X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FIR%2FVerifier.cpp;h=1a22d37ba8af94320761acffe28d53d520824649;hp=a970cf181639e6dcbb8702341dc32713ce9f6ba1;hb=7e54c38de03268a98f329069556b7bcf166c8f05;hpb=cb21505064b3377e56a0b7cc21fa3435fbca885d diff --git a/lib/IR/Verifier.cpp b/lib/IR/Verifier.cpp index a970cf18163..1a22d37ba8a 100644 --- a/lib/IR/Verifier.cpp +++ b/lib/IR/Verifier.cpp @@ -39,8 +39,7 @@ // only by the unwind edge of an invoke instruction. // * A landingpad instruction must be the first non-PHI instruction in the // block. -// * All landingpad instructions must use the same personality function with -// the same function. +// * Landingpad instructions must be in a function with a personality function. // * All other things that are tested by asserts spread about the code... // //===----------------------------------------------------------------------===// @@ -92,6 +91,16 @@ struct VerifierSupport { : OS(OS), M(nullptr), Broken(false) {} private: + template void Write(const ilist_iterator &I) { + Write(&*I); + } + + void Write(const Module *M) { + if (!M) + return; + OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; + } + void Write(const Value *V) { if (!V) return; @@ -184,6 +193,9 @@ class Verifier : public InstVisitor, VerifierSupport { /// \brief Track unresolved string-based type references. SmallDenseMap UnresolvedTypeRefs; + /// \brief The result type for a landingpad. + Type *LandingPadResultTy; + /// \brief Whether we've seen a call to @llvm.localescape in this function /// already. bool SawFrameEscape; @@ -192,9 +204,15 @@ class Verifier : public InstVisitor, VerifierSupport { /// given function and the largest index passed to llvm.localrecover. DenseMap> FrameEscapeInfo; + /// Cache of constants visited in search of ConstantExprs. + SmallPtrSet ConstantExprVisited; + + void checkAtomicMemAccessSize(const Module *M, Type *Ty, + const Instruction *I); public: explicit Verifier(raw_ostream &OS) - : VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {} + : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr), + SawFrameEscape(false) {} bool verify(const Function &F) { M = F.getParent(); @@ -228,6 +246,7 @@ public: // FIXME: We strip const here because the inst visitor strips const. visit(const_cast(F)); InstsInThisBlock.clear(); + LandingPadResultTy = nullptr; SawFrameEscape = false; return !Broken; @@ -297,12 +316,12 @@ private: void visitFunction(const Function &F); void visitBasicBlock(BasicBlock &BB); void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty); + void visitDereferenceableMetadata(Instruction& I, MDNode* MD); template bool isValidMetadataArray(const MDTuple &N); #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); #include "llvm/IR/Metadata.def" void visitDIScope(const DIScope &N); - void visitDIDerivedTypeBase(const DIDerivedTypeBase &N); void visitDIVariable(const DIVariable &N); void visitDILexicalBlockBase(const DILexicalBlockBase &N); void visitDITemplateParameter(const DITemplateParameter &N); @@ -379,7 +398,13 @@ private: void visitAllocaInst(AllocaInst &AI); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); + void visitEHPadPredecessors(Instruction &I); void visitLandingPadInst(LandingPadInst &LPI); + void visitCatchPadInst(CatchPadInst &CPI); + void visitCatchReturnInst(CatchReturnInst &CatchReturn); + void visitCleanupPadInst(CleanupPadInst &CPI); + void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); + void visitCleanupReturnInst(CleanupReturnInst &CRI); void VerifyCallSite(CallSite CS); void verifyMustTailCall(CallInst &CI); @@ -399,7 +424,8 @@ private: void VerifyFunctionMetadata( const SmallVector, 4> MDs); - void VerifyConstantExprBitcastType(const ConstantExpr *CE); + void visitConstantExprsRecursively(const Constant *EntryC); + void visitConstantExpr(const ConstantExpr *CE); void VerifyStatepoint(ImmutableCallSite CS); void verifyFrameRecoverIndices(); @@ -524,25 +550,7 @@ void Verifier::visitGlobalVariable(const GlobalVariable &GV) { } // Walk any aggregate initializers looking for bitcasts between address spaces - SmallPtrSet Visited; - SmallVector WorkStack; - WorkStack.push_back(cast(GV.getInitializer())); - - while (!WorkStack.empty()) { - const Value *V = WorkStack.pop_back_val(); - if (!Visited.insert(V).second) - continue; - - if (const User *U = dyn_cast(V)) { - WorkStack.append(U->op_begin(), U->op_end()); - } - - if (const ConstantExpr *CE = dyn_cast(V)) { - VerifyConstantExprBitcastType(CE); - if (Broken) - return; - } - } + visitConstantExprsRecursively(GV.getInitializer()); visitGlobalValue(GV); } @@ -556,7 +564,8 @@ void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl &Visited, const GlobalAlias &GA, const Constant &C) { if (const auto *GV = dyn_cast(&C)) { - Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA); + Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", + &GA); if (const auto *GA2 = dyn_cast(GV)) { Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); @@ -571,7 +580,7 @@ void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl &Visited, } if (const auto *CE = dyn_cast(&C)) - VerifyConstantExprBitcastType(CE); + visitConstantExprsRecursively(CE); for (const Use &U : C.operands()) { Value *V = &*U; @@ -779,38 +788,10 @@ void Verifier::visitDIBasicType(const DIBasicType &N) { "invalid tag", &N); } -void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) { +void Verifier::visitDIDerivedType(const DIDerivedType &N) { // Common scope checks. visitDIScope(N); - Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope()); - Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, - N.getBaseType()); - - // FIXME: Sink this into the subclass verifies. - if (!N.getFile() || N.getFile()->getFilename().empty()) { - // Check whether the filename is allowed to be empty. - uint16_t Tag = N.getTag(); - Assert( - Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || - Tag == dwarf::DW_TAG_pointer_type || - Tag == dwarf::DW_TAG_ptr_to_member_type || - Tag == dwarf::DW_TAG_reference_type || - Tag == dwarf::DW_TAG_rvalue_reference_type || - Tag == dwarf::DW_TAG_restrict_type || - Tag == dwarf::DW_TAG_array_type || - Tag == dwarf::DW_TAG_enumeration_type || - Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend || - Tag == dwarf::DW_TAG_structure_type || - Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef, - "derived/composite type requires a filename", &N, N.getFile()); - } -} - -void Verifier::visitDIDerivedType(const DIDerivedType &N) { - // Common derived type checks. - visitDIDerivedTypeBase(N); - Assert(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || @@ -827,6 +808,10 @@ void Verifier::visitDIDerivedType(const DIDerivedType &N) { Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N, N.getExtraData()); } + + Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope()); + Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, + N.getBaseType()); } static bool hasConflictingReferenceFlags(unsigned Flags) { @@ -844,8 +829,8 @@ void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { } void Verifier::visitDICompositeType(const DICompositeType &N) { - // Common derived type checks. - visitDIDerivedTypeBase(N); + // Common scope checks. + visitDIScope(N); Assert(N.getTag() == dwarf::DW_TAG_array_type || N.getTag() == dwarf::DW_TAG_structure_type || @@ -854,16 +839,24 @@ void Verifier::visitDICompositeType(const DICompositeType &N) { N.getTag() == dwarf::DW_TAG_class_type, "invalid tag", &N); + Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope()); + Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, + N.getBaseType()); + Assert(!N.getRawElements() || isa(N.getRawElements()), "invalid composite elements", &N, N.getRawElements()); Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N, N.getRawVTableHolder()); - Assert(!N.getRawElements() || isa(N.getRawElements()), - "invalid composite elements", &N, N.getRawElements()); Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", &N); if (auto *Params = N.getRawTemplateParams()) visitTemplateParams(N, *Params); + + if (N.getTag() == dwarf::DW_TAG_class_type || + N.getTag() == dwarf::DW_TAG_union_type) { + Assert(N.getFile() && !N.getFile()->getFilename().empty(), + "class/union requires a filename", &N, N.getFile()); + } } void Verifier::visitDISubroutineType(const DISubroutineType &N) { @@ -883,6 +876,7 @@ void Verifier::visitDIFile(const DIFile &N) { } void Verifier::visitDICompileUnit(const DICompileUnit &N) { + Assert(N.isDistinct(), "compile units must be distinct", &N); Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); // Don't bother verifying the compilation directory or producer string @@ -926,6 +920,12 @@ void Verifier::visitDICompileUnit(const DICompileUnit &N) { Op); } } + if (auto *Array = N.getRawMacros()) { + Assert(isa(Array), "invalid macro list", &N, Array); + for (Metadata *Op : N.getMacros()->operands()) { + Assert(Op && isa(Op), "invalid macro ref", &N, Op); + } + } } void Verifier::visitDISubprogram(const DISubprogram &N) { @@ -935,13 +935,6 @@ void Verifier::visitDISubprogram(const DISubprogram &N) { Assert(isa(T), "invalid subroutine type", &N, T); Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N, N.getRawContainingType()); - if (auto *RawF = N.getRawFunction()) { - auto *FMD = dyn_cast(RawF); - auto *F = FMD ? FMD->getValue() : nullptr; - auto *FT = F ? dyn_cast(F->getType()) : nullptr; - Assert(F && FT && isa(FT->getElementType()), - "invalid function", &N, F, FT); - } if (auto *Params = N.getRawTemplateParams()) visitTemplateParams(N, *Params); if (auto *S = N.getRawDeclaration()) { @@ -959,40 +952,8 @@ void Verifier::visitDISubprogram(const DISubprogram &N) { Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", &N); - auto *F = N.getFunction(); - if (!F) - return; - - // Check that all !dbg attachments lead to back to N (or, at least, another - // subprogram that describes the same function). - // - // FIXME: Check this incrementally while visiting !dbg attachments. - // FIXME: Only check when N is the canonical subprogram for F. - SmallPtrSet Seen; - for (auto &BB : *F) - for (auto &I : BB) { - // Be careful about using DILocation here since we might be dealing with - // broken code (this is the Verifier after all). - DILocation *DL = - dyn_cast_or_null(I.getDebugLoc().getAsMDNode()); - if (!DL) - continue; - if (!Seen.insert(DL).second) - continue; - - DILocalScope *Scope = DL->getInlinedAtScope(); - if (Scope && !Seen.insert(Scope).second) - continue; - - DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; - if (SP && !Seen.insert(SP).second) - continue; - - // FIXME: Once N is canonical, check "SP == &N". - Assert(SP->describes(F), - "!dbg attachment points at wrong subprogram for function", &N, F, - &I, DL, Scope, SP); - } + if (N.isDefinition()) + Assert(N.isDistinct(), "subprogram definitions must be distinct", &N); } void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { @@ -1018,6 +979,27 @@ void Verifier::visitDINamespace(const DINamespace &N) { Assert(isa(S), "invalid scope ref", &N, S); } +void Verifier::visitDIMacro(const DIMacro &N) { + Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define || + N.getMacinfoType() == dwarf::DW_MACINFO_undef, + "invalid macinfo type", &N); + Assert(!N.getName().empty(), "anonymous macro", &N); +} + +void Verifier::visitDIMacroFile(const DIMacroFile &N) { + Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, + "invalid macinfo type", &N); + if (auto *F = N.getRawFile()) + Assert(isa(F), "invalid file", &N, F); + + if (auto *Array = N.getRawElements()) { + Assert(isa(Array), "invalid macro list", &N, Array); + for (Metadata *Op : N.getElements()->operands()) { + Assert(Op && isa(Op), "invalid macro ref", &N, Op); + } + } +} + void Verifier::visitDIModule(const DIModule &N) { Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); Assert(!N.getName().empty(), "anonymous module", &N); @@ -1073,9 +1055,7 @@ void Verifier::visitDILocalVariable(const DILocalVariable &N) { // Checks common to all variables. visitDIVariable(N); - Assert(N.getTag() == dwarf::DW_TAG_auto_variable || - N.getTag() == dwarf::DW_TAG_arg_variable, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); Assert(N.getRawScope() && isa(N.getRawScope()), "local variable requires a valid scope", &N, N.getRawScope()); } @@ -1272,7 +1252,10 @@ void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, I->getKindAsEnum() == Attribute::OptimizeNone || I->getKindAsEnum() == Attribute::JumpTable || I->getKindAsEnum() == Attribute::Convergent || - I->getKindAsEnum() == Attribute::ArgMemOnly) { + I->getKindAsEnum() == Attribute::ArgMemOnly || + I->getKindAsEnum() == Attribute::NoRecurse || + I->getKindAsEnum() == Attribute::InaccessibleMemOnly || + I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) { if (!isFunction) { CheckFailed("Attribute '" + I->getAsString() + "' only applies to functions!", V); @@ -1363,7 +1346,7 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, V); if (PointerType *PTy = dyn_cast(Ty)) { - SmallPtrSet Visited; + SmallPtrSet Visited; if (!PTy->getElementType()->isSized(&Visited)) { Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && !Attrs.hasAttribute(Idx, Attribute::InAlloca), @@ -1442,6 +1425,18 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), "Attributes 'readnone and readonly' are incompatible!", V); + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::InaccessibleMemOrArgMemOnly)), + "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V); + + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::InaccessibleMemOnly)), + "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); + Assert( !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex, @@ -1499,7 +1494,35 @@ void Verifier::VerifyFunctionMetadata( } } -void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { +void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { + if (!ConstantExprVisited.insert(EntryC).second) + return; + + SmallVector Stack; + Stack.push_back(EntryC); + + while (!Stack.empty()) { + const Constant *C = Stack.pop_back_val(); + + // Check this constant expression. + if (const auto *CE = dyn_cast(C)) + visitConstantExpr(CE); + + // Visit all sub-expressions. + for (const Use &U : C->operands()) { + const auto *OpC = dyn_cast(U); + if (!OpC) + continue; + if (isa(OpC)) + continue; // Global values get visited separately. + if (!ConstantExprVisited.insert(OpC).second) + continue; + Stack.push_back(OpC); + } + } +} + +void Verifier::visitConstantExpr(const ConstantExpr *CE) { if (CE->getOpcode() != Instruction::BitCast) return; @@ -1552,17 +1575,11 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) { &CI); const Value *Target = CS.getArgument(2); - const PointerType *PT = dyn_cast(Target->getType()); + auto *PT = dyn_cast(Target->getType()); Assert(PT && PT->getElementType()->isFunctionTy(), "gc.statepoint callee must be of function pointer type", &CI, Target); FunctionType *TargetFuncType = cast(PT->getElementType()); - if (NumPatchBytes) - Assert(isa(Target->stripPointerCasts()), - "gc.statepoint must have null as call target if number of patchable " - "bytes is non zero", - &CI); - const Value *NumCallArgsV = CS.getArgument(3); Assert(isa(NumCallArgsV), "gc.statepoint number of arguments to underlying call " @@ -1741,17 +1758,33 @@ void Verifier::visitFunction(const Function &F) { FT->getParamType(i)); Assert(I->getType()->isFirstClassType(), "Function arguments must have first-class types!", I); - if (!isLLVMdotName) + if (!isLLVMdotName) { Assert(!I->getType()->isMetadataTy(), "Function takes metadata but isn't an intrinsic", I, &F); + Assert(!I->getType()->isTokenTy(), + "Function takes token but isn't an intrinsic", I, &F); + } } + if (!isLLVMdotName) + Assert(!F.getReturnType()->isTokenTy(), + "Functions returns a token but isn't an intrinsic", &F); + // Get the function metadata attachments. SmallVector, 4> MDs; F.getAllMetadata(MDs); assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); VerifyFunctionMetadata(MDs); + // Check validity of the personality function + if (F.hasPersonalityFn()) { + auto *Per = dyn_cast(F.getPersonalityFn()->stripPointerCasts()); + if (Per) + Assert(Per->getParent() == F.getParent(), + "Referencing personality function in another module!", + &F, F.getParent(), Per, Per->getParent()); + } + if (F.isMaterializable()) { // Function has a body somewhere we can't see. Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, @@ -1780,8 +1813,20 @@ void Verifier::visitFunction(const Function &F) { } // Visit metadata attachments. - for (const auto &I : MDs) + for (const auto &I : MDs) { + // Verify that the attachment is legal. + switch (I.first) { + default: + break; + case LLVMContext::MD_dbg: + Assert(isa(I.second), + "function !dbg attachment must be a subprogram", &F, I.second); + break; + } + + // Verify the metadata itself. visitMDNode(*I.second); + } } // If this function is actually an intrinsic, verify that it is only used in @@ -1796,6 +1841,44 @@ void Verifier::visitFunction(const Function &F) { (F.isDeclaration() && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage(), "Function is marked as dllimport, but not external.", &F); + + auto *N = F.getSubprogram(); + if (!N) + return; + + // Check that all !dbg attachments lead to back to N (or, at least, another + // subprogram that describes the same function). + // + // FIXME: Check this incrementally while visiting !dbg attachments. + // FIXME: Only check when N is the canonical subprogram for F. + SmallPtrSet Seen; + for (auto &BB : F) + for (auto &I : BB) { + // Be careful about using DILocation here since we might be dealing with + // broken code (this is the Verifier after all). + DILocation *DL = + dyn_cast_or_null(I.getDebugLoc().getAsMDNode()); + if (!DL) + continue; + if (!Seen.insert(DL).second) + continue; + + DILocalScope *Scope = DL->getInlinedAtScope(); + if (Scope && !Seen.insert(Scope).second) + continue; + + DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; + + // Scope and SP could be the same MDNode and we don't want to skip + // validation in that case + if (SP && ((Scope != SP) && !Seen.insert(SP).second)) + continue; + + // FIXME: Once N is canonical, check "SP == &N". + Assert(SP->describes(&F), + "!dbg attachment points at wrong subprogram for function", N, &F, + &I, DL, Scope, SP); + } } // verifyBasicBlock - Verify that a basic block is well formed... @@ -2192,6 +2275,9 @@ void Verifier::visitPHINode(PHINode &PN) { isa(--BasicBlock::iterator(&PN)), "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); + // Check that a PHI doesn't yield a Token. + Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); + // Check that all of the values of the PHI node have the same type as the // result, and that the incoming blocks are really basic blocks. for (Value *IncValue : PN.incoming_values()) { @@ -2294,16 +2380,44 @@ void Verifier::VerifyCallSite(CallSite CS) { // Verify that there's no metadata unless it's a direct call to an intrinsic. if (CS.getCalledFunction() == nullptr || !CS.getCalledFunction()->getName().startswith("llvm.")) { - for (FunctionType::param_iterator PI = FTy->param_begin(), - PE = FTy->param_end(); PI != PE; ++PI) - Assert(!(*PI)->isMetadataTy(), + for (Type *ParamTy : FTy->params()) { + Assert(!ParamTy->isMetadataTy(), "Function has metadata parameter but isn't an intrinsic", I); + Assert(!ParamTy->isTokenTy(), + "Function has token parameter but isn't an intrinsic", I); + } } + // Verify that indirect calls don't return tokens. + if (CS.getCalledFunction() == nullptr) + Assert(!FTy->getReturnType()->isTokenTy(), + "Return type cannot be token for indirect call!"); + if (Function *F = CS.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) visitIntrinsicCallSite(ID, CS); + // Verify that a callsite has at most one "deopt" and one "funclet" operand + // bundle. + bool FoundDeoptBundle = false, FoundFuncletBundle = false; + for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { + OperandBundleUse BU = CS.getOperandBundleAt(i); + uint32_t Tag = BU.getTagID(); + if (Tag == LLVMContext::OB_deopt) { + Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); + FoundDeoptBundle = true; + } + if (Tag == LLVMContext::OB_funclet) { + Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); + FoundFuncletBundle = true; + Assert(BU.Inputs.size() == 1, + "Expected exactly one funclet bundle operand", I); + Assert(isa(BU.Inputs.front()), + "Funclet bundle operands should correspond to a FuncletPadInst", + I); + } + } + visitInstruction(*I); } @@ -2404,10 +2518,12 @@ void Verifier::visitCallInst(CallInst &CI) { void Verifier::visitInvokeInst(InvokeInst &II) { VerifyCallSite(&II); - // Verify that there is a landingpad instruction as the first non-PHI - // instruction of the 'unwind' destination. - Assert(II.getUnwindDest()->isLandingPad(), - "The unwind destination does not have a landingpad instruction!", &II); + // Verify that the first non-PHI instruction of the unwind destination is an + // exception handling instruction. + Assert( + II.getUnwindDest()->isEHPad(), + "The unwind destination does not have an exception handling instruction!", + &II); visitTerminatorInst(II); } @@ -2620,6 +2736,14 @@ void Verifier::visitRangeMetadata(Instruction& I, } } +void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty, + const Instruction *I) { + unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty); + Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); + Assert(!(Size & (Size - 1)), + "atomic memory access' operand must have a power-of-two size", Ty, I); +} + void Verifier::visitLoadInst(LoadInst &LI) { PointerType *PTy = dyn_cast(LI.getOperand(0)->getType()); Assert(PTy, "Load operand must be a pointer.", &LI); @@ -2631,14 +2755,12 @@ void Verifier::visitLoadInst(LoadInst &LI) { "Load cannot have Release ordering", &LI); Assert(LI.getAlignment() != 0, "Atomic load must specify explicit alignment", &LI); - if (!ElTy->isPointerTy()) { - Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!", - &LI, ElTy); - unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert(Size >= 8 && !(Size & (Size - 1)), - "atomic load operand must be power-of-two byte-sized integer", &LI, - ElTy); - } + Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || + ElTy->isFloatingPointTy(), + "atomic load operand must have integer, pointer, or floating point " + "type!", + ElTy, &LI); + checkAtomicMemAccessSize(M, ElTy, &LI); } else { Assert(LI.getSynchScope() == CrossThread, "Non-atomic load cannot have SynchronizationScope specified", &LI); @@ -2660,14 +2782,12 @@ void Verifier::visitStoreInst(StoreInst &SI) { "Store cannot have Acquire ordering", &SI); Assert(SI.getAlignment() != 0, "Atomic store must specify explicit alignment", &SI); - if (!ElTy->isPointerTy()) { - Assert(ElTy->isIntegerTy(), - "atomic store operand must have integer type!", &SI, ElTy); - unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert(Size >= 8 && !(Size & (Size - 1)), - "atomic store operand must be power-of-two byte-sized integer", - &SI, ElTy); - } + Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || + ElTy->isFloatingPointTy(), + "atomic store operand must have integer, pointer, or floating point " + "type!", + ElTy, &SI); + checkAtomicMemAccessSize(M, ElTy, &SI); } else { Assert(SI.getSynchScope() == CrossThread, "Non-atomic store cannot have SynchronizationScope specified", &SI); @@ -2676,7 +2796,7 @@ void Verifier::visitStoreInst(StoreInst &SI) { } void Verifier::visitAllocaInst(AllocaInst &AI) { - SmallPtrSet Visited; + SmallPtrSet Visited; PointerType *PTy = AI.getType(); Assert(PTy->getAddressSpace() == 0, "Allocation instruction pointer not in the generic address space!", @@ -2714,9 +2834,7 @@ void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { Type *ElTy = PTy->getElementType(); Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI, ElTy); - unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert(Size >= 8 && !(Size & (Size - 1)), - "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy); + checkAtomicMemAccessSize(M, ElTy, &CXI); Assert(ElTy == CXI.getOperand(1)->getType(), "Expected value type does not match pointer operand type!", &CXI, ElTy); @@ -2735,10 +2853,7 @@ void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { Type *ElTy = PTy->getElementType(); Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", &RMWI, ElTy); - unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert(Size >= 8 && !(Size & (Size - 1)), - "atomicrmw operand must be power-of-two byte-sized integer", &RMWI, - ElTy); + checkAtomicMemAccessSize(M, ElTy, &RMWI); Assert(ElTy == RMWI.getOperand(1)->getType(), "Argument value type does not match pointer operand type!", &RMWI, ElTy); @@ -2775,23 +2890,62 @@ void Verifier::visitInsertValueInst(InsertValueInst &IVI) { visitInstruction(IVI); } -void Verifier::visitLandingPadInst(LandingPadInst &LPI) { - BasicBlock *BB = LPI.getParent(); +void Verifier::visitEHPadPredecessors(Instruction &I) { + assert(I.isEHPad()); + + BasicBlock *BB = I.getParent(); + Function *F = BB->getParent(); + + Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); + + if (auto *LPI = dyn_cast(&I)) { + // The landingpad instruction defines its parent as a landing pad block. The + // landing pad block may be branched to only by the unwind edge of an + // invoke. + for (BasicBlock *PredBB : predecessors(BB)) { + const auto *II = dyn_cast(PredBB->getTerminator()); + Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, + "Block containing LandingPadInst must be jumped to " + "only by the unwind edge of an invoke.", + LPI); + } + return; + } + if (auto *CPI = dyn_cast(&I)) { + if (!pred_empty(BB)) + Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), + "Block containg CatchPadInst must be jumped to " + "only by its catchswitch.", + CPI); + return; + } + + for (BasicBlock *PredBB : predecessors(BB)) { + TerminatorInst *TI = PredBB->getTerminator(); + if (auto *II = dyn_cast(TI)) { + Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, + "EH pad must be jumped to via an unwind edge", &I, II); + } else if (!isa(TI) && !isa(TI)) { + Assert(false, "EH pad must be jumped to via an unwind edge", &I, TI); + } + } +} +void Verifier::visitLandingPadInst(LandingPadInst &LPI) { // The landingpad instruction is ill-formed if it doesn't have any clauses and // isn't a cleanup. Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); - // The landingpad instruction defines its parent as a landing pad block. The - // landing pad block may be branched to only by the unwind edge of an invoke. - for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { - const InvokeInst *II = dyn_cast((*I)->getTerminator()); - Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, - "Block containing LandingPadInst must be jumped to " - "only by the unwind edge of an invoke.", + visitEHPadPredecessors(LPI); + + if (!LandingPadResultTy) + LandingPadResultTy = LPI.getType(); + else + Assert(LandingPadResultTy == LPI.getType(), + "The landingpad instruction should have a consistent result type " + "inside a function.", &LPI); - } Function *F = LPI.getParent()->getParent(); Assert(F->hasPersonalityFn(), @@ -2818,6 +2972,132 @@ void Verifier::visitLandingPadInst(LandingPadInst &LPI) { visitInstruction(LPI); } +void Verifier::visitCatchPadInst(CatchPadInst &CPI) { + visitEHPadPredecessors(CPI); + + BasicBlock *BB = CPI.getParent(); + + Function *F = BB->getParent(); + Assert(F->hasPersonalityFn(), + "CatchPadInst needs to be in a function with a personality.", &CPI); + + Assert(isa(CPI.getParentPad()), + "CatchPadInst needs to be directly nested in a CatchSwitchInst.", + CPI.getParentPad()); + + // The catchpad instruction must be the first non-PHI instruction in the + // block. + Assert(BB->getFirstNonPHI() == &CPI, + "CatchPadInst not the first non-PHI instruction in the block.", &CPI); + + visitInstruction(CPI); +} + +void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { + Assert(isa(CatchReturn.getOperand(0)), + "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, + CatchReturn.getOperand(0)); + + visitTerminatorInst(CatchReturn); +} + +void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { + visitEHPadPredecessors(CPI); + + BasicBlock *BB = CPI.getParent(); + + Function *F = BB->getParent(); + Assert(F->hasPersonalityFn(), + "CleanupPadInst needs to be in a function with a personality.", &CPI); + + // The cleanuppad instruction must be the first non-PHI instruction in the + // block. + Assert(BB->getFirstNonPHI() == &CPI, + "CleanupPadInst not the first non-PHI instruction in the block.", + &CPI); + + auto *ParentPad = CPI.getParentPad(); + Assert(isa(ParentPad) || isa(ParentPad) || + isa(ParentPad) || isa(ParentPad), + "CleanupPadInst has an invalid parent.", &CPI); + + User *FirstUser = nullptr; + BasicBlock *FirstUnwindDest = nullptr; + for (User *U : CPI.users()) { + BasicBlock *UnwindDest; + if (CleanupReturnInst *CRI = dyn_cast(U)) { + UnwindDest = CRI->getUnwindDest(); + } else if (isa(U) || isa(U)) { + continue; + } else if (CallSite(U)) { + continue; + } else { + Assert(false, "bogus cleanuppad use", &CPI); + } + + if (!FirstUser) { + FirstUser = U; + FirstUnwindDest = UnwindDest; + } else { + Assert( + UnwindDest == FirstUnwindDest, + "cleanupret instructions from the same cleanuppad must have the same " + "unwind destination", + FirstUser, U); + } + } + + visitInstruction(CPI); +} + +void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { + visitEHPadPredecessors(CatchSwitch); + + BasicBlock *BB = CatchSwitch.getParent(); + + Function *F = BB->getParent(); + Assert(F->hasPersonalityFn(), + "CatchSwitchInst needs to be in a function with a personality.", + &CatchSwitch); + + // The catchswitch instruction must be the first non-PHI instruction in the + // block. + Assert(BB->getFirstNonPHI() == &CatchSwitch, + "CatchSwitchInst not the first non-PHI instruction in the block.", + &CatchSwitch); + + if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { + Instruction *I = UnwindDest->getFirstNonPHI(); + Assert(I->isEHPad() && !isa(I), + "CatchSwitchInst must unwind to an EH block which is not a " + "landingpad.", + &CatchSwitch); + } + + auto *ParentPad = CatchSwitch.getParentPad(); + Assert(isa(ParentPad) || isa(ParentPad) || + isa(ParentPad) || isa(ParentPad), + "CatchSwitchInst has an invalid parent.", ParentPad); + + visitTerminatorInst(CatchSwitch); +} + +void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { + Assert(isa(CRI.getOperand(0)), + "CleanupReturnInst needs to be provided a CleanupPad", &CRI, + CRI.getOperand(0)); + + if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { + Instruction *I = UnwindDest->getFirstNonPHI(); + Assert(I->isEHPad() && !isa(I), + "CleanupReturnInst must unwind to an EH block which is not a " + "landingpad.", + &CRI); + } + + visitTerminatorInst(CRI); +} + void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { Instruction *Op = cast(I.getOperand(i)); // If the we have an invalid invoke, don't try to compute the dominance. @@ -2833,6 +3113,19 @@ void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { "Instruction does not dominate all uses!", Op, &I); } +void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { + Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " + "apply only to pointer types", &I); + Assert(isa(I), + "dereferenceable, dereferenceable_or_null apply only to load" + " instructions, use attributes for calls or invokes", &I); + Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " + "take one operand!", &I); + ConstantInt *CI = mdconst::dyn_extract(MD->getOperand(0)); + Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " + "dereferenceable_or_null metadata value must be an i64!", &I); +} + /// verifyInstruction - Verify that an instruction is well formed. /// void Verifier::visitInstruction(Instruction &I) { @@ -2901,7 +3194,7 @@ void Verifier::visitInstruction(Instruction &I) { " donothing or patchpoint", &I); Assert(F->getParent() == M, "Referencing function in another module!", - &I); + &I, M, F, F->getParent()); } else if (BasicBlock *OpBB = dyn_cast(I.getOperand(i))) { Assert(OpBB->getParent() == BB->getParent(), "Referring to a basic block in another function!", &I); @@ -2909,7 +3202,7 @@ void Verifier::visitInstruction(Instruction &I) { Assert(OpArg->getParent() == BB->getParent(), "Referring to an argument in another function!", &I); } else if (GlobalValue *GV = dyn_cast(I.getOperand(i))) { - Assert(GV->getParent() == M, "Referencing global in another module!", &I); + Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent()); } else if (isa(I.getOperand(i))) { verifyDominatesUse(I, i); } else if (isa(I.getOperand(i))) { @@ -2920,22 +3213,7 @@ void Verifier::visitInstruction(Instruction &I) { if (CE->getType()->isPtrOrPtrVectorTy()) { // If we have a ConstantExpr pointer, we need to see if it came from an // illegal bitcast (inttoptr ) - SmallVector Stack; - SmallPtrSet Visited; - Stack.push_back(CE); - - while (!Stack.empty()) { - const ConstantExpr *V = Stack.pop_back_val(); - if (!Visited.insert(V).second) - continue; - - VerifyConstantExprBitcastType(V); - - for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) { - if (ConstantExpr *Op = dyn_cast(V->getOperand(I))) - Stack.push_back(Op); - } - } + visitConstantExprsRecursively(CE); } } } @@ -2969,6 +3247,28 @@ void Verifier::visitInstruction(Instruction &I) { &I); } + if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) + visitDereferenceableMetadata(I, MD); + + if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) + visitDereferenceableMetadata(I, MD); + + if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { + Assert(I.getType()->isPointerTy(), "align applies only to pointer types", + &I); + Assert(isa(I), "align applies only to load instructions, " + "use attributes for calls or invokes", &I); + Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); + ConstantInt *CI = mdconst::dyn_extract(AlignMD->getOperand(0)); + Assert(CI && CI->getType()->isIntegerTy(64), + "align metadata value must be an i64!", &I); + uint64_t Align = CI->getZExtValue(); + Assert(isPowerOf2_64(Align), + "align metadata value must be a power of 2!", &I); + Assert(Align <= Value::MaximumAlignment, + "alignment is larger that implementation defined limit", &I); + } + if (MDNode *N = I.getDebugLoc().getAsMDNode()) { Assert(isa(N), "invalid !dbg metadata attachment", &I, N); visitMDNode(*N); @@ -2996,6 +3296,7 @@ bool Verifier::VerifyIntrinsicType(Type *Ty, case IITDescriptor::Void: return !Ty->isVoidTy(); case IITDescriptor::VarArg: return true; case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); + case IITDescriptor::Token: return !Ty->isTokenTy(); case IITDescriptor::Metadata: return !Ty->isMetadataTy(); case IITDescriptor::Half: return !Ty->isHalfTy(); case IITDescriptor::Float: return !Ty->isFloatTy(); @@ -3337,9 +3638,8 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { // Assert that result type matches wrapped callee. const Value *Target = StatepointCS.getArgument(2); - const PointerType *PT = cast(Target->getType()); - const FunctionType *TargetFuncType = - cast(PT->getElementType()); + auto *PT = cast(Target->getType()); + auto *TargetFuncType = cast(PT->getElementType()); Assert(CS.getType() == TargetFuncType->getReturnType(), "gc.result result type does not match wrapped callee", CS); break; @@ -3446,6 +3746,12 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { "gc.relocate: relocating a pointer shouldn't change its address space", CS); break; } + case Intrinsic::eh_exceptioncode: + case Intrinsic::eh_exceptionpointer: { + Assert(isa(CS.getArgOperand(0)), + "eh.exceptionpointer argument must be a catchpad", CS); + break; + } }; } @@ -3596,7 +3902,7 @@ void Verifier::verifyTypeRefs() { for (auto *CU : CUs->operands()) if (auto Ts = cast(CU)->getRetainedTypes()) for (DIType *Op : Ts) - if (auto *T = dyn_cast(Op)) + if (auto *T = dyn_cast_or_null(Op)) if (auto *S = T->getRawIdentifier()) { UnresolvedTypeRefs.erase(S); TypeRefs.insert(std::make_pair(S, T));