the pointer. + const SDValue Ops1[] = { + DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), + Ptr, + DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), + SubRegHi, + DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) + }; + + return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); +} + +/// \brief Return a resource descriptor with the 'Add TID' bit enabled +/// The TID (Thread ID) is multiplied by the stride value (bits [61:48] +/// of the resource descriptor) to create an offset, which is added to +/// the resource pointer. +MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, + SDLoc DL, + SDValue Ptr, + uint32_t RsrcDword1, + uint64_t RsrcDword2And3) const { + SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); + SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); + if (RsrcDword1) { + PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, + DAG.getConstant(RsrcDword1, DL, MVT::i32)), + 0); + } + + SDValue DataLo = buildSMovImm32(DAG, DL, + RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); + SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); + + const SDValue Ops[] = { + DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), + PtrLo, + DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), + PtrHi, + DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), + DataLo, + DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), + DataHi, + DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) + }; + + return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); +} + +SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG, + const TargetRegisterClass *RC, + unsigned Reg, EVT VT) const { + SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT); + + return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), + cast(VReg)->getReg(), VT); +} + +//===----------------------------------------------------------------------===// +// SI Inline Assembly Support +//===----------------------------------------------------------------------===// + +std::pair +SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 's': + case 'r': + switch (VT.getSizeInBits()) { + default: + return std::make_pair(0U, nullptr); + case 32: + return std::make_pair(0U, &AMDGPU::SGPR_32RegClass); + case 64: + return std::make_pair(0U, &AMDGPU::SGPR_64RegClass); + case 128: + return std::make_pair(0U, &AMDGPU::SReg_128RegClass); + case 256: + return std::make_pair(0U, &AMDGPU::SReg_256RegClass); + } + + case 'v': + switch (VT.getSizeInBits()) { + default: + return std::make_pair(0U, nullptr); + case 32: + return std::make_pair(0U, &AMDGPU::VGPR_32RegClass); + case 64: + return std::make_pair(0U, &AMDGPU::VReg_64RegClass); + case 96: + return std::make_pair(0U, &AMDGPU::VReg_96RegClass); + case 128: + return std::make_pair(0U, &AMDGPU::VReg_128RegClass); + case 256: + return std::make_pair(0U, &AMDGPU::VReg_256RegClass); + case 512: + return std::make_pair(0U, &AMDGPU::VReg_512RegClass); + } + } + } + + if (Constraint.size() > 1) { + const TargetRegisterClass *RC = nullptr; + if (Constraint[1] == 'v') { + RC = &AMDGPU::VGPR_32RegClass; + } else if (Constraint[1] == 's') { + RC = &AMDGPU::SGPR_32RegClass; + } + + if (RC) { + uint32_t Idx; + bool Failed = Constraint.substr(2).getAsInteger(10, Idx); + if (!Failed && Idx < RC->getNumRegs()) + return std::make_pair(RC->getRegister(Idx), RC); + } + } + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +SITargetLowering::ConstraintType +SITargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: break; + case 's': + case 'v': + return C_RegisterClass; + } + } + return TargetLowering::getConstraintType(Constraint); +}