X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FSupport%2FAPInt.cpp;h=0d4e0f9f752aff20b341283196aacadcb2e871b8;hp=e13011faeac3f1fe5f3ac29c843138d6f832ed03;hb=969b739fb9ff89603a3cb3acc6af0eb561cfa5d4;hpb=bfde7d6b9ea58a59edf61a5f93b2a86e5a9dae37 diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index e13011faeac..0d4e0f9f752 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -14,134 +14,129 @@ #define DEBUG_TYPE "apint" #include "llvm/ADT/APInt.h" +#include "llvm/ADT/StringRef.h" #include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/SmallString.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" -#include +#include "llvm/Support/raw_ostream.h" +#include #include #include #include -#include - using namespace llvm; -/// This enumeration just provides for internal constants used in this -/// translation unit. -enum { - MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified - ///< Note that this must remain synchronized with IntegerType::MIN_INT_BITS - MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified - ///< Note that this must remain synchronized with IntegerType::MAX_INT_BITS -}; - /// A utility function for allocating memory, checking for allocation failures, /// and ensuring the contents are zeroed. -inline static uint64_t* getClearedMemory(uint32_t numWords) { +inline static uint64_t* getClearedMemory(unsigned numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); memset(result, 0, numWords * sizeof(uint64_t)); return result; } -/// A utility function for allocating memory and checking for allocation +/// A utility function for allocating memory and checking for allocation /// failure. The content is not zeroed. -inline static uint64_t* getMemory(uint32_t numWords) { +inline static uint64_t* getMemory(unsigned numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); return result; } -APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned) - : BitWidth(numBits), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); - if (isSingleWord()) - VAL = val; - else { - pVal = getClearedMemory(getNumWords()); - pVal[0] = val; - if (isSigned && int64_t(val) < 0) - for (unsigned i = 1; i < getNumWords(); ++i) - pVal[i] = -1ULL; +/// A utility function that converts a character to a digit. +inline static unsigned getDigit(char cdigit, uint8_t radix) { + unsigned r; + + if (radix == 16 || radix == 36) { + r = cdigit - '0'; + if (r <= 9) + return r; + + r = cdigit - 'A'; + if (r <= radix - 11U) + return r + 10; + + r = cdigit - 'a'; + if (r <= radix - 11U) + return r + 10; + + radix = 10; } - clearUnusedBits(); + + r = cdigit - '0'; + if (r < radix) + return r; + + return -1U; } -APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]) - : BitWidth(numBits), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); - assert(bigVal && "Null pointer detected!"); + +void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { + pVal = getClearedMemory(getNumWords()); + pVal[0] = val; + if (isSigned && int64_t(val) < 0) + for (unsigned i = 1; i < getNumWords(); ++i) + pVal[i] = -1ULL; +} + +void APInt::initSlowCase(const APInt& that) { + pVal = getMemory(getNumWords()); + memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); +} + +void APInt::initFromArray(ArrayRef bigVal) { + assert(BitWidth && "Bitwidth too small"); + assert(bigVal.data() && "Null pointer detected!"); if (isSingleWord()) VAL = bigVal[0]; else { // Get memory, cleared to 0 pVal = getClearedMemory(getNumWords()); // Calculate the number of words to copy - uint32_t words = std::min(numWords, getNumWords()); + unsigned words = std::min(bigVal.size(), getNumWords()); // Copy the words from bigVal to pVal - memcpy(pVal, bigVal, words * APINT_WORD_SIZE); + memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); } // Make sure unused high bits are cleared clearUnusedBits(); } -APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, - uint8_t radix) - : BitWidth(numbits), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); - fromString(numbits, StrStart, slen, radix); +APInt::APInt(unsigned numBits, ArrayRef bigVal) + : BitWidth(numBits), VAL(0) { + initFromArray(bigVal); } -APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix) - : BitWidth(numbits), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); - assert(!Val.empty() && "String empty?"); - fromString(numbits, Val.c_str(), (uint32_t)Val.size(), radix); -} - -APInt::APInt(const APInt& that) - : BitWidth(that.BitWidth), VAL(0) { - assert(BitWidth >= MIN_INT_BITS && "bitwidth too small"); - assert(BitWidth <= MAX_INT_BITS && "bitwidth too large"); - if (isSingleWord()) - VAL = that.VAL; - else { - pVal = getMemory(getNumWords()); - memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); - } +APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) + : BitWidth(numBits), VAL(0) { + initFromArray(makeArrayRef(bigVal, numWords)); } -APInt::~APInt() { - if (!isSingleWord() && pVal) - delete [] pVal; +APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) + : BitWidth(numbits), VAL(0) { + assert(BitWidth && "Bitwidth too small"); + fromString(numbits, Str, radix); } -APInt& APInt::operator=(const APInt& RHS) { +APInt& APInt::AssignSlowCase(const APInt& RHS) { // Don't do anything for X = X if (this == &RHS) return *this; - // If the bitwidths are the same, we can avoid mucking with memory if (BitWidth == RHS.getBitWidth()) { - if (isSingleWord()) - VAL = RHS.VAL; - else - memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); + // assume same bit-width single-word case is already handled + assert(!isSingleWord()); + memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); return *this; } - if (isSingleWord()) - if (RHS.isSingleWord()) - VAL = RHS.VAL; - else { - VAL = 0; - pVal = getMemory(RHS.getNumWords()); - memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); - } - else if (getNumWords() == RHS.getNumWords()) + if (isSingleWord()) { + // assume case where both are single words is already handled + assert(!RHS.isSingleWord()); + VAL = 0; + pVal = getMemory(RHS.getNumWords()); + memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); + } else if (getNumWords() == RHS.getNumWords()) memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); else if (RHS.isSingleWord()) { delete [] pVal; @@ -156,7 +151,7 @@ APInt& APInt::operator=(const APInt& RHS) { } APInt& APInt::operator=(uint64_t RHS) { - if (isSingleWord()) + if (isSingleWord()) VAL = RHS; else { pVal[0] = RHS; @@ -168,23 +163,23 @@ APInt& APInt::operator=(uint64_t RHS) { /// Profile - This method 'profiles' an APInt for use with FoldingSet. void APInt::Profile(FoldingSetNodeID& ID) const { ID.AddInteger(BitWidth); - + if (isSingleWord()) { ID.AddInteger(VAL); return; } - uint32_t NumWords = getNumWords(); + unsigned NumWords = getNumWords(); for (unsigned i = 0; i < NumWords; ++i) ID.AddInteger(pVal[i]); } -/// add_1 - This function adds a single "digit" integer, y, to the multiple +/// add_1 - This function adds a single "digit" integer, y, to the multiple /// "digit" integer array, x[]. x[] is modified to reflect the addition and /// 1 is returned if there is a carry out, otherwise 0 is returned. /// @returns the carry of the addition. -static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { - for (uint32_t i = 0; i < len; ++i) { +static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { + for (unsigned i = 0; i < len; ++i) { dest[i] = y + x[i]; if (dest[i] < y) y = 1; // Carry one to next digit. @@ -198,24 +193,24 @@ static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { /// @brief Prefix increment operator. Increments the APInt by one. APInt& APInt::operator++() { - if (isSingleWord()) + if (isSingleWord()) ++VAL; else add_1(pVal, pVal, getNumWords(), 1); return clearUnusedBits(); } -/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from -/// the multi-digit integer array, x[], propagating the borrowed 1 value until +/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from +/// the multi-digit integer array, x[], propagating the borrowed 1 value until /// no further borrowing is neeeded or it runs out of "digits" in x. The result /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. /// In other words, if y > x then this function returns 1, otherwise 0. /// @returns the borrow out of the subtraction -static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) { - for (uint32_t i = 0; i < len; ++i) { +static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { + for (unsigned i = 0; i < len; ++i) { uint64_t X = x[i]; x[i] -= y; - if (y > X) + if (y > X) y = 1; // We have to "borrow 1" from next "digit" else { y = 0; // No need to borrow @@ -227,7 +222,7 @@ static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) { /// @brief Prefix decrement operator. Decrements the APInt by one. APInt& APInt::operator--() { - if (isSingleWord()) + if (isSingleWord()) --VAL; else sub_1(pVal, getNumWords(), 1); @@ -235,13 +230,13 @@ APInt& APInt::operator--() { } /// add - This function adds the integer array x to the integer array Y and -/// places the result in dest. +/// places the result in dest. /// @returns the carry out from the addition /// @brief General addition of 64-bit integer arrays -static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, - uint32_t len) { +static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, + unsigned len) { bool carry = false; - for (uint32_t i = 0; i< len; ++i) { + for (unsigned i = 0; i< len; ++i) { uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x dest[i] = x[i] + y[i] + carry; carry = dest[i] < limit || (carry && dest[i] == limit); @@ -251,10 +246,10 @@ static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, /// Adds the RHS APint to this APInt. /// @returns this, after addition of RHS. -/// @brief Addition assignment operator. +/// @brief Addition assignment operator. APInt& APInt::operator+=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) + if (isSingleWord()) VAL += RHS.VAL; else { add(pVal, pVal, RHS.pVal, getNumWords()); @@ -262,13 +257,13 @@ APInt& APInt::operator+=(const APInt& RHS) { return clearUnusedBits(); } -/// Subtracts the integer array y from the integer array x +/// Subtracts the integer array y from the integer array x /// @returns returns the borrow out. /// @brief Generalized subtraction of 64-bit integer arrays. -static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, - uint32_t len) { +static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, + unsigned len) { bool borrow = false; - for (uint32_t i = 0; i < len; ++i) { + for (unsigned i = 0; i < len; ++i) { uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; borrow = y[i] > x_tmp || (borrow && x[i] == 0); dest[i] = x_tmp - y[i]; @@ -278,27 +273,27 @@ static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, /// Subtracts the RHS APInt from this APInt /// @returns this, after subtraction -/// @brief Subtraction assignment operator. +/// @brief Subtraction assignment operator. APInt& APInt::operator-=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) + if (isSingleWord()) VAL -= RHS.VAL; else sub(pVal, pVal, RHS.pVal, getNumWords()); return clearUnusedBits(); } -/// Multiplies an integer array, x by a a uint64_t integer and places the result -/// into dest. +/// Multiplies an integer array, x, by a uint64_t integer and places the result +/// into dest. /// @returns the carry out of the multiplication. /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. -static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { +static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { // Split y into high 32-bit part (hy) and low 32-bit part (ly) uint64_t ly = y & 0xffffffffULL, hy = y >> 32; uint64_t carry = 0; // For each digit of x. - for (uint32_t i = 0; i < len; ++i) { + for (unsigned i = 0; i < len; ++i) { // Split x into high and low words uint64_t lx = x[i] & 0xffffffffULL; uint64_t hx = x[i] >> 32; @@ -311,28 +306,28 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { // Determine if the add above introduces carry. hasCarry = (dest[i] < carry) ? 1 : 0; carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); - // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + + // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + // (2^32 - 1) + 2^32 = 2^64. hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); carry += (lx * hy) & 0xffffffffULL; dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); - carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + + carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + (carry >> 32) + ((lx * hy) >> 32) + hx * hy; } return carry; } -/// Multiplies integer array x by integer array y and stores the result into +/// Multiplies integer array x by integer array y and stores the result into /// the integer array dest. Note that dest's size must be >= xlen + ylen. /// @brief Generalized multiplicate of integer arrays. -static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[], - uint32_t ylen) { +static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], + unsigned ylen) { dest[xlen] = mul_1(dest, x, xlen, y[0]); - for (uint32_t i = 1; i < ylen; ++i) { + for (unsigned i = 1; i < ylen; ++i) { uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; uint64_t carry = 0, lx = 0, hx = 0; - for (uint32_t j = 0; j < xlen; ++j) { + for (unsigned j = 0; j < xlen; ++j) { lx = x[j] & 0xffffffffULL; hx = x[j] >> 32; // hasCarry - A flag to indicate if has carry. @@ -349,7 +344,7 @@ static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[], resul = (carry << 32) | (resul & 0xffffffffULL); dest[i+j] += resul; carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ - (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + + (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + ((lx * hy) >> 32) + hx * hy; } dest[i+xlen] = carry; @@ -365,32 +360,33 @@ APInt& APInt::operator*=(const APInt& RHS) { } // Get some bit facts about LHS and check for zero - uint32_t lhsBits = getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; - if (!lhsWords) + unsigned lhsBits = getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; + if (!lhsWords) // 0 * X ===> 0 return *this; // Get some bit facts about RHS and check for zero - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; if (!rhsWords) { // X * 0 ===> 0 - clear(); + clearAllBits(); return *this; } // Allocate space for the result - uint32_t destWords = rhsWords + lhsWords; + unsigned destWords = rhsWords + lhsWords; uint64_t *dest = getMemory(destWords); // Perform the long multiply mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); // Copy result back into *this - clear(); - uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; + clearAllBits(); + unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); + clearUnusedBits(); // delete dest array and return delete[] dest; @@ -403,8 +399,8 @@ APInt& APInt::operator&=(const APInt& RHS) { VAL &= RHS.VAL; return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] &= RHS.pVal[i]; return *this; } @@ -415,8 +411,8 @@ APInt& APInt::operator|=(const APInt& RHS) { VAL |= RHS.VAL; return *this; } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] |= RHS.pVal[i]; return *this; } @@ -427,45 +423,33 @@ APInt& APInt::operator^=(const APInt& RHS) { VAL ^= RHS.VAL; this->clearUnusedBits(); return *this; - } - uint32_t numWords = getNumWords(); - for (uint32_t i = 0; i < numWords; ++i) + } + unsigned numWords = getNumWords(); + for (unsigned i = 0; i < numWords; ++i) pVal[i] ^= RHS.pVal[i]; return clearUnusedBits(); } -APInt APInt::operator&(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) - return APInt(getBitWidth(), VAL & RHS.VAL); - - uint32_t numWords = getNumWords(); +APInt APInt::AndSlowCase(const APInt& RHS) const { + unsigned numWords = getNumWords(); uint64_t* val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] & RHS.pVal[i]; return APInt(val, getBitWidth()); } -APInt APInt::operator|(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) - return APInt(getBitWidth(), VAL | RHS.VAL); - - uint32_t numWords = getNumWords(); +APInt APInt::OrSlowCase(const APInt& RHS) const { + unsigned numWords = getNumWords(); uint64_t *val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] | RHS.pVal[i]; return APInt(val, getBitWidth()); } -APInt APInt::operator^(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); - if (isSingleWord()) - return APInt(BitWidth, VAL ^ RHS.VAL); - - uint32_t numWords = getNumWords(); +APInt APInt::XorSlowCase(const APInt& RHS) const { + unsigned numWords = getNumWords(); uint64_t *val = getMemory(numWords); - for (uint32_t i = 0; i < numWords; ++i) + for (unsigned i = 0; i < numWords; ++i) val[i] = pVal[i] ^ RHS.pVal[i]; // 0^0==1 so clear the high bits in case they got set. @@ -476,8 +460,8 @@ bool APInt::operator !() const { if (isSingleWord()) return !VAL; - for (uint32_t i = 0; i < getNumWords(); ++i) - if (pVal[i]) + for (unsigned i = 0; i < getNumWords(); ++i) + if (pVal[i]) return false; return true; } @@ -488,7 +472,7 @@ APInt APInt::operator*(const APInt& RHS) const { return APInt(BitWidth, VAL * RHS.VAL); APInt Result(*this); Result *= RHS; - return Result.clearUnusedBits(); + return Result; } APInt APInt::operator+(const APInt& RHS) const { @@ -509,22 +493,19 @@ APInt APInt::operator-(const APInt& RHS) const { return Result.clearUnusedBits(); } -bool APInt::operator[](uint32_t bitPosition) const { - return (maskBit(bitPosition) & +bool APInt::operator[](unsigned bitPosition) const { + assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); + return (maskBit(bitPosition) & (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; } -bool APInt::operator==(const APInt& RHS) const { - assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); - if (isSingleWord()) - return VAL == RHS.VAL; - +bool APInt::EqualSlowCase(const APInt& RHS) const { // Get some facts about the number of bits used in the two operands. - uint32_t n1 = getActiveBits(); - uint32_t n2 = RHS.getActiveBits(); + unsigned n1 = getActiveBits(); + unsigned n2 = RHS.getActiveBits(); // If the number of bits isn't the same, they aren't equal - if (n1 != n2) + if (n1 != n2) return false; // If the number of bits fits in a word, we only need to compare the low word. @@ -533,16 +514,13 @@ bool APInt::operator==(const APInt& RHS) const { // Otherwise, compare everything for (int i = whichWord(n1 - 1); i >= 0; --i) - if (pVal[i] != RHS.pVal[i]) + if (pVal[i] != RHS.pVal[i]) return false; return true; } -bool APInt::operator==(uint64_t Val) const { - if (isSingleWord()) - return VAL == Val; - - uint32_t n = getActiveBits(); +bool APInt::EqualSlowCase(uint64_t Val) const { + unsigned n = getActiveBits(); if (n <= APINT_BITS_PER_WORD) return pVal[0] == Val; else @@ -555,8 +533,8 @@ bool APInt::ult(const APInt& RHS) const { return VAL < RHS.VAL; // Get active bit length of both operands - uint32_t n1 = getActiveBits(); - uint32_t n2 = RHS.getActiveBits(); + unsigned n1 = getActiveBits(); + unsigned n2 = RHS.getActiveBits(); // If magnitude of LHS is less than RHS, return true. if (n1 < n2) @@ -571,11 +549,11 @@ bool APInt::ult(const APInt& RHS) const { return pVal[0] < RHS.pVal[0]; // Otherwise, compare all words - uint32_t topWord = whichWord(std::max(n1,n2)-1); + unsigned topWord = whichWord(std::max(n1,n2)-1); for (int i = topWord; i >= 0; --i) { - if (pVal[i] > RHS.pVal[i]) + if (pVal[i] > RHS.pVal[i]) return false; - if (pVal[i] < RHS.pVal[i]) + if (pVal[i] < RHS.pVal[i]) return true; } return false; @@ -595,12 +573,12 @@ bool APInt::slt(const APInt& RHS) const { bool rhsNeg = rhs.isNegative(); if (lhsNeg) { // Sign bit is set so perform two's complement to make it positive - lhs.flip(); + lhs.flipAllBits(); lhs++; } if (rhsNeg) { // Sign bit is set so perform two's complement to make it positive - rhs.flip(); + rhs.flipAllBits(); rhs++; } @@ -613,89 +591,54 @@ bool APInt::slt(const APInt& RHS) const { return true; else if (rhsNeg) return false; - else + else return lhs.ult(rhs); } -APInt& APInt::set(uint32_t bitPosition) { - if (isSingleWord()) +void APInt::setBit(unsigned bitPosition) { + if (isSingleWord()) VAL |= maskBit(bitPosition); - else + else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); - return *this; -} - -APInt& APInt::set() { - if (isSingleWord()) { - VAL = -1ULL; - return clearUnusedBits(); - } - - // Set all the bits in all the words. - for (uint32_t i = 0; i < getNumWords(); ++i) - pVal[i] = -1ULL; - // Clear the unused ones - return clearUnusedBits(); } /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. -APInt& APInt::clear(uint32_t bitPosition) { - if (isSingleWord()) +void APInt::clearBit(unsigned bitPosition) { + if (isSingleWord()) VAL &= ~maskBit(bitPosition); - else + else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); - return *this; -} - -/// @brief Set every bit to 0. -APInt& APInt::clear() { - if (isSingleWord()) - VAL = 0; - else - memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); - return *this; -} - -/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on -/// this APInt. -APInt APInt::operator~() const { - APInt Result(*this); - Result.flip(); - return Result; } /// @brief Toggle every bit to its opposite value. -APInt& APInt::flip() { - if (isSingleWord()) { - VAL ^= -1ULL; - return clearUnusedBits(); - } - for (uint32_t i = 0; i < getNumWords(); ++i) - pVal[i] ^= -1ULL; - return clearUnusedBits(); -} -/// Toggle a given bit to its opposite value whose position is given +/// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. -APInt& APInt::flip(uint32_t bitPosition) { +void APInt::flipBit(unsigned bitPosition) { assert(bitPosition < BitWidth && "Out of the bit-width range!"); - if ((*this)[bitPosition]) clear(bitPosition); - else set(bitPosition); - return *this; + if ((*this)[bitPosition]) clearBit(bitPosition); + else setBit(bitPosition); } -uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) { - assert(str != 0 && "Invalid value string"); - assert(slen > 0 && "Invalid string length"); +unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { + assert(!str.empty() && "Invalid string length"); + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || + radix == 36) && + "Radix should be 2, 8, 10, 16, or 36!"); + + size_t slen = str.size(); - // Each computation below needs to know if its negative - uint32_t isNegative = str[0] == '-'; - if (isNegative) { + // Each computation below needs to know if it's negative. + StringRef::iterator p = str.begin(); + unsigned isNegative = *p == '-'; + if (*p == '-' || *p == '+') { + p++; slen--; - str++; + assert(slen && "String is only a sign, needs a value."); } + // For radixes of power-of-two values, the bits required is accurately and // easily computed if (radix == 2) @@ -705,74 +648,163 @@ uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) { if (radix == 16) return slen * 4 + isNegative; - // Otherwise it must be radix == 10, the hard case - assert(radix == 10 && "Invalid radix"); - + // FIXME: base 36 + // This is grossly inefficient but accurate. We could probably do something // with a computation of roughly slen*64/20 and then adjust by the value of // the first few digits. But, I'm not sure how accurate that could be. // Compute a sufficient number of bits that is always large enough but might - // be too large. This avoids the assertion in the constructor. - uint32_t sufficient = slen*64/18; + // be too large. This avoids the assertion in the constructor. This + // calculation doesn't work appropriately for the numbers 0-9, so just use 4 + // bits in that case. + unsigned sufficient + = radix == 10? (slen == 1 ? 4 : slen * 64/18) + : (slen == 1 ? 7 : slen * 16/3); // Convert to the actual binary value. - APInt tmp(sufficient, str, slen, radix); + APInt tmp(sufficient, StringRef(p, slen), radix); - // Compute how many bits are required. - return isNegative + tmp.logBase2() + 1; + // Compute how many bits are required. If the log is infinite, assume we need + // just bit. + unsigned log = tmp.logBase2(); + if (log == (unsigned)-1) { + return isNegative + 1; + } else { + return isNegative + log + 1; + } +} + +// From http://www.burtleburtle.net, byBob Jenkins. +// When targeting x86, both GCC and LLVM seem to recognize this as a +// rotate instruction. +#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) + +// From http://www.burtleburtle.net, by Bob Jenkins. +#define mix(a,b,c) \ + { \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ + } + +// From http://www.burtleburtle.net, by Bob Jenkins. +#define final(a,b,c) \ + { \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c,4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ + } + +// hashword() was adapted from http://www.burtleburtle.net, by Bob +// Jenkins. k is a pointer to an array of uint32_t values; length is +// the length of the key, in 32-bit chunks. This version only handles +// keys that are a multiple of 32 bits in size. +static inline uint32_t hashword(const uint64_t *k64, size_t length) +{ + const uint32_t *k = reinterpret_cast(k64); + uint32_t a,b,c; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + (((uint32_t)length)<<2); + + /*------------------------------------------------- handle most of the key */ + while (length > 3) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + length -= 3; + k += 3; + } + + /*------------------------------------------- handle the last 3 uint32_t's */ + switch (length) { /* all the case statements fall through */ + case 3 : c+=k[2]; + case 2 : b+=k[1]; + case 1 : a+=k[0]; + final(a,b,c); + case 0: /* case 0: nothing left to add */ + break; + } + /*------------------------------------------------------ report the result */ + return c; } -uint64_t APInt::getHashValue() const { - // Put the bit width into the low order bits. - uint64_t hash = BitWidth; +// hashword8() was adapted from http://www.burtleburtle.net, by Bob +// Jenkins. This computes a 32-bit hash from one 64-bit word. When +// targeting x86 (32 or 64 bit), both LLVM and GCC compile this +// function into about 35 instructions when inlined. +static inline uint32_t hashword8(const uint64_t k64) +{ + uint32_t a,b,c; + a = b = c = 0xdeadbeef + 4; + b += k64 >> 32; + a += k64 & 0xffffffff; + final(a,b,c); + return c; +} +#undef final +#undef mix +#undef rot - // Add the sum of the words to the hash. +uint64_t APInt::getHashValue() const { + uint64_t hash; if (isSingleWord()) - hash += VAL << 6; // clear separation of up to 64 bits + hash = hashword8(VAL); else - for (uint32_t i = 0; i < getNumWords(); ++i) - hash += pVal[i] << 6; // clear sepration of up to 64 bits + hash = hashword(pVal, getNumWords()*2); return hash; } /// HiBits - This function returns the high "numBits" bits of this APInt. -APInt APInt::getHiBits(uint32_t numBits) const { +APInt APInt::getHiBits(unsigned numBits) const { return APIntOps::lshr(*this, BitWidth - numBits); } /// LoBits - This function returns the low "numBits" bits of this APInt. -APInt APInt::getLoBits(uint32_t numBits) const { - return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), +APInt APInt::getLoBits(unsigned numBits) const { + return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), BitWidth - numBits); } -bool APInt::isPowerOf2() const { - return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); -} - -uint32_t APInt::countLeadingZeros() const { - uint32_t Count = 0; - if (isSingleWord()) - Count = CountLeadingZeros_64(VAL); +unsigned APInt::countLeadingZerosSlowCase() const { + // Treat the most significand word differently because it might have + // meaningless bits set beyond the precision. + unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; + integerPart MSWMask; + if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; else { - for (uint32_t i = getNumWords(); i > 0u; --i) { - if (pVal[i-1] == 0) - Count += APINT_BITS_PER_WORD; - else { - Count += CountLeadingZeros_64(pVal[i-1]); - break; - } + MSWMask = ~integerPart(0); + BitsInMSW = APINT_BITS_PER_WORD; + } + + unsigned i = getNumWords(); + integerPart MSW = pVal[i-1] & MSWMask; + if (MSW) + return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); + + unsigned Count = BitsInMSW; + for (--i; i > 0u; --i) { + if (pVal[i-1] == 0) + Count += APINT_BITS_PER_WORD; + else { + Count += CountLeadingZeros_64(pVal[i-1]); + break; } } - uint32_t remainder = BitWidth % APINT_BITS_PER_WORD; - if (remainder) - Count -= APINT_BITS_PER_WORD - remainder; - return std::min(Count, BitWidth); + return Count; } -static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) { - uint32_t Count = 0; +static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { + unsigned Count = 0; if (skip) V <<= skip; while (V && (V & (1ULL << 63))) { @@ -782,14 +814,20 @@ static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) { return Count; } -uint32_t APInt::countLeadingOnes() const { +unsigned APInt::countLeadingOnes() const { if (isSingleWord()) return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); - uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD; - uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits); + unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; + unsigned shift; + if (!highWordBits) { + highWordBits = APINT_BITS_PER_WORD; + shift = 0; + } else { + shift = APINT_BITS_PER_WORD - highWordBits; + } int i = getNumWords() - 1; - uint32_t Count = countLeadingOnes_64(pVal[i], shift); + unsigned Count = countLeadingOnes_64(pVal[i], shift); if (Count == highWordBits) { for (i--; i >= 0; --i) { if (pVal[i] == -1ULL) @@ -803,11 +841,11 @@ uint32_t APInt::countLeadingOnes() const { return Count; } -uint32_t APInt::countTrailingZeros() const { +unsigned APInt::countTrailingZeros() const { if (isSingleWord()) - return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth); - uint32_t Count = 0; - uint32_t i = 0; + return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); + unsigned Count = 0; + unsigned i = 0; for (; i < getNumWords() && pVal[i] == 0; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) @@ -815,11 +853,9 @@ uint32_t APInt::countTrailingZeros() const { return std::min(Count, BitWidth); } -uint32_t APInt::countTrailingOnes() const { - if (isSingleWord()) - return std::min(uint32_t(CountTrailingOnes_64(VAL)), BitWidth); - uint32_t Count = 0; - uint32_t i = 0; +unsigned APInt::countTrailingOnesSlowCase() const { + unsigned Count = 0; + unsigned i = 0; for (; i < getNumWords() && pVal[i] == -1ULL; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) @@ -827,42 +863,53 @@ uint32_t APInt::countTrailingOnes() const { return std::min(Count, BitWidth); } -uint32_t APInt::countPopulation() const { - if (isSingleWord()) - return CountPopulation_64(VAL); - uint32_t Count = 0; - for (uint32_t i = 0; i < getNumWords(); ++i) +unsigned APInt::countPopulationSlowCase() const { + unsigned Count = 0; + for (unsigned i = 0; i < getNumWords(); ++i) Count += CountPopulation_64(pVal[i]); return Count; } +/// Perform a logical right-shift from Src to Dst, which must be equal or +/// non-overlapping, of Words words, by Shift, which must be less than 64. +static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, + unsigned Shift) { + uint64_t Carry = 0; + for (int I = Words - 1; I >= 0; --I) { + uint64_t Tmp = Src[I]; + Dst[I] = (Tmp >> Shift) | Carry; + Carry = Tmp << (64 - Shift); + } +} + APInt APInt::byteSwap() const { assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); if (BitWidth == 16) return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); - else if (BitWidth == 32) - return APInt(BitWidth, ByteSwap_32(uint32_t(VAL))); - else if (BitWidth == 48) { - uint32_t Tmp1 = uint32_t(VAL >> 16); + if (BitWidth == 32) + return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); + if (BitWidth == 48) { + unsigned Tmp1 = unsigned(VAL >> 16); Tmp1 = ByteSwap_32(Tmp1); uint16_t Tmp2 = uint16_t(VAL); Tmp2 = ByteSwap_16(Tmp2); return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); - } else if (BitWidth == 64) + } + if (BitWidth == 64) return APInt(BitWidth, ByteSwap_64(VAL)); - else { - APInt Result(BitWidth, 0); - char *pByte = (char*)Result.pVal; - for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { - char Tmp = pByte[i]; - pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; - pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; - } - return Result; + + APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); + for (unsigned I = 0, N = getNumWords(); I != N; ++I) + Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); + if (Result.BitWidth != BitWidth) { + lshrNear(Result.pVal, Result.pVal, getNumWords(), + Result.BitWidth - BitWidth); + Result.BitWidth = BitWidth; } + return Result; } -APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, +APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, const APInt& API2) { APInt A = API1, B = API2; while (!!B) { @@ -873,7 +920,7 @@ APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, return A; } -APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { +APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { union { double D; uint64_t I; @@ -895,7 +942,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { // If the exponent doesn't shift all bits out of the mantissa if (exp < 52) - return isNeg ? -APInt(width, mantissa >> (52 - exp)) : + return isNeg ? -APInt(width, mantissa >> (52 - exp)) : APInt(width, mantissa >> (52 - exp)); // If the client didn't provide enough bits for us to shift the mantissa into @@ -905,26 +952,27 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) { // Otherwise, we have to shift the mantissa bits up to the right location APInt Tmp(width, mantissa); - Tmp = Tmp.shl((uint32_t)exp - 52); + Tmp = Tmp.shl((unsigned)exp - 52); return isNeg ? -Tmp : Tmp; } -/// RoundToDouble - This function convert this APInt to a double. +/// RoundToDouble - This function converts this APInt to a double. /// The layout for double is as following (IEEE Standard 754): /// -------------------------------------- /// | Sign Exponent Fraction Bias | /// |-------------------------------------- | /// | 1[63] 11[62-52] 52[51-00] 1023 | -/// -------------------------------------- +/// -------------------------------------- double APInt::roundToDouble(bool isSigned) const { // Handle the simple case where the value is contained in one uint64_t. + // It is wrong to optimize getWord(0) to VAL; there might be more than one word. if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { if (isSigned) { - int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); + int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); return double(sext); } else - return double(VAL); + return double(getWord(0)); } // Determine if the value is negative. @@ -934,7 +982,7 @@ double APInt::roundToDouble(bool isSigned) const { APInt Tmp(isNeg ? -(*this) : (*this)); // Figure out how many bits we're using. - uint32_t n = Tmp.getActiveBits(); + unsigned n = Tmp.getActiveBits(); // The exponent (without bias normalization) is just the number of bits // we are using. Note that the sign bit is gone since we constructed the @@ -945,7 +993,7 @@ double APInt::roundToDouble(bool isSigned) const { if (exp > 1023) { if (!isSigned || !isNeg) return std::numeric_limits::infinity(); - else + else return -std::numeric_limits::infinity(); } exp += 1023; // Increment for 1023 bias @@ -976,98 +1024,90 @@ double APInt::roundToDouble(bool isSigned) const { } // Truncate to new width. -APInt &APInt::trunc(uint32_t width) { +APInt APInt::trunc(unsigned width) const { assert(width < BitWidth && "Invalid APInt Truncate request"); - assert(width >= MIN_INT_BITS && "Can't truncate to 0 bits"); - uint32_t wordsBefore = getNumWords(); - BitWidth = width; - uint32_t wordsAfter = getNumWords(); - if (wordsBefore != wordsAfter) { - if (wordsAfter == 1) { - uint64_t *tmp = pVal; - VAL = pVal[0]; - delete [] tmp; - } else { - uint64_t *newVal = getClearedMemory(wordsAfter); - for (uint32_t i = 0; i < wordsAfter; ++i) - newVal[i] = pVal[i]; - delete [] pVal; - pVal = newVal; - } - } - return clearUnusedBits(); + assert(width && "Can't truncate to 0 bits"); + + if (width <= APINT_BITS_PER_WORD) + return APInt(width, getRawData()[0]); + + APInt Result(getMemory(getNumWords(width)), width); + + // Copy full words. + unsigned i; + for (i = 0; i != width / APINT_BITS_PER_WORD; i++) + Result.pVal[i] = pVal[i]; + + // Truncate and copy any partial word. + unsigned bits = (0 - width) % APINT_BITS_PER_WORD; + if (bits != 0) + Result.pVal[i] = pVal[i] << bits >> bits; + + return Result; } // Sign extend to a new width. -APInt &APInt::sext(uint32_t width) { +APInt APInt::sext(unsigned width) const { assert(width > BitWidth && "Invalid APInt SignExtend request"); - assert(width <= MAX_INT_BITS && "Too many bits"); - // If the sign bit isn't set, this is the same as zext. - if (!isNegative()) { - zext(width); - return *this; + + if (width <= APINT_BITS_PER_WORD) { + uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); + val = (int64_t)val >> (width - BitWidth); + return APInt(width, val >> (APINT_BITS_PER_WORD - width)); } - // The sign bit is set. First, get some facts - uint32_t wordsBefore = getNumWords(); - uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD; - BitWidth = width; - uint32_t wordsAfter = getNumWords(); - - // Mask the high order word appropriately - if (wordsBefore == wordsAfter) { - uint32_t newWordBits = width % APINT_BITS_PER_WORD; - // The extension is contained to the wordsBefore-1th word. - uint64_t mask = ~0ULL; - if (newWordBits) - mask >>= APINT_BITS_PER_WORD - newWordBits; - mask <<= wordBits; - if (wordsBefore == 1) - VAL |= mask; - else - pVal[wordsBefore-1] |= mask; - return clearUnusedBits(); + APInt Result(getMemory(getNumWords(width)), width); + + // Copy full words. + unsigned i; + uint64_t word = 0; + for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { + word = getRawData()[i]; + Result.pVal[i] = word; } - uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits; - uint64_t *newVal = getMemory(wordsAfter); - if (wordsBefore == 1) - newVal[0] = VAL | mask; - else { - for (uint32_t i = 0; i < wordsBefore; ++i) - newVal[i] = pVal[i]; - newVal[wordsBefore-1] |= mask; + // Read and sign-extend any partial word. + unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; + if (bits != 0) + word = (int64_t)getRawData()[i] << bits >> bits; + else + word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); + + // Write remaining full words. + for (; i != width / APINT_BITS_PER_WORD; i++) { + Result.pVal[i] = word; + word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); } - for (uint32_t i = wordsBefore; i < wordsAfter; i++) - newVal[i] = -1ULL; - if (wordsBefore != 1) - delete [] pVal; - pVal = newVal; - return clearUnusedBits(); + + // Write any partial word. + bits = (0 - width) % APINT_BITS_PER_WORD; + if (bits != 0) + Result.pVal[i] = word << bits >> bits; + + return Result; } // Zero extend to a new width. -APInt &APInt::zext(uint32_t width) { +APInt APInt::zext(unsigned width) const { assert(width > BitWidth && "Invalid APInt ZeroExtend request"); - assert(width <= MAX_INT_BITS && "Too many bits"); - uint32_t wordsBefore = getNumWords(); - BitWidth = width; - uint32_t wordsAfter = getNumWords(); - if (wordsBefore != wordsAfter) { - uint64_t *newVal = getClearedMemory(wordsAfter); - if (wordsBefore == 1) - newVal[0] = VAL; - else - for (uint32_t i = 0; i < wordsBefore; ++i) - newVal[i] = pVal[i]; - if (wordsBefore != 1) - delete [] pVal; - pVal = newVal; - } - return *this; + + if (width <= APINT_BITS_PER_WORD) + return APInt(width, VAL); + + APInt Result(getMemory(getNumWords(width)), width); + + // Copy words. + unsigned i; + for (i = 0; i != getNumWords(); i++) + Result.pVal[i] = getRawData()[i]; + + // Zero remaining words. + memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); + + return Result; } -APInt &APInt::zextOrTrunc(uint32_t width) { +APInt APInt::zextOrTrunc(unsigned width) const { if (BitWidth < width) return zext(width); if (BitWidth > width) @@ -1075,7 +1115,7 @@ APInt &APInt::zextOrTrunc(uint32_t width) { return *this; } -APInt &APInt::sextOrTrunc(uint32_t width) { +APInt APInt::sextOrTrunc(unsigned width) const { if (BitWidth < width) return sext(width); if (BitWidth > width) @@ -1083,15 +1123,27 @@ APInt &APInt::sextOrTrunc(uint32_t width) { return *this; } +APInt APInt::zextOrSelf(unsigned width) const { + if (BitWidth < width) + return zext(width); + return *this; +} + +APInt APInt::sextOrSelf(unsigned width) const { + if (BitWidth < width) + return sext(width); + return *this; +} + /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt APInt::ashr(const APInt &shiftAmt) const { - return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. -APInt APInt::ashr(uint32_t shiftAmt) const { +APInt APInt::ashr(unsigned shiftAmt) const { assert(shiftAmt <= BitWidth && "Invalid shift amount"); // Handle a degenerate case if (shiftAmt == 0) @@ -1102,8 +1154,8 @@ APInt APInt::ashr(uint32_t shiftAmt) const { if (shiftAmt == BitWidth) return APInt(BitWidth, 0); // undefined else { - uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth; - return APInt(BitWidth, + unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; + return APInt(BitWidth, (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); } } @@ -1122,17 +1174,17 @@ APInt APInt::ashr(uint32_t shiftAmt) const { uint64_t * val = new uint64_t[getNumWords()]; // Compute some values needed by the following shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift - uint32_t breakWord = getNumWords() - 1 - offset; // last word affected - uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word? + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift + unsigned breakWord = getNumWords() - 1 - offset; // last word affected + unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? if (bitsInWord == 0) bitsInWord = APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { // Move the words containing significant bits - for (uint32_t i = 0; i <= breakWord; ++i) + for (unsigned i = 0; i <= breakWord; ++i) val[i] = pVal[i+offset]; // move whole word // Adjust the top significant word for sign bit fill, if negative @@ -1140,11 +1192,11 @@ APInt APInt::ashr(uint32_t shiftAmt) const { if (bitsInWord < APINT_BITS_PER_WORD) val[breakWord] |= ~0ULL << bitsInWord; // set high bits } else { - // Shift the low order words - for (uint32_t i = 0; i < breakWord; ++i) { + // Shift the low order words + for (unsigned i = 0; i < breakWord; ++i) { // This combines the shifted corresponding word with the low bits from // the next word (shifted into this word's high bits). - val[i] = (pVal[i+offset] >> wordShift) | + val[i] = (pVal[i+offset] >> wordShift) | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); } @@ -1157,17 +1209,17 @@ APInt APInt::ashr(uint32_t shiftAmt) const { if (isNegative()) { if (wordShift > bitsInWord) { if (breakWord > 0) - val[breakWord-1] |= + val[breakWord-1] |= ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); val[breakWord] |= ~0ULL; - } else + } else val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); } } // Remaining words are 0 or -1, just assign them. uint64_t fillValue = (isNegative() ? -1ULL : 0); - for (uint32_t i = breakWord+1; i < getNumWords(); ++i) + for (unsigned i = breakWord+1; i < getNumWords(); ++i) val[i] = fillValue; return APInt(val, BitWidth).clearUnusedBits(); } @@ -1175,16 +1227,16 @@ APInt APInt::ashr(uint32_t shiftAmt) const { /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt APInt::lshr(const APInt &shiftAmt) const { - return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. -APInt APInt::lshr(uint32_t shiftAmt) const { +APInt APInt::lshr(unsigned shiftAmt) const { if (isSingleWord()) { - if (shiftAmt == BitWidth) + if (shiftAmt >= BitWidth) return APInt(BitWidth, 0); - else + else return APInt(BitWidth, this->VAL >> shiftAmt); } @@ -1195,7 +1247,7 @@ APInt APInt::lshr(uint32_t shiftAmt) const { return APInt(BitWidth, 0); // If none of the bits are shifted out, the result is *this. This avoids - // issues with shifting byt he size of the integer type, which produces + // issues with shifting by the size of the integer type, which produces // undefined results in the code below. This is also an optimization. if (shiftAmt == 0) return *this; @@ -1205,37 +1257,33 @@ APInt APInt::lshr(uint32_t shiftAmt) const { // If we are shifting less than a word, compute the shift with a simple carry if (shiftAmt < APINT_BITS_PER_WORD) { - uint64_t carry = 0; - for (int i = getNumWords()-1; i >= 0; --i) { - val[i] = (pVal[i] >> shiftAmt) | carry; - carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt); - } + lshrNear(val, pVal, getNumWords(), shiftAmt); return APInt(val, BitWidth).clearUnusedBits(); } // Compute some values needed by the remaining shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { - for (uint32_t i = 0; i < getNumWords() - offset; ++i) + for (unsigned i = 0; i < getNumWords() - offset; ++i) val[i] = pVal[i+offset]; - for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++) + for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) val[i] = 0; return APInt(val,BitWidth).clearUnusedBits(); } - // Shift the low order words - uint32_t breakWord = getNumWords() - offset -1; - for (uint32_t i = 0; i < breakWord; ++i) + // Shift the low order words + unsigned breakWord = getNumWords() - offset -1; + for (unsigned i = 0; i < breakWord; ++i) val[i] = (pVal[i+offset] >> wordShift) | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); // Shift the break word. val[breakWord] = pVal[breakWord+offset] >> wordShift; // Remaining words are 0 - for (uint32_t i = breakWord+1; i < getNumWords(); ++i) + for (unsigned i = breakWord+1; i < getNumWords(); ++i) val[i] = 0; return APInt(val, BitWidth).clearUnusedBits(); } @@ -1243,20 +1291,11 @@ APInt APInt::lshr(uint32_t shiftAmt) const { /// Left-shift this APInt by shiftAmt. /// @brief Left-shift function. APInt APInt::shl(const APInt &shiftAmt) const { - // It's undefined behavior in C to shift by BitWidth or greater, but - return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth)); + // It's undefined behavior in C to shift by BitWidth or greater. + return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); } -/// Left-shift this APInt by shiftAmt. -/// @brief Left-shift function. -APInt APInt::shl(uint32_t shiftAmt) const { - assert(shiftAmt <= BitWidth && "Invalid shift amount"); - if (isSingleWord()) { - if (shiftAmt == BitWidth) - return APInt(BitWidth, 0); // avoid undefined shift results - return APInt(BitWidth, VAL << shiftAmt); - } - +APInt APInt::shlSlowCase(unsigned shiftAmt) const { // If all the bits were shifted out, the result is 0. This avoids issues // with shifting by the size of the integer type, which produces undefined // results. We define these "undefined results" to always be 0. @@ -1275,7 +1314,7 @@ APInt APInt::shl(uint32_t shiftAmt) const { // If we are shifting less than a word, do it the easy way if (shiftAmt < APINT_BITS_PER_WORD) { uint64_t carry = 0; - for (uint32_t i = 0; i < getNumWords(); i++) { + for (unsigned i = 0; i < getNumWords(); i++) { val[i] = pVal[i] << shiftAmt | carry; carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); } @@ -1283,20 +1322,20 @@ APInt APInt::shl(uint32_t shiftAmt) const { } // Compute some values needed by the remaining shift algorithms - uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; - uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; + unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; + unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // If we are shifting whole words, just move whole words if (wordShift == 0) { - for (uint32_t i = 0; i < offset; i++) + for (unsigned i = 0; i < offset; i++) val[i] = 0; - for (uint32_t i = offset; i < getNumWords(); i++) + for (unsigned i = offset; i < getNumWords(); i++) val[i] = pVal[i-offset]; return APInt(val,BitWidth).clearUnusedBits(); } // Copy whole words from this to Result. - uint32_t i = getNumWords() - 1; + unsigned i = getNumWords() - 1; for (; i > offset; --i) val[i] = pVal[i-offset] << wordShift | pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); @@ -1307,33 +1346,25 @@ APInt APInt::shl(uint32_t shiftAmt) const { } APInt APInt::rotl(const APInt &rotateAmt) const { - return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth)); + return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); } -APInt APInt::rotl(uint32_t rotateAmt) const { +APInt APInt::rotl(unsigned rotateAmt) const { + rotateAmt %= BitWidth; if (rotateAmt == 0) return *this; - // Don't get too fancy, just use existing shift/or facilities - APInt hi(*this); - APInt lo(*this); - hi.shl(rotateAmt); - lo.lshr(BitWidth - rotateAmt); - return hi | lo; + return shl(rotateAmt) | lshr(BitWidth - rotateAmt); } APInt APInt::rotr(const APInt &rotateAmt) const { - return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth)); + return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); } -APInt APInt::rotr(uint32_t rotateAmt) const { +APInt APInt::rotr(unsigned rotateAmt) const { + rotateAmt %= BitWidth; if (rotateAmt == 0) return *this; - // Don't get too fancy, just use existing shift/or facilities - APInt hi(*this); - APInt lo(*this); - lo.lshr(rotateAmt); - hi.shl(BitWidth - rotateAmt); - return hi | lo; + return lshr(rotateAmt) | shl(BitWidth - rotateAmt); } // Square Root - this method computes and returns the square root of "this". @@ -1342,11 +1373,11 @@ APInt APInt::rotr(uint32_t rotateAmt) const { // values using less than 52 bits, the value is converted to double and then // the libc sqrt function is called. The result is rounded and then converted // back to a uint64_t which is then used to construct the result. Finally, -// the Babylonian method for computing square roots is used. +// the Babylonian method for computing square roots is used. APInt APInt::sqrt() const { // Determine the magnitude of the value. - uint32_t magnitude = getActiveBits(); + unsigned magnitude = getActiveBits(); // Use a fast table for some small values. This also gets rid of some // rounding errors in libc sqrt for small values. @@ -1354,7 +1385,7 @@ APInt APInt::sqrt() const { static const uint8_t results[32] = { /* 0 */ 0, /* 1- 2 */ 1, 1, - /* 3- 6 */ 2, 2, 2, 2, + /* 3- 6 */ 2, 2, 2, 2, /* 7-12 */ 3, 3, 3, 3, 3, 3, /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, @@ -1368,13 +1399,12 @@ APInt APInt::sqrt() const { // libc sqrt function which will probably use a hardware sqrt computation. // This should be faster than the algorithm below. if (magnitude < 52) { -#ifdef _MSC_VER - // Amazingly, VC++ doesn't have round(). - return APInt(BitWidth, - uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5); -#else - return APInt(BitWidth, +#if HAVE_ROUND + return APInt(BitWidth, uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); +#else + return APInt(BitWidth, + uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5)); #endif } @@ -1382,21 +1412,21 @@ APInt APInt::sqrt() const { // is a classical Babylonian method for computing the square root. This code // was adapted to APINt from a wikipedia article on such computations. // See http://www.wikipedia.org/ and go to the page named - // Calculate_an_integer_square_root. - uint32_t nbits = BitWidth, i = 4; + // Calculate_an_integer_square_root. + unsigned nbits = BitWidth, i = 4; APInt testy(BitWidth, 16); APInt x_old(BitWidth, 1); APInt x_new(BitWidth, 0); APInt two(BitWidth, 2); // Select a good starting value using binary logarithms. - for (;; i += 2, testy = testy.shl(2)) + for (;; i += 2, testy = testy.shl(2)) if (i >= nbits || this->ule(testy)) { x_old = x_old.shl(i / 2); break; } - // Use the Babylonian method to arrive at the integer square root: + // Use the Babylonian method to arrive at the integer square root: for (;;) { x_new = (this->udiv(x_old) + x_old).udiv(two); if (x_old.ule(x_new)) @@ -1405,33 +1435,165 @@ APInt APInt::sqrt() const { } // Make sure we return the closest approximation - // NOTE: The rounding calculation below is correct. It will produce an + // NOTE: The rounding calculation below is correct. It will produce an // off-by-one discrepancy with results from pari/gp. That discrepancy has been - // determined to be a rounding issue with pari/gp as it begins to use a + // determined to be a rounding issue with pari/gp as it begins to use a // floating point representation after 192 bits. There are no discrepancies // between this algorithm and pari/gp for bit widths < 192 bits. APInt square(x_old * x_old); APInt nextSquare((x_old + 1) * (x_old +1)); if (this->ult(square)) return x_old; - else if (this->ule(nextSquare)) { - APInt midpoint((nextSquare - square).udiv(two)); - APInt offset(*this - square); - if (offset.ult(midpoint)) - return x_old; - else - return x_old + 1; - } else - assert(0 && "Error in APInt::sqrt computation"); + assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); + APInt midpoint((nextSquare - square).udiv(two)); + APInt offset(*this - square); + if (offset.ult(midpoint)) + return x_old; return x_old + 1; } +/// Computes the multiplicative inverse of this APInt for a given modulo. The +/// iterative extended Euclidean algorithm is used to solve for this value, +/// however we simplify it to speed up calculating only the inverse, and take +/// advantage of div+rem calculations. We also use some tricks to avoid copying +/// (potentially large) APInts around. +APInt APInt::multiplicativeInverse(const APInt& modulo) const { + assert(ult(modulo) && "This APInt must be smaller than the modulo"); + + // Using the properties listed at the following web page (accessed 06/21/08): + // http://www.numbertheory.org/php/euclid.html + // (especially the properties numbered 3, 4 and 9) it can be proved that + // BitWidth bits suffice for all the computations in the algorithm implemented + // below. More precisely, this number of bits suffice if the multiplicative + // inverse exists, but may not suffice for the general extended Euclidean + // algorithm. + + APInt r[2] = { modulo, *this }; + APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; + APInt q(BitWidth, 0); + + unsigned i; + for (i = 0; r[i^1] != 0; i ^= 1) { + // An overview of the math without the confusing bit-flipping: + // q = r[i-2] / r[i-1] + // r[i] = r[i-2] % r[i-1] + // t[i] = t[i-2] - t[i-1] * q + udivrem(r[i], r[i^1], q, r[i]); + t[i] -= t[i^1] * q; + } + + // If this APInt and the modulo are not coprime, there is no multiplicative + // inverse, so return 0. We check this by looking at the next-to-last + // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean + // algorithm. + if (r[i] != 1) + return APInt(BitWidth, 0); + + // The next-to-last t is the multiplicative inverse. However, we are + // interested in a positive inverse. Calcuate a positive one from a negative + // one if necessary. A simple addition of the modulo suffices because + // abs(t[i]) is known to be less than *this/2 (see the link above). + return t[i].isNegative() ? t[i] + modulo : t[i]; +} + +/// Calculate the magic numbers required to implement a signed integer division +/// by a constant as a sequence of multiplies, adds and shifts. Requires that +/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. +/// Warren, Jr., chapter 10. +APInt::ms APInt::magic() const { + const APInt& d = *this; + unsigned p; + APInt ad, anc, delta, q1, r1, q2, r2, t; + APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); + struct ms mag; + + ad = d.abs(); + t = signedMin + (d.lshr(d.getBitWidth() - 1)); + anc = t - 1 - t.urem(ad); // absolute value of nc + p = d.getBitWidth() - 1; // initialize p + q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) + r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) + q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) + r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) + do { + p = p + 1; + q1 = q1<<1; // update q1 = 2p/abs(nc) + r1 = r1<<1; // update r1 = rem(2p/abs(nc)) + if (r1.uge(anc)) { // must be unsigned comparison + q1 = q1 + 1; + r1 = r1 - anc; + } + q2 = q2<<1; // update q2 = 2p/abs(d) + r2 = r2<<1; // update r2 = rem(2p/abs(d)) + if (r2.uge(ad)) { // must be unsigned comparison + q2 = q2 + 1; + r2 = r2 - ad; + } + delta = ad - r2; + } while (q1.ult(delta) || (q1 == delta && r1 == 0)); + + mag.m = q2 + 1; + if (d.isNegative()) mag.m = -mag.m; // resulting magic number + mag.s = p - d.getBitWidth(); // resulting shift + return mag; +} + +/// Calculate the magic numbers required to implement an unsigned integer +/// division by a constant as a sequence of multiplies, adds and shifts. +/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry +/// S. Warren, Jr., chapter 10. +/// LeadingZeros can be used to simplify the calculation if the upper bits +/// of the divided value are known zero. +APInt::mu APInt::magicu(unsigned LeadingZeros) const { + const APInt& d = *this; + unsigned p; + APInt nc, delta, q1, r1, q2, r2; + struct mu magu; + magu.a = 0; // initialize "add" indicator + APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); + APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); + APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); + + nc = allOnes - (-d).urem(d); + p = d.getBitWidth() - 1; // initialize p + q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc + r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) + q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d + r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) + do { + p = p + 1; + if (r1.uge(nc - r1)) { + q1 = q1 + q1 + 1; // update q1 + r1 = r1 + r1 - nc; // update r1 + } + else { + q1 = q1+q1; // update q1 + r1 = r1+r1; // update r1 + } + if ((r2 + 1).uge(d - r2)) { + if (q2.uge(signedMax)) magu.a = 1; + q2 = q2+q2 + 1; // update q2 + r2 = r2+r2 + 1 - d; // update r2 + } + else { + if (q2.uge(signedMin)) magu.a = 1; + q2 = q2+q2; // update q2 + r2 = r2+r2 + 1; // update r2 + } + delta = d - 1 - r2; + } while (p < d.getBitWidth()*2 && + (q1.ult(delta) || (q1 == delta && r1 == 0))); + magu.m = q2 + 1; // resulting magic number + magu.s = p - d.getBitWidth(); // resulting shift + return magu; +} + /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The /// variables here have the same names as in the algorithm. Comments explain /// the algorithm and any deviation from it. -static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, - uint32_t m, uint32_t n) { +static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, + unsigned m, unsigned n) { assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); assert(q && "Must provide quotient"); @@ -1442,56 +1604,60 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // is 2^31 so we just set it to -1u. uint64_t b = uint64_t(1) << 32; - DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n'); - DEBUG(cerr << "KnuthDiv: original:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]); - DEBUG(cerr << " by"); - DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]); - DEBUG(cerr << '\n'); - // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of - // u and v by d. Note that we have taken Knuth's advice here to use a power - // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of - // 2 allows us to shift instead of multiply and it is easy to determine the +#if 0 + DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); + DEBUG(dbgs() << "KnuthDiv: original:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << " by"); + DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); + DEBUG(dbgs() << '\n'); +#endif + // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of + // u and v by d. Note that we have taken Knuth's advice here to use a power + // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of + // 2 allows us to shift instead of multiply and it is easy to determine the // shift amount from the leading zeros. We are basically normalizing the u // and v so that its high bits are shifted to the top of v's range without // overflow. Note that this can require an extra word in u so that u must // be of length m+n+1. - uint32_t shift = CountLeadingZeros_32(v[n-1]); - uint32_t v_carry = 0; - uint32_t u_carry = 0; + unsigned shift = CountLeadingZeros_32(v[n-1]); + unsigned v_carry = 0; + unsigned u_carry = 0; if (shift) { - for (uint32_t i = 0; i < m+n; ++i) { - uint32_t u_tmp = u[i] >> (32 - shift); + for (unsigned i = 0; i < m+n; ++i) { + unsigned u_tmp = u[i] >> (32 - shift); u[i] = (u[i] << shift) | u_carry; u_carry = u_tmp; } - for (uint32_t i = 0; i < n; ++i) { - uint32_t v_tmp = v[i] >> (32 - shift); + for (unsigned i = 0; i < n; ++i) { + unsigned v_tmp = v[i] >> (32 - shift); v[i] = (v[i] << shift) | v_carry; v_carry = v_tmp; } } u[m+n] = u_carry; - DEBUG(cerr << "KnuthDiv: normal:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]); - DEBUG(cerr << " by"); - DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]); - DEBUG(cerr << '\n'); +#if 0 + DEBUG(dbgs() << "KnuthDiv: normal:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << " by"); + DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); + DEBUG(dbgs() << '\n'); +#endif // D2. [Initialize j.] Set j to m. This is the loop counter over the places. int j = m; do { - DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n'); - // D3. [Calculate q'.]. + DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); + // D3. [Calculate q'.]. // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test // on v[n-2] determines at high speed most of the cases in which the trial - // value qp is one too large, and it eliminates all cases where qp is two - // too large. + // value qp is one too large, and it eliminates all cases where qp is two + // too large. uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); - DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n'); + DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); uint64_t qp = dividend / v[n-1]; uint64_t rp = dividend % v[n-1]; if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { @@ -1500,82 +1666,82 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) qp--; } - DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); + DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation // consists of a simple multiplication by a one-place number, combined with - // a subtraction. + // a subtraction. bool isNeg = false; - for (uint32_t i = 0; i < n; ++i) { + for (unsigned i = 0; i < n; ++i) { uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); bool borrow = subtrahend > u_tmp; - DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp - << ", subtrahend == " << subtrahend - << ", borrow = " << borrow << '\n'); + DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp + << ", subtrahend == " << subtrahend + << ", borrow = " << borrow << '\n'); uint64_t result = u_tmp - subtrahend; - uint32_t k = j + i; - u[k++] = (uint32_t)(result & (b-1)); // subtract low word - u[k++] = (uint32_t)(result >> 32); // subtract high word + unsigned k = j + i; + u[k++] = (unsigned)(result & (b-1)); // subtract low word + u[k++] = (unsigned)(result >> 32); // subtract high word while (borrow && k <= m+n) { // deal with borrow to the left borrow = u[k] == 0; u[k]--; k++; } isNeg |= borrow; - DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << - u[j+i+1] << '\n'); + DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << + u[j+i+1] << '\n'); } - DEBUG(cerr << "KnuthDiv: after subtraction:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]); - DEBUG(cerr << '\n'); - // The digits (u[j+n]...u[j]) should be kept positive; if the result of - // this step is actually negative, (u[j+n]...u[j]) should be left as the + DEBUG(dbgs() << "KnuthDiv: after subtraction:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << '\n'); + // The digits (u[j+n]...u[j]) should be kept positive; if the result of + // this step is actually negative, (u[j+n]...u[j]) should be left as the // true value plus b**(n+1), namely as the b's complement of // the true value, and a "borrow" to the left should be remembered. // if (isNeg) { bool carry = true; // true because b's complement is "complement + 1" - for (uint32_t i = 0; i <= m+n; ++i) { + for (unsigned i = 0; i <= m+n; ++i) { u[i] = ~u[i] + carry; // b's complement carry = carry && u[i] == 0; } } - DEBUG(cerr << "KnuthDiv: after complement:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]); - DEBUG(cerr << '\n'); + DEBUG(dbgs() << "KnuthDiv: after complement:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); + DEBUG(dbgs() << '\n'); - // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was + // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. - q[j] = (uint32_t)qp; + q[j] = (unsigned)qp; if (isNeg) { - // D6. [Add back]. The probability that this step is necessary is very + // D6. [Add back]. The probability that this step is necessary is very // small, on the order of only 2/b. Make sure that test data accounts for - // this possibility. Decrease q[j] by 1 + // this possibility. Decrease q[j] by 1 q[j]--; - // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). - // A carry will occur to the left of u[j+n], and it should be ignored + // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). + // A carry will occur to the left of u[j+n], and it should be ignored // since it cancels with the borrow that occurred in D4. bool carry = false; - for (uint32_t i = 0; i < n; i++) { - uint32_t limit = std::min(u[j+i],v[i]); + for (unsigned i = 0; i < n; i++) { + unsigned limit = std::min(u[j+i],v[i]); u[j+i] += v[i] + carry; carry = u[j+i] < limit || (carry && u[j+i] == limit); } u[j+n] += carry; } - DEBUG(cerr << "KnuthDiv: after correction:"); - DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]); - DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n'); + DEBUG(dbgs() << "KnuthDiv: after correction:"); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); + DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. } while (--j >= 0); - DEBUG(cerr << "KnuthDiv: quotient:"); - DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]); - DEBUG(cerr << '\n'); + DEBUG(dbgs() << "KnuthDiv: quotient:"); + DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); + DEBUG(dbgs() << '\n'); // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired // remainder may be obtained by dividing u[...] by d. If r is non-null we @@ -1585,48 +1751,50 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, // multiplication by d by using a shift left. So, all we have to do is // shift right here. In order to mak if (shift) { - uint32_t carry = 0; - DEBUG(cerr << "KnuthDiv: remainder:"); + unsigned carry = 0; + DEBUG(dbgs() << "KnuthDiv: remainder:"); for (int i = n-1; i >= 0; i--) { r[i] = (u[i] >> shift) | carry; carry = u[i] << (32 - shift); - DEBUG(cerr << " " << r[i]); + DEBUG(dbgs() << " " << r[i]); } } else { for (int i = n-1; i >= 0; i--) { r[i] = u[i]; - DEBUG(cerr << " " << r[i]); + DEBUG(dbgs() << " " << r[i]); } } - DEBUG(cerr << '\n'); + DEBUG(dbgs() << '\n'); } - DEBUG(cerr << std::setbase(10) << '\n'); +#if 0 + DEBUG(dbgs() << '\n'); +#endif } -void APInt::divide(const APInt LHS, uint32_t lhsWords, - const APInt &RHS, uint32_t rhsWords, +void APInt::divide(const APInt LHS, unsigned lhsWords, + const APInt &RHS, unsigned rhsWords, APInt *Quotient, APInt *Remainder) { assert(lhsWords >= rhsWords && "Fractional result"); - // First, compose the values into an array of 32-bit words instead of + // First, compose the values into an array of 32-bit words instead of // 64-bit words. This is a necessity of both the "short division" algorithm - // and the the Knuth "classical algorithm" which requires there to be native - // operations for +, -, and * on an m bit value with an m*2 bit result. We - // can't use 64-bit operands here because we don't have native results of - // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't + // and the Knuth "classical algorithm" which requires there to be native + // operations for +, -, and * on an m bit value with an m*2 bit result. We + // can't use 64-bit operands here because we don't have native results of + // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't // work on large-endian machines. - uint64_t mask = ~0ull >> (sizeof(uint32_t)*8); - uint32_t n = rhsWords * 2; - uint32_t m = (lhsWords * 2) - n; + uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); + unsigned n = rhsWords * 2; + unsigned m = (lhsWords * 2) - n; // Allocate space for the temporary values we need either on the stack, if // it will fit, or on the heap if it won't. - uint32_t SPACE[128]; - uint32_t *U = 0; - uint32_t *V = 0; - uint32_t *Q = 0; - uint32_t *R = 0; + unsigned SPACE[128]; + unsigned *U = 0; + unsigned *V = 0; + unsigned *Q = 0; + unsigned *R = 0; if ((Remainder?4:3)*n+2*m+1 <= 128) { U = &SPACE[0]; V = &SPACE[m+n+1]; @@ -1634,38 +1802,38 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, if (Remainder) R = &SPACE[(m+n+1) + n + (m+n)]; } else { - U = new uint32_t[m + n + 1]; - V = new uint32_t[n]; - Q = new uint32_t[m+n]; + U = new unsigned[m + n + 1]; + V = new unsigned[n]; + Q = new unsigned[m+n]; if (Remainder) - R = new uint32_t[n]; + R = new unsigned[n]; } // Initialize the dividend - memset(U, 0, (m+n+1)*sizeof(uint32_t)); + memset(U, 0, (m+n+1)*sizeof(unsigned)); for (unsigned i = 0; i < lhsWords; ++i) { uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); - U[i * 2] = (uint32_t)(tmp & mask); - U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8)); + U[i * 2] = (unsigned)(tmp & mask); + U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); } U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. // Initialize the divisor - memset(V, 0, (n)*sizeof(uint32_t)); + memset(V, 0, (n)*sizeof(unsigned)); for (unsigned i = 0; i < rhsWords; ++i) { uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); - V[i * 2] = (uint32_t)(tmp & mask); - V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8)); + V[i * 2] = (unsigned)(tmp & mask); + V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); } // initialize the quotient and remainder - memset(Q, 0, (m+n) * sizeof(uint32_t)); + memset(Q, 0, (m+n) * sizeof(unsigned)); if (Remainder) - memset(R, 0, n * sizeof(uint32_t)); + memset(R, 0, n * sizeof(unsigned)); - // Now, adjust m and n for the Knuth division. n is the number of words in + // Now, adjust m and n for the Knuth division. n is the number of words in // the divisor. m is the number of words by which the dividend exceeds the - // divisor (i.e. m+n is the length of the dividend). These sizes must not + // divisor (i.e. m+n is the length of the dividend). These sizes must not // contain any zero words or the Knuth algorithm fails. for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { n--; @@ -1682,8 +1850,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, // are using base 2^32 instead of base 10. assert(n != 0 && "Divide by zero?"); if (n == 1) { - uint32_t divisor = V[0]; - uint32_t remainder = 0; + unsigned divisor = V[0]; + unsigned remainder = 0; for (int i = m+n-1; i >= 0; i--) { uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; if (partial_dividend == 0) { @@ -1691,13 +1859,13 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, remainder = 0; } else if (partial_dividend < divisor) { Q[i] = 0; - remainder = (uint32_t)partial_dividend; + remainder = (unsigned)partial_dividend; } else if (partial_dividend == divisor) { Q[i] = 1; remainder = 0; } else { - Q[i] = (uint32_t)(partial_dividend / divisor); - remainder = (uint32_t)(partial_dividend - (Q[i] * divisor)); + Q[i] = (unsigned)(partial_dividend / divisor); + remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); } } if (R) @@ -1720,12 +1888,12 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, if (!Quotient->isSingleWord()) Quotient->pVal = getClearedMemory(Quotient->getNumWords()); } else - Quotient->clear(); + Quotient->clearAllBits(); - // The quotient is in Q. Reconstitute the quotient into Quotient's low + // The quotient is in Q. Reconstitute the quotient into Quotient's low // order words. if (lhsWords == 1) { - uint64_t tmp = + uint64_t tmp = uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); if (Quotient->isSingleWord()) Quotient->VAL = tmp; @@ -1734,7 +1902,7 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, } else { assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); for (unsigned i = 0; i < lhsWords; ++i) - Quotient->pVal[i] = + Quotient->pVal[i] = uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); } } @@ -1751,12 +1919,12 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, if (!Remainder->isSingleWord()) Remainder->pVal = getClearedMemory(Remainder->getNumWords()); } else - Remainder->clear(); + Remainder->clearAllBits(); // The remainder is in R. Reconstitute the remainder into Remainder's low // order words. if (rhsWords == 1) { - uint64_t tmp = + uint64_t tmp = uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); if (Remainder->isSingleWord()) Remainder->VAL = tmp; @@ -1765,7 +1933,7 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords, } else { assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); for (unsigned i = 0; i < rhsWords; ++i) - Remainder->pVal[i] = + Remainder->pVal[i] = uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); } } @@ -1789,16 +1957,16 @@ APInt APInt::udiv(const APInt& RHS) const { } // Get some facts about the LHS and RHS number of bits and words - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Divided by zero???"); - uint32_t lhsBits = this->getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + unsigned lhsBits = this->getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); // Deal with some degenerate cases - if (!lhsWords) + if (!lhsWords) // 0 / X ===> 0 - return APInt(BitWidth, 0); + return APInt(BitWidth, 0); else if (lhsWords < rhsWords || this->ult(RHS)) { // X / Y ===> 0, iff X < Y return APInt(BitWidth, 0); @@ -1824,12 +1992,12 @@ APInt APInt::urem(const APInt& RHS) const { } // Get some facts about the LHS - uint32_t lhsBits = getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); + unsigned lhsBits = getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); // Get some facts about the RHS - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Performing remainder operation by zero ???"); // Check the degenerate cases @@ -1853,42 +2021,39 @@ APInt APInt::urem(const APInt& RHS) const { return Remainder; } -void APInt::udivrem(const APInt &LHS, const APInt &RHS, +void APInt::udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { // Get some size facts about the dividend and divisor - uint32_t lhsBits = LHS.getActiveBits(); - uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); - uint32_t rhsBits = RHS.getActiveBits(); - uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); + unsigned lhsBits = LHS.getActiveBits(); + unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + unsigned rhsBits = RHS.getActiveBits(); + unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); // Check the degenerate cases - if (lhsWords == 0) { + if (lhsWords == 0) { Quotient = 0; // 0 / Y ===> 0 Remainder = 0; // 0 % Y ===> 0 return; - } - - if (lhsWords < rhsWords || LHS.ult(RHS)) { - Quotient = 0; // X / Y ===> 0, iff X < Y + } + + if (lhsWords < rhsWords || LHS.ult(RHS)) { Remainder = LHS; // X % Y ===> X, iff X < Y + Quotient = 0; // X / Y ===> 0, iff X < Y return; - } - + } + if (LHS == RHS) { Quotient = 1; // X / X ===> 1 Remainder = 0; // X % X ===> 0; return; - } - + } + if (lhsWords == 1 && rhsWords == 1) { // There is only one word to consider so use the native versions. - if (LHS.isSingleWord()) { - Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL); - Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL); - } else { - Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]); - Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]); - } + uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; + uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); + Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); return; } @@ -1896,26 +2061,101 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS, divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); } -void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, - uint8_t radix) { +APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this+RHS; + Overflow = isNonNegative() == RHS.isNonNegative() && + Res.isNonNegative() != isNonNegative(); + return Res; +} + +APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this+RHS; + Overflow = Res.ult(RHS); + return Res; +} + +APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this - RHS; + Overflow = isNonNegative() != RHS.isNonNegative() && + Res.isNonNegative() != isNonNegative(); + return Res; +} + +APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this-RHS; + Overflow = Res.ugt(*this); + return Res; +} + +APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { + // MININT/-1 --> overflow. + Overflow = isMinSignedValue() && RHS.isAllOnesValue(); + return sdiv(RHS); +} + +APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this * RHS; + + if (*this != 0 && RHS != 0) + Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; + else + Overflow = false; + return Res; +} + +APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { + APInt Res = *this * RHS; + + if (*this != 0 && RHS != 0) + Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; + else + Overflow = false; + return Res; +} + +APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { + Overflow = ShAmt >= getBitWidth(); + if (Overflow) + ShAmt = getBitWidth()-1; + + if (isNonNegative()) // Don't allow sign change. + Overflow = ShAmt >= countLeadingZeros(); + else + Overflow = ShAmt >= countLeadingOnes(); + + return *this << ShAmt; +} + + + + +void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { // Check our assumptions here - assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && - "Radix should be 2, 8, 10, or 16!"); - assert(str && "String is null?"); - bool isNeg = str[0] == '-'; - if (isNeg) - str++, slen--; + assert(!str.empty() && "Invalid string length"); + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || + radix == 36) && + "Radix should be 2, 8, 10, 16, or 36!"); + + StringRef::iterator p = str.begin(); + size_t slen = str.size(); + bool isNeg = *p == '-'; + if (*p == '-' || *p == '+') { + p++; + slen--; + assert(slen && "String is only a sign, needs a value."); + } assert((slen <= numbits || radix != 2) && "Insufficient bit width"); - assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width"); - assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width"); - assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width"); + assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); + assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); + assert((((slen-1)*64)/22 <= numbits || radix != 10) && + "Insufficient bit width"); // Allocate memory if (!isSingleWord()) pVal = getClearedMemory(getNumWords()); // Figure out if we can shift instead of multiply - uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); + unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); // Set up an APInt for the digit to add outside the loop so we don't // constantly construct/destruct it. @@ -1923,36 +2163,17 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, APInt apradix(getBitWidth(), radix); // Enter digit traversal loop - for (unsigned i = 0; i < slen; i++) { - // Get a digit - uint32_t digit = 0; - char cdigit = str[i]; - if (radix == 16) { - if (!isxdigit(cdigit)) - assert(0 && "Invalid hex digit in string"); - if (isdigit(cdigit)) - digit = cdigit - '0'; - else if (cdigit >= 'a') - digit = cdigit - 'a' + 10; - else if (cdigit >= 'A') - digit = cdigit - 'A' + 10; - else - assert(0 && "huh? we shouldn't get here"); - } else if (isdigit(cdigit)) { - digit = cdigit - '0'; - assert((radix == 10 || - (radix == 8 && digit != 8 && digit != 9) || - (radix == 2 && (digit == 0 || digit == 1))) && - "Invalid digit in string for given radix"); - } else { - assert(0 && "Invalid character in digit string"); - } + for (StringRef::iterator e = str.end(); p != e; ++p) { + unsigned digit = getDigit(*p, radix); + assert(digit < radix && "Invalid character in digit string"); // Shift or multiply the value by the radix - if (shift) - *this <<= shift; - else - *this *= apradix; + if (slen > 1) { + if (shift) + *this <<= shift; + else + *this *= apradix; + } // Add in the digit we just interpreted if (apdigit.isSingleWord()) @@ -1964,123 +2185,159 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen, // If its negative, put it in two's complement form if (isNeg) { (*this)--; - this->flip(); + this->flipAllBits(); } } -std::string APInt::toString(uint8_t radix, bool wantSigned) const { - assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && - "Radix should be 2, 8, 10, or 16!"); - static const char *const digits[] = { - "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" - }; - std::string result; - uint32_t bits_used = getActiveBits(); +void APInt::toString(SmallVectorImpl &Str, unsigned Radix, + bool Signed, bool formatAsCLiteral) const { + assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || + Radix == 36) && + "Radix should be 2, 8, 10, 16, or 36!"); + + const char *Prefix = ""; + if (formatAsCLiteral) { + switch (Radix) { + case 2: + // Binary literals are a non-standard extension added in gcc 4.3: + // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html + Prefix = "0b"; + break; + case 8: + Prefix = "0"; + break; + case 10: + break; // No prefix + case 16: + Prefix = "0x"; + break; + default: + llvm_unreachable("Invalid radix!"); + } + } + + // First, check for a zero value and just short circuit the logic below. + if (*this == 0) { + while (*Prefix) { + Str.push_back(*Prefix); + ++Prefix; + }; + Str.push_back('0'); + return; + } + + static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; + if (isSingleWord()) { - char buf[65]; - const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : - (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); - if (format) { - if (wantSigned) { - int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> - (APINT_BITS_PER_WORD-BitWidth); - sprintf(buf, format, sextVal); - } else - sprintf(buf, format, VAL); + char Buffer[65]; + char *BufPtr = Buffer+65; + + uint64_t N; + if (!Signed) { + N = getZExtValue(); } else { - memset(buf, 0, 65); - uint64_t v = VAL; - while (bits_used) { - uint32_t bit = (uint32_t)v & 1; - bits_used--; - buf[bits_used] = digits[bit][0]; - v >>=1; + int64_t I = getSExtValue(); + if (I >= 0) { + N = I; + } else { + Str.push_back('-'); + N = -(uint64_t)I; } } - result = buf; - return result; - } - if (radix != 10) { - // For the 2, 8 and 16 bit cases, we can just shift instead of divide - // because the number of bits per digit (1,3 and 4 respectively) divides - // equaly. We just shift until there value is zero. + while (*Prefix) { + Str.push_back(*Prefix); + ++Prefix; + }; - // First, check for a zero value and just short circuit the logic below. - if (*this == 0) - result = "0"; - else { - APInt tmp(*this); - size_t insert_at = 0; - if (wantSigned && this->isNegative()) { - // They want to print the signed version and it is a negative value - // Flip the bits and add one to turn it into the equivalent positive - // value and put a '-' in the result. - tmp.flip(); - tmp++; - result = "-"; - insert_at = 1; - } - // Just shift tmp right for each digit width until it becomes zero - uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1)); - uint64_t mask = radix - 1; - APInt zero(tmp.getBitWidth(), 0); - while (tmp.ne(zero)) { - unsigned digit = - (unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask); - result.insert(insert_at, digits[digit]); - tmp = tmp.lshr(shift); - } + while (N) { + *--BufPtr = Digits[N % Radix]; + N /= Radix; } - return result; + Str.append(BufPtr, Buffer+65); + return; } - APInt tmp(*this); - APInt divisor(4, radix); - APInt zero(tmp.getBitWidth(), 0); - size_t insert_at = 0; - if (wantSigned && tmp[BitWidth-1]) { + APInt Tmp(*this); + + if (Signed && isNegative()) { // They want to print the signed version and it is a negative value // Flip the bits and add one to turn it into the equivalent positive // value and put a '-' in the result. - tmp.flip(); - tmp++; - result = "-"; - insert_at = 1; - } - if (tmp == APInt(tmp.getBitWidth(), 0)) - result = "0"; - else while (tmp.ne(zero)) { - APInt APdigit(1,0); - APInt tmp2(tmp.getBitWidth(), 0); - divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, - &APdigit); - uint32_t digit = (uint32_t)APdigit.getZExtValue(); - assert(digit < radix && "divide failed"); - result.insert(insert_at,digits[digit]); - tmp = tmp2; + Tmp.flipAllBits(); + Tmp++; + Str.push_back('-'); } - return result; -} + while (*Prefix) { + Str.push_back(*Prefix); + ++Prefix; + }; -void APInt::dump() const -{ - cerr << "APInt(" << BitWidth << ")=" << std::setbase(16); - if (isSingleWord()) - cerr << VAL; - else for (unsigned i = getNumWords(); i > 0; i--) { - cerr << pVal[i-1] << " "; + // We insert the digits backward, then reverse them to get the right order. + unsigned StartDig = Str.size(); + + // For the 2, 8 and 16 bit cases, we can just shift instead of divide + // because the number of bits per digit (1, 3 and 4 respectively) divides + // equaly. We just shift until the value is zero. + if (Radix == 2 || Radix == 8 || Radix == 16) { + // Just shift tmp right for each digit width until it becomes zero + unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); + unsigned MaskAmt = Radix - 1; + + while (Tmp != 0) { + unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; + Str.push_back(Digits[Digit]); + Tmp = Tmp.lshr(ShiftAmt); + } + } else { + APInt divisor(Radix == 10? 4 : 8, Radix); + while (Tmp != 0) { + APInt APdigit(1, 0); + APInt tmp2(Tmp.getBitWidth(), 0); + divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, + &APdigit); + unsigned Digit = (unsigned)APdigit.getZExtValue(); + assert(Digit < Radix && "divide failed"); + Str.push_back(Digits[Digit]); + Tmp = tmp2; + } } - cerr << " U(" << this->toStringUnsigned(10) << ") S(" - << this->toStringSigned(10) << ")" << std::setbase(10); + + // Reverse the digits before returning. + std::reverse(Str.begin()+StartDig, Str.end()); +} + +/// toString - This returns the APInt as a std::string. Note that this is an +/// inefficient method. It is better to pass in a SmallVector/SmallString +/// to the methods above. +std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { + SmallString<40> S; + toString(S, Radix, Signed, /* formatAsCLiteral = */false); + return S.str(); +} + + +void APInt::dump() const { + SmallString<40> S, U; + this->toStringUnsigned(U); + this->toStringSigned(S); + dbgs() << "APInt(" << BitWidth << "b, " + << U.str() << "u " << S.str() << "s)"; +} + +void APInt::print(raw_ostream &OS, bool isSigned) const { + SmallString<40> S; + this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); + OS << S.str(); } // This implements a variety of operations on a representation of // arbitrary precision, two's-complement, bignum integer values. -/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe - and unrestricting assumption. */ +// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe +// and unrestricting assumption. +#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0); /* Some handy functions local to this file. */ @@ -2091,7 +2348,7 @@ namespace { static inline integerPart lowBitMask(unsigned int bits) { - assert (bits != 0 && bits <= integerPartWidth); + assert(bits != 0 && bits <= integerPartWidth); return ~(integerPart) 0 >> (integerPartWidth - bits); } @@ -2168,10 +2425,10 @@ APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) { unsigned int i; - assert (parts > 0); + assert(parts > 0); dst[0] = part; - for(i = 1; i < parts; i++) + for (i = 1; i < parts; i++) dst[i] = 0; } @@ -2181,7 +2438,7 @@ APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] = src[i]; } @@ -2191,7 +2448,7 @@ APInt::tcIsZero(const integerPart *src, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) if (src[i]) return false; @@ -2202,17 +2459,25 @@ APInt::tcIsZero(const integerPart *src, unsigned int parts) int APInt::tcExtractBit(const integerPart *parts, unsigned int bit) { - return(parts[bit / integerPartWidth] - & ((integerPart) 1 << bit % integerPartWidth)) != 0; + return (parts[bit / integerPartWidth] & + ((integerPart) 1 << bit % integerPartWidth)) != 0; } -/* Set the given bit of a bignum. */ +/* Set the given bit of a bignum. */ void APInt::tcSetBit(integerPart *parts, unsigned int bit) { parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); } +/* Clears the given bit of a bignum. */ +void +APInt::tcClearBit(integerPart *parts, unsigned int bit) +{ + parts[bit / integerPartWidth] &= + ~((integerPart) 1 << (bit % integerPartWidth)); +} + /* Returns the bit number of the least significant set bit of a number. If the input number has no bits set -1U is returned. */ unsigned int @@ -2220,7 +2485,7 @@ APInt::tcLSB(const integerPart *parts, unsigned int n) { unsigned int i, lsb; - for(i = 0; i < n; i++) { + for (i = 0; i < n; i++) { if (parts[i] != 0) { lsb = partLSB(parts[i]); @@ -2239,13 +2504,13 @@ APInt::tcMSB(const integerPart *parts, unsigned int n) unsigned int msb; do { - --n; + --n; - if (parts[n] != 0) { - msb = partMSB(parts[n]); + if (parts[n] != 0) { + msb = partMSB(parts[n]); - return msb + n * integerPartWidth; - } + return msb + n * integerPartWidth; + } } while (n); return -1U; @@ -2256,13 +2521,13 @@ APInt::tcMSB(const integerPart *parts, unsigned int n) the least significant bit of DST. All high bits above srcBITS in DST are zero-filled. */ void -APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src, +APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, unsigned int srcBits, unsigned int srcLSB) { unsigned int firstSrcPart, dstParts, shift, n; dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; - assert (dstParts <= dstCount); + assert(dstParts <= dstCount); firstSrcPart = srcLSB / integerPartWidth; tcAssign (dst, src + firstSrcPart, dstParts); @@ -2297,7 +2562,7 @@ APInt::tcAdd(integerPart *dst, const integerPart *rhs, assert(c <= 1); - for(i = 0; i < parts; i++) { + for (i = 0; i < parts; i++) { integerPart l; l = dst[i]; @@ -2322,7 +2587,7 @@ APInt::tcSubtract(integerPart *dst, const integerPart *rhs, assert(c <= 1); - for(i = 0; i < parts; i++) { + for (i = 0; i < parts; i++) { integerPart l; l = dst[i]; @@ -2372,7 +2637,7 @@ APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, /* N loops; minimum of dstParts and srcParts. */ n = dstParts < srcParts ? dstParts: srcParts; - for(i = 0; i < n; i++) { + for (i = 0; i < n; i++) { integerPart low, mid, high, srcPart; /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. @@ -2437,7 +2702,7 @@ APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, non-zero. This is true if any remaining src parts are non-zero and the multiplier is non-zero. */ if (multiplier) - for(; i < srcParts; i++) + for (; i < srcParts; i++) if (src[i]) return 1; @@ -2462,7 +2727,7 @@ APInt::tcMultiply(integerPart *dst, const integerPart *lhs, overflow = 0; tcSet(dst, 0, parts); - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, parts - i, true); @@ -2488,7 +2753,7 @@ APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, tcSet(dst, 0, rhsParts); - for(n = 0; n < lhsParts; n++) + for (n = 0; n < lhsParts; n++) tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); n = lhsParts + rhsParts; @@ -2532,7 +2797,7 @@ APInt::tcDivide(integerPart *lhs, const integerPart *rhs, /* Loop, subtracting SRHS if REMAINDER is greater and adding that to the total. */ - for(;;) { + for (;;) { int compare; compare = tcCompare(remainder, srhs, parts); @@ -2600,7 +2865,7 @@ APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) /* Perform the shift. This leaves the most significant COUNT bits of the result at zero. */ - for(i = 0; i < parts; i++) { + for (i = 0; i < parts; i++) { integerPart part; if (i + jump >= parts) { @@ -2625,7 +2890,7 @@ APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] &= rhs[i]; } @@ -2635,7 +2900,7 @@ APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] |= rhs[i]; } @@ -2645,7 +2910,7 @@ APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] ^= rhs[i]; } @@ -2655,7 +2920,7 @@ APInt::tcComplement(integerPart *dst, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) dst[i] = ~dst[i]; } @@ -2684,7 +2949,7 @@ APInt::tcIncrement(integerPart *dst, unsigned int parts) { unsigned int i; - for(i = 0; i < parts; i++) + for (i = 0; i < parts; i++) if (++dst[i] != 0) break;