X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FCodeGen%2FWinEHPrepare.cpp;h=35b944ea309cb4b6169a1aba4a7cd1d8e0b1bd8f;hp=9ff982e661168fb7d7d742007ba075d94fa57c05;hb=c4e7ecff425b7ebbadf87a8aa017cec51f18d16c;hpb=ae09ebc54092a8a78859a5701d0df2331ca275c0 diff --git a/lib/CodeGen/WinEHPrepare.cpp b/lib/CodeGen/WinEHPrepare.cpp index 9ff982e6611..35b944ea309 100644 --- a/lib/CodeGen/WinEHPrepare.cpp +++ b/lib/CodeGen/WinEHPrepare.cpp @@ -15,7 +15,13 @@ //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/LibCallSemantics.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" @@ -23,8 +29,13 @@ #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" #include using namespace llvm; @@ -33,13 +44,33 @@ using namespace llvm::PatternMatch; #define DEBUG_TYPE "winehprepare" namespace { -class WinEHPrepare : public FunctionPass { - std::unique_ptr DwarfPrepare; +// This map is used to model frame variable usage during outlining, to +// construct a structure type to hold the frame variables in a frame +// allocation block, and to remap the frame variable allocas (including +// spill locations as needed) to GEPs that get the variable from the +// frame allocation structure. +typedef MapVector> FrameVarInfoMap; + +// TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't +// quite null. +AllocaInst *getCatchObjectSentinel() { + return static_cast(nullptr) + 1; +} + +typedef SmallSet VisitedBlockSet; + +class LandingPadActions; +class LandingPadMap; + +typedef DenseMap CatchHandlerMapTy; +typedef DenseMap CleanupHandlerMapTy; + +class WinEHPrepare : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid. WinEHPrepare(const TargetMachine *TM = nullptr) - : FunctionPass(ID), DwarfPrepare(createDwarfEHPass(TM)) {} + : FunctionPass(ID), DT(nullptr) {} bool runOnFunction(Function &Fn) override; @@ -52,36 +83,219 @@ public: } private: - bool prepareCPPEHHandlers(Function &F, - SmallVectorImpl &LPads); - bool outlineCatchHandler(Function *SrcFn, Constant *SelectorType, - LandingPadInst *LPad, StructType *EHDataStructTy); + bool prepareExceptionHandlers(Function &F, + SmallVectorImpl &LPads); + void promoteLandingPadValues(LandingPadInst *LPad); + void completeNestedLandingPad(Function *ParentFn, + LandingPadInst *OutlinedLPad, + const LandingPadInst *OriginalLPad, + FrameVarInfoMap &VarInfo); + bool outlineHandler(ActionHandler *Action, Function *SrcFn, + LandingPadInst *LPad, BasicBlock *StartBB, + FrameVarInfoMap &VarInfo); + void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn); + + void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions); + CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, + VisitedBlockSet &VisitedBlocks); + void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, + BasicBlock *EndBB); + + void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB); + + // All fields are reset by runOnFunction. + DominatorTree *DT; + EHPersonality Personality; + CatchHandlerMapTy CatchHandlerMap; + CleanupHandlerMapTy CleanupHandlerMap; + DenseMap LPadMaps; + + // This maps landing pad instructions found in outlined handlers to + // the landing pad instruction in the parent function from which they + // were cloned. The cloned/nested landing pad is used as the key + // because the landing pad may be cloned into multiple handlers. + // This map will be used to add the llvm.eh.actions call to the nested + // landing pads after all handlers have been outlined. + DenseMap NestedLPtoOriginalLP; + + // This maps blocks in the parent function which are destinations of + // catch handlers to cloned blocks in (other) outlined handlers. This + // handles the case where a nested landing pads has a catch handler that + // returns to a handler function rather than the parent function. + // The original block is used as the key here because there should only + // ever be one handler function from which the cloned block is not pruned. + // The original block will be pruned from the parent function after all + // handlers have been outlined. This map will be used to adjust the + // return instructions of handlers which return to the block that was + // outlined into a handler. This is done after all handlers have been + // outlined but before the outlined code is pruned from the parent function. + DenseMap LPadTargetBlocks; +}; + +class WinEHFrameVariableMaterializer : public ValueMaterializer { +public: + WinEHFrameVariableMaterializer(Function *OutlinedFn, + FrameVarInfoMap &FrameVarInfo); + ~WinEHFrameVariableMaterializer() override {} + + Value *materializeValueFor(Value *V) override; + + void escapeCatchObject(Value *V); + +private: + FrameVarInfoMap &FrameVarInfo; + IRBuilder<> Builder; }; -class WinEHCatchDirector : public CloningDirector { +class LandingPadMap { public: - WinEHCatchDirector(LandingPadInst *LPI, Value *Selector, Value *EHObj) - : LPI(LPI), CurrentSelector(Selector->stripPointerCasts()), EHObj(EHObj), - SelectorIDType(Type::getInt32Ty(LPI->getContext())), - Int8PtrType(Type::getInt8PtrTy(LPI->getContext())) {} - virtual ~WinEHCatchDirector() {} + LandingPadMap() : OriginLPad(nullptr) {} + void mapLandingPad(const LandingPadInst *LPad); + + bool isInitialized() { return OriginLPad != nullptr; } + + bool isOriginLandingPadBlock(const BasicBlock *BB) const; + bool isLandingPadSpecificInst(const Instruction *Inst) const; + + void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, + Value *SelectorValue) const; + +private: + const LandingPadInst *OriginLPad; + // We will normally only see one of each of these instructions, but + // if more than one occurs for some reason we can handle that. + TinyPtrVector ExtractedEHPtrs; + TinyPtrVector ExtractedSelectors; +}; + +class WinEHCloningDirectorBase : public CloningDirector { +public: + WinEHCloningDirectorBase(Function *HandlerFn, FrameVarInfoMap &VarInfo, + LandingPadMap &LPadMap) + : Materializer(HandlerFn, VarInfo), + SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())), + Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())), + LPadMap(LPadMap) {} CloningAction handleInstruction(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; -private: - LandingPadInst *LPI; - Value *CurrentSelector; - Value *EHObj; + virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap, + const Instruction *Inst, + BasicBlock *NewBB) = 0; + virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap, + const Instruction *Inst, + BasicBlock *NewBB) = 0; + virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, + const Instruction *Inst, + BasicBlock *NewBB) = 0; + virtual CloningAction handleInvoke(ValueToValueMapTy &VMap, + const InvokeInst *Invoke, + BasicBlock *NewBB) = 0; + virtual CloningAction handleResume(ValueToValueMapTy &VMap, + const ResumeInst *Resume, + BasicBlock *NewBB) = 0; + virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap, + const LandingPadInst *LPad, + BasicBlock *NewBB) = 0; + + ValueMaterializer *getValueMaterializer() override { return &Materializer; } + +protected: + WinEHFrameVariableMaterializer Materializer; Type *SelectorIDType; Type *Int8PtrType; + LandingPadMap &LPadMap; +}; + +class WinEHCatchDirector : public WinEHCloningDirectorBase { +public: + WinEHCatchDirector( + Function *CatchFn, Value *Selector, FrameVarInfoMap &VarInfo, + LandingPadMap &LPadMap, + DenseMap &NestedLPads) + : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap), + CurrentSelector(Selector->stripPointerCasts()), + ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads) {} + + CloningAction handleBeginCatch(ValueToValueMapTy &VMap, + const Instruction *Inst, + BasicBlock *NewBB) override; + CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, + BasicBlock *NewBB) override; + CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, + const Instruction *Inst, + BasicBlock *NewBB) override; + CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, + BasicBlock *NewBB) override; + CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, + BasicBlock *NewBB) override; + CloningAction handleLandingPad(ValueToValueMapTy &VMap, + const LandingPadInst *LPad, + BasicBlock *NewBB) override; + + Value *getExceptionVar() { return ExceptionObjectVar; } + TinyPtrVector &getReturnTargets() { return ReturnTargets; } + +private: + Value *CurrentSelector; + + Value *ExceptionObjectVar; + TinyPtrVector ReturnTargets; + + // This will be a reference to the field of the same name in the WinEHPrepare + // object which instantiates this WinEHCatchDirector object. + DenseMap &NestedLPtoOriginalLP; +}; - const Value *ExtractedEHPtr; - const Value *ExtractedSelector; - const Value *EHPtrStoreAddr; - const Value *SelectorStoreAddr; +class WinEHCleanupDirector : public WinEHCloningDirectorBase { +public: + WinEHCleanupDirector(Function *CleanupFn, FrameVarInfoMap &VarInfo, + LandingPadMap &LPadMap) + : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {} + + CloningAction handleBeginCatch(ValueToValueMapTy &VMap, + const Instruction *Inst, + BasicBlock *NewBB) override; + CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, + BasicBlock *NewBB) override; + CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, + const Instruction *Inst, + BasicBlock *NewBB) override; + CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, + BasicBlock *NewBB) override; + CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, + BasicBlock *NewBB) override; + CloningAction handleLandingPad(ValueToValueMapTy &VMap, + const LandingPadInst *LPad, + BasicBlock *NewBB) override; +}; + +class LandingPadActions { +public: + LandingPadActions() : HasCleanupHandlers(false) {} + + void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); } + void insertCleanupHandler(CleanupHandler *Action) { + Actions.push_back(Action); + HasCleanupHandlers = true; + } + + bool includesCleanup() const { return HasCleanupHandlers; } + + SmallVectorImpl &actions() { return Actions; } + SmallVectorImpl::iterator begin() { return Actions.begin(); } + SmallVectorImpl::iterator end() { return Actions.end(); } + +private: + // Note that this class does not own the ActionHandler objects in this vector. + // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap + // in the WinEHPrepare class. + SmallVector Actions; + bool HasCleanupHandlers; }; + } // end anonymous namespace char WinEHPrepare::ID = 0; @@ -92,10 +306,10 @@ FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) { return new WinEHPrepare(TM); } -static bool isMSVCPersonality(EHPersonality Pers) { - return Pers == EHPersonality::MSVC_Win64SEH || - Pers == EHPersonality::MSVC_CXX; -} +// FIXME: Remove this once the backend can handle the prepared IR. +static cl::opt + SEHPrepare("sehprepare", cl::Hidden, + cl::desc("Prepare functions with SEH personalities")); bool WinEHPrepare::runOnFunction(Function &Fn) { SmallVector LPads; @@ -112,61 +326,69 @@ bool WinEHPrepare::runOnFunction(Function &Fn) { return false; // Classify the personality to see what kind of preparation we need. - EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn()); - - // Delegate through to the DWARF pass if this is unrecognized. - if (!isMSVCPersonality(Pers)) - return DwarfPrepare->runOnFunction(Fn); + Personality = classifyEHPersonality(LPads.back()->getPersonalityFn()); - // FIXME: This only returns true if the C++ EH handlers were outlined. - // When that code is complete, it should always return whatever - // prepareCPPEHHandlers returns. - if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads)) - return true; - - // FIXME: SEH Cleanups are unimplemented. Replace them with unreachable. - if (Resumes.empty()) + // Do nothing if this is not an MSVC personality. + if (!isMSVCEHPersonality(Personality)) return false; - for (ResumeInst *Resume : Resumes) { - IRBuilder<>(Resume).CreateUnreachable(); - Resume->eraseFromParent(); + DT = &getAnalysis().getDomTree(); + + if (isAsynchronousEHPersonality(Personality) && !SEHPrepare) { + // Replace all resume instructions with unreachable. + // FIXME: Remove this once the backend can handle the prepared IR. + for (ResumeInst *Resume : Resumes) { + IRBuilder<>(Resume).CreateUnreachable(); + Resume->eraseFromParent(); + } + return true; } + // If there were any landing pads, prepareExceptionHandlers will make changes. + prepareExceptionHandlers(Fn, LPads); return true; } -bool WinEHPrepare::doFinalization(Module &M) { - return DwarfPrepare->doFinalization(M); -} +bool WinEHPrepare::doFinalization(Module &M) { return false; } void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const { - DwarfPrepare->getAnalysisUsage(AU); + AU.addRequired(); } -bool WinEHPrepare::prepareCPPEHHandlers( +bool WinEHPrepare::prepareExceptionHandlers( Function &F, SmallVectorImpl &LPads) { - // FIXME: Find all frame variable references in the handlers - // to populate the structure elements. - SmallVector AllocStructTys; - AllocStructTys.push_back(Type::getInt32Ty(F.getContext())); // EH state - AllocStructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object - StructType *EHDataStructTy = - StructType::create(F.getContext(), AllocStructTys, - "struct." + F.getName().str() + ".ehdata"); + // These containers are used to re-map frame variables that are used in + // outlined catch and cleanup handlers. They will be populated as the + // handlers are outlined. + FrameVarInfoMap FrameVarInfo; + bool HandlersOutlined = false; + Module *M = F.getParent(); + LLVMContext &Context = M->getContext(); + + // Create a new function to receive the handler contents. + PointerType *Int8PtrType = Type::getInt8PtrTy(Context); + Type *Int32Type = Type::getInt32Ty(Context); + Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions); + for (LandingPadInst *LPad : LPads) { // Look for evidence that this landingpad has already been processed. bool LPadHasActionList = false; BasicBlock *LPadBB = LPad->getParent(); - for (Instruction &Inst : LPadBB->getInstList()) { - // FIXME: Make this an intrinsic. - if (auto *Call = dyn_cast(&Inst)) - if (Call->getCalledFunction()->getName() == "llvm.eh.actions") { + for (Instruction &Inst : *LPadBB) { + if (auto *IntrinCall = dyn_cast(&Inst)) { + if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) { LPadHasActionList = true; break; } + } + // FIXME: This is here to help with the development of nested landing pad + // outlining. It should be removed when that is finished. + if (isa(Inst)) { + LPadHasActionList = true; + break; + } } // If we've already outlined the handlers for this landingpad, @@ -174,20 +396,429 @@ bool WinEHPrepare::prepareCPPEHHandlers( if (LPadHasActionList) continue; - for (unsigned Idx = 0, NumClauses = LPad->getNumClauses(); Idx < NumClauses; - ++Idx) { - if (LPad->isCatch(Idx)) - HandlersOutlined = - outlineCatchHandler(&F, LPad->getClause(Idx), LPad, EHDataStructTy); - } // End for each clause - } // End for each landingpad + // If either of the values in the aggregate returned by the landing pad is + // extracted and stored to memory, promote the stored value to a register. + promoteLandingPadValues(LPad); + + LandingPadActions Actions; + mapLandingPadBlocks(LPad, Actions); + + HandlersOutlined |= !Actions.actions().empty(); + for (ActionHandler *Action : Actions) { + if (Action->hasBeenProcessed()) + continue; + BasicBlock *StartBB = Action->getStartBlock(); + + // SEH doesn't do any outlining for catches. Instead, pass the handler + // basic block addr to llvm.eh.actions and list the block as a return + // target. + if (isAsynchronousEHPersonality(Personality)) { + if (auto *CatchAction = dyn_cast(Action)) { + processSEHCatchHandler(CatchAction, StartBB); + continue; + } + } + + outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo); + } + + // Replace the landing pad with a new llvm.eh.action based landing pad. + BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB); + assert(!isa(LPadBB->begin())); + auto *NewLPad = cast(LPad->clone()); + NewLPadBB->getInstList().push_back(NewLPad); + while (!pred_empty(LPadBB)) { + auto *pred = *pred_begin(LPadBB); + InvokeInst *Invoke = cast(pred->getTerminator()); + Invoke->setUnwindDest(NewLPadBB); + } + + // If anyone is still using the old landingpad value, just give them undef + // instead. The eh pointer and selector values are not real. + LPad->replaceAllUsesWith(UndefValue::get(LPad->getType())); + + // Replace the mapping of any nested landing pad that previously mapped + // to this landing pad with a referenced to the cloned version. + for (auto &LPadPair : NestedLPtoOriginalLP) { + const LandingPadInst *OriginalLPad = LPadPair.second; + if (OriginalLPad == LPad) { + LPadPair.second = NewLPad; + } + } + + // Replace uses of the old lpad in phis with this block and delete the old + // block. + LPadBB->replaceSuccessorsPhiUsesWith(NewLPadBB); + LPadBB->getTerminator()->eraseFromParent(); + new UnreachableInst(LPadBB->getContext(), LPadBB); + + // Add a call to describe the actions for this landing pad. + std::vector ActionArgs; + for (ActionHandler *Action : Actions) { + // Action codes from docs are: 0 cleanup, 1 catch. + if (auto *CatchAction = dyn_cast(Action)) { + ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); + ActionArgs.push_back(CatchAction->getSelector()); + // Find the frame escape index of the exception object alloca in the + // parent. + int FrameEscapeIdx = -1; + Value *EHObj = const_cast(CatchAction->getExceptionVar()); + if (EHObj && !isa(EHObj)) { + auto I = FrameVarInfo.find(EHObj); + assert(I != FrameVarInfo.end() && + "failed to map llvm.eh.begincatch var"); + FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I); + } + ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx)); + } else { + ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); + } + ActionArgs.push_back(Action->getHandlerBlockOrFunc()); + } + CallInst *Recover = + CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB); + + // Add an indirect branch listing possible successors of the catch handlers. + IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB); + for (ActionHandler *Action : Actions) { + if (auto *CatchAction = dyn_cast(Action)) { + for (auto *Target : CatchAction->getReturnTargets()) { + Branch->addDestination(Target); + } + } + } + } // End for each landingpad + + // If nothing got outlined, there is no more processing to be done. + if (!HandlersOutlined) + return false; + + // Replace any nested landing pad stubs with the correct action handler. + // This must be done before we remove unreachable blocks because it + // cleans up references to outlined blocks that will be deleted. + for (auto &LPadPair : NestedLPtoOriginalLP) + completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo); + NestedLPtoOriginalLP.clear(); + + F.addFnAttr("wineh-parent", F.getName()); + + // Delete any blocks that were only used by handlers that were outlined above. + removeUnreachableBlocks(F); + + BasicBlock *Entry = &F.getEntryBlock(); + IRBuilder<> Builder(F.getParent()->getContext()); + Builder.SetInsertPoint(Entry->getFirstInsertionPt()); + + Function *FrameEscapeFn = + Intrinsic::getDeclaration(M, Intrinsic::frameescape); + Function *RecoverFrameFn = + Intrinsic::getDeclaration(M, Intrinsic::framerecover); + + // Finally, replace all of the temporary allocas for frame variables used in + // the outlined handlers with calls to llvm.framerecover. + BasicBlock::iterator II = Entry->getFirstInsertionPt(); + Instruction *AllocaInsertPt = II; + SmallVector AllocasToEscape; + for (auto &VarInfoEntry : FrameVarInfo) { + Value *ParentVal = VarInfoEntry.first; + TinyPtrVector &Allocas = VarInfoEntry.second; + + // If the mapped value isn't already an alloca, we need to spill it if it + // is a computed value or copy it if it is an argument. + AllocaInst *ParentAlloca = dyn_cast(ParentVal); + if (!ParentAlloca) { + if (auto *Arg = dyn_cast(ParentVal)) { + // Lower this argument to a copy and then demote that to the stack. + // We can't just use the argument location because the handler needs + // it to be in the frame allocation block. + // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction. + Value *TrueValue = ConstantInt::getTrue(Context); + Value *UndefValue = UndefValue::get(Arg->getType()); + Instruction *SI = + SelectInst::Create(TrueValue, Arg, UndefValue, + Arg->getName() + ".tmp", AllocaInsertPt); + Arg->replaceAllUsesWith(SI); + // Reset the select operand, because it was clobbered by the RAUW above. + SI->setOperand(1, Arg); + ParentAlloca = DemoteRegToStack(*SI, true, SI); + } else if (auto *PN = dyn_cast(ParentVal)) { + ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt); + } else { + Instruction *ParentInst = cast(ParentVal); + // FIXME: This is a work-around to temporarily handle the case where an + // instruction that is only used in handlers is not sunk. + // Without uses, DemoteRegToStack would just eliminate the value. + // This will fail if ParentInst is an invoke. + if (ParentInst->getNumUses() == 0) { + BasicBlock::iterator InsertPt = ParentInst; + ++InsertPt; + ParentAlloca = + new AllocaInst(ParentInst->getType(), nullptr, + ParentInst->getName() + ".reg2mem", + AllocaInsertPt); + new StoreInst(ParentInst, ParentAlloca, InsertPt); + } else { + ParentAlloca = DemoteRegToStack(*ParentInst, true, AllocaInsertPt); + } + } + } + + // FIXME: We should try to sink unescaped allocas from the parent frame into + // the child frame. If the alloca is escaped, we have to use the lifetime + // markers to ensure that the alloca is only live within the child frame. + + // Add this alloca to the list of things to escape. + AllocasToEscape.push_back(ParentAlloca); + + // Next replace all outlined allocas that are mapped to it. + for (AllocaInst *TempAlloca : Allocas) { + if (TempAlloca == getCatchObjectSentinel()) + continue; // Skip catch parameter sentinels. + Function *HandlerFn = TempAlloca->getParent()->getParent(); + // FIXME: Sink this GEP into the blocks where it is used. + Builder.SetInsertPoint(TempAlloca); + Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc()); + Value *RecoverArgs[] = { + Builder.CreateBitCast(&F, Int8PtrType, ""), + &(HandlerFn->getArgumentList().back()), + llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)}; + Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs); + // Add a pointer bitcast if the alloca wasn't an i8. + if (RecoveredAlloca->getType() != TempAlloca->getType()) { + RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8"); + RecoveredAlloca = + Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()); + } + TempAlloca->replaceAllUsesWith(RecoveredAlloca); + TempAlloca->removeFromParent(); + RecoveredAlloca->takeName(TempAlloca); + delete TempAlloca; + } + } // End for each FrameVarInfo entry. + + // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry + // block. + Builder.SetInsertPoint(&F.getEntryBlock().back()); + Builder.CreateCall(FrameEscapeFn, AllocasToEscape); + + // Clean up the handler action maps we created for this function + DeleteContainerSeconds(CatchHandlerMap); + CatchHandlerMap.clear(); + DeleteContainerSeconds(CleanupHandlerMap); + CleanupHandlerMap.clear(); return HandlersOutlined; } -bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType, - LandingPadInst *LPad, - StructType *EHDataStructTy) { +void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) { + // If the return values of the landing pad instruction are extracted and + // stored to memory, we want to promote the store locations to reg values. + SmallVector EHAllocas; + + // The landingpad instruction returns an aggregate value. Typically, its + // value will be passed to a pair of extract value instructions and the + // results of those extracts are often passed to store instructions. + // In unoptimized code the stored value will often be loaded and then stored + // again. + for (auto *U : LPad->users()) { + ExtractValueInst *Extract = dyn_cast(U); + if (!Extract) + continue; + + for (auto *EU : Extract->users()) { + if (auto *Store = dyn_cast(EU)) { + auto *AV = cast(Store->getPointerOperand()); + EHAllocas.push_back(AV); + } + } + } + + // We can't do this without a dominator tree. + assert(DT); + + if (!EHAllocas.empty()) { + PromoteMemToReg(EHAllocas, *DT); + EHAllocas.clear(); + } + + // After promotion, some extracts may be trivially dead. Remove them. + SmallVector Users(LPad->user_begin(), LPad->user_end()); + for (auto *U : Users) + RecursivelyDeleteTriviallyDeadInstructions(U); +} + +void WinEHPrepare::completeNestedLandingPad(Function *ParentFn, + LandingPadInst *OutlinedLPad, + const LandingPadInst *OriginalLPad, + FrameVarInfoMap &FrameVarInfo) { + // Get the nested block and erase the unreachable instruction that was + // temporarily inserted as its terminator. + LLVMContext &Context = ParentFn->getContext(); + BasicBlock *OutlinedBB = OutlinedLPad->getParent(); + assert(isa(OutlinedBB->getTerminator())); + OutlinedBB->getTerminator()->eraseFromParent(); + // That should leave OutlinedLPad as the last instruction in its block. + assert(&OutlinedBB->back() == OutlinedLPad); + + // The original landing pad will have already had its action intrinsic + // built by the outlining loop. We need to clone that into the outlined + // location. It may also be necessary to add references to the exception + // variables to the outlined handler in which this landing pad is nested + // and remap return instructions in the nested handlers that should return + // to an address in the outlined handler. + Function *OutlinedHandlerFn = OutlinedBB->getParent(); + BasicBlock::const_iterator II = OriginalLPad; + ++II; + // The instruction after the landing pad should now be a call to eh.actions. + const Instruction *Recover = II; + assert(match(Recover, m_Intrinsic())); + IntrinsicInst *EHActions = cast(Recover->clone()); + + // Remap the exception variables into the outlined function. + WinEHFrameVariableMaterializer Materializer(OutlinedHandlerFn, FrameVarInfo); + SmallVector ActionTargets; + SmallVector ActionList; + parseEHActions(EHActions, ActionList); + for (auto *Action : ActionList) { + auto *Catch = dyn_cast(Action); + if (!Catch) + continue; + // The dyn_cast to function here selects C++ catch handlers and skips + // SEH catch handlers. + auto *Handler = dyn_cast(Catch->getHandlerBlockOrFunc()); + if (!Handler) + continue; + // Visit all the return instructions, looking for places that return + // to a location within OutlinedHandlerFn. + for (BasicBlock &NestedHandlerBB : *Handler) { + auto *Ret = dyn_cast(NestedHandlerBB.getTerminator()); + if (!Ret) + continue; + + // Handler functions must always return a block address. + BlockAddress *BA = cast(Ret->getReturnValue()); + // The original target will have been in the main parent function, + // but if it is the address of a block that has been outlined, it + // should be a block that was outlined into OutlinedHandlerFn. + assert(BA->getFunction() == ParentFn); + + // Ignore targets that aren't part of OutlinedHandlerFn. + if (!LPadTargetBlocks.count(BA->getBasicBlock())) + continue; + + // If the return value is the address ofF a block that we + // previously outlined into the parent handler function, replace + // the return instruction and add the mapped target to the list + // of possible return addresses. + BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()]; + assert(MappedBB->getParent() == OutlinedHandlerFn); + BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB); + Ret->eraseFromParent(); + ReturnInst::Create(Context, NewBA, &NestedHandlerBB); + ActionTargets.push_back(NewBA); + } + } + DeleteContainerPointers(ActionList); + ActionList.clear(); + OutlinedBB->getInstList().push_back(EHActions); + + // Insert an indirect branch into the outlined landing pad BB. + IndirectBrInst *IBr = IndirectBrInst::Create(EHActions, 0, OutlinedBB); + // Add the previously collected action targets. + for (auto *Target : ActionTargets) + IBr->addDestination(Target->getBasicBlock()); +} + +// This function examines a block to determine whether the block ends with a +// conditional branch to a catch handler based on a selector comparison. +// This function is used both by the WinEHPrepare::findSelectorComparison() and +// WinEHCleanupDirector::handleTypeIdFor(). +static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, + Constant *&Selector, BasicBlock *&NextBB) { + ICmpInst::Predicate Pred; + BasicBlock *TBB, *FBB; + Value *LHS, *RHS; + + if (!match(BB->getTerminator(), + m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB))) + return false; + + if (!match(LHS, + m_Intrinsic(m_Constant(Selector))) && + !match(RHS, m_Intrinsic(m_Constant(Selector)))) + return false; + + if (Pred == CmpInst::ICMP_EQ) { + CatchHandler = TBB; + NextBB = FBB; + return true; + } + + if (Pred == CmpInst::ICMP_NE) { + CatchHandler = FBB; + NextBB = TBB; + return true; + } + + return false; +} + +static BasicBlock *createStubLandingPad(Function *Handler, + Value *PersonalityFn) { + // FIXME: Finish this! + LLVMContext &Context = Handler->getContext(); + BasicBlock *StubBB = BasicBlock::Create(Context, "stub"); + Handler->getBasicBlockList().push_back(StubBB); + IRBuilder<> Builder(StubBB); + LandingPadInst *LPad = Builder.CreateLandingPad( + llvm::StructType::get(Type::getInt8PtrTy(Context), + Type::getInt32Ty(Context), nullptr), + PersonalityFn, 0); + LPad->setCleanup(true); + Builder.CreateUnreachable(); + return StubBB; +} + +// Cycles through the blocks in an outlined handler function looking for an +// invoke instruction and inserts an invoke of llvm.donothing with an empty +// landing pad if none is found. The code that generates the .xdata tables for +// the handler needs at least one landing pad to identify the parent function's +// personality. +void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler, + Value *PersonalityFn) { + ReturnInst *Ret = nullptr; + for (BasicBlock &BB : *Handler) { + TerminatorInst *Terminator = BB.getTerminator(); + // If we find an invoke, there is nothing to be done. + auto *II = dyn_cast(Terminator); + if (II) + return; + // If we've already recorded a return instruction, keep looking for invokes. + if (Ret) + continue; + // If we haven't recorded a return instruction yet, try this terminator. + Ret = dyn_cast(Terminator); + } + + // If we got this far, the handler contains no invokes. We should have seen + // at least one return. We'll insert an invoke of llvm.donothing ahead of + // that return. + assert(Ret); + BasicBlock *OldRetBB = Ret->getParent(); + BasicBlock *NewRetBB = SplitBlock(OldRetBB, Ret); + // SplitBlock adds an unconditional branch instruction at the end of the + // parent block. We want to replace that with an invoke call, so we can + // erase it now. + OldRetBB->getTerminator()->eraseFromParent(); + BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn); + Function *F = + Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing); + InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB); +} + +bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, + LandingPadInst *LPad, BasicBlock *StartBB, + FrameVarInfoMap &VarInfo) { Module *M = SrcFn->getParent(); LLVMContext &Context = M->getContext(); @@ -196,196 +827,908 @@ bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType, std::vector ArgTys; ArgTys.push_back(Int8PtrType); ArgTys.push_back(Int8PtrType); - FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false); - Function *CatchHandler = Function::Create( - FnType, GlobalVariable::ExternalLinkage, SrcFn->getName() + ".catch", M); + Function *Handler; + if (Action->getType() == Catch) { + FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false); + Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, + SrcFn->getName() + ".catch", M); + } else { + FunctionType *FnType = + FunctionType::get(Type::getVoidTy(Context), ArgTys, false); + Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, + SrcFn->getName() + ".cleanup", M); + } + + Handler->addFnAttr("wineh-parent", SrcFn->getName()); // Generate a standard prolog to setup the frame recovery structure. IRBuilder<> Builder(Context); - BasicBlock *Entry = BasicBlock::Create(Context, "catch.entry"); - CatchHandler->getBasicBlockList().push_front(Entry); + BasicBlock *Entry = BasicBlock::Create(Context, "entry"); + Handler->getBasicBlockList().push_front(Entry); Builder.SetInsertPoint(Entry); Builder.SetCurrentDebugLocation(LPad->getDebugLoc()); - // The outlined handler will be called with the parent's frame pointer as - // its second argument. To enable the handler to access variables from - // the parent frame, we use that pointer to get locate a special block - // of memory that was allocated using llvm.eh.allocateframe for this - // purpose. During the outlining process we will determine which frame - // variables are used in handlers and create a structure that maps these - // variables into the frame allocation block. - // - // The frame allocation block also contains an exception state variable - // used by the runtime and a pointer to the exception object pointer - // which will be filled in by the runtime for use in the handler. - Function *RecoverFrameFn = - Intrinsic::getDeclaration(M, Intrinsic::framerecover); - Value *RecoverArgs[] = {Builder.CreateBitCast(SrcFn, Int8PtrType, ""), - &(CatchHandler->getArgumentList().back())}; - CallInst *EHAlloc = - Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc"); - Value *EHData = - Builder.CreateBitCast(EHAlloc, EHDataStructTy->getPointerTo(), "ehdata"); - Value *EHObjPtr = - Builder.CreateConstInBoundsGEP2_32(EHData, 0, 1, "eh.obj.ptr"); - - // This will give us a raw pointer to the exception object, which - // corresponds to the formal parameter of the catch statement. If the - // handler uses this object, we will generate code during the outlining - // process to cast the pointer to the appropriate type and deference it - // as necessary. The un-outlined landing pad code represents the - // exception object as the result of the llvm.eh.begincatch call. - Value *EHObj = Builder.CreateLoad(EHObjPtr, false, "eh.obj"); + std::unique_ptr Director; ValueToValueMapTy VMap; - // FIXME: Map other values referenced in the filter handler. - - WinEHCatchDirector Director(LPad, SelectorType, EHObj); + LandingPadMap &LPadMap = LPadMaps[LPad]; + if (!LPadMap.isInitialized()) + LPadMap.mapLandingPad(LPad); + if (auto *CatchAction = dyn_cast(Action)) { + Constant *Sel = CatchAction->getSelector(); + Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap, + NestedLPtoOriginalLP)); + LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), + ConstantInt::get(Type::getInt32Ty(Context), 1)); + } else { + Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap)); + LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), + UndefValue::get(Type::getInt32Ty(Context))); + } SmallVector Returns; - ClonedCodeInfo InlinedFunctionInfo; + ClonedCodeInfo OutlinedFunctionInfo; + + // If the start block contains PHI nodes, we need to map them. + BasicBlock::iterator II = StartBB->begin(); + while (auto *PN = dyn_cast(II)) { + bool Mapped = false; + // Look for PHI values that we have already mapped (such as the selector). + for (Value *Val : PN->incoming_values()) { + if (VMap.count(Val)) { + VMap[PN] = VMap[Val]; + Mapped = true; + } + } + // If we didn't find a match for this value, map it as an undef. + if (!Mapped) { + VMap[PN] = UndefValue::get(PN->getType()); + } + ++II; + } - BasicBlock::iterator II = LPad; + // Skip over PHIs and, if applicable, landingpad instructions. + II = StartBB->getFirstInsertionPt(); - CloneAndPruneIntoFromInst(CatchHandler, SrcFn, ++II, VMap, + CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap, /*ModuleLevelChanges=*/false, Returns, "", - &InlinedFunctionInfo, - SrcFn->getParent()->getDataLayout(), &Director); + &OutlinedFunctionInfo, Director.get()); // Move all the instructions in the first cloned block into our entry block. BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry)); Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList()); FirstClonedBB->eraseFromParent(); + // Make sure we can identify the handler's personality later. + addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn()); + + if (auto *CatchAction = dyn_cast(Action)) { + WinEHCatchDirector *CatchDirector = + reinterpret_cast(Director.get()); + CatchAction->setExceptionVar(CatchDirector->getExceptionVar()); + CatchAction->setReturnTargets(CatchDirector->getReturnTargets()); + + // Look for blocks that are not part of the landing pad that we just + // outlined but terminate with a call to llvm.eh.endcatch and a + // branch to a block that is in the handler we just outlined. + // These blocks will be part of a nested landing pad that intends to + // return to an address in this handler. This case is best handled + // after both landing pads have been outlined, so for now we'll just + // save the association of the blocks in LPadTargetBlocks. The + // return instructions which are created from these branches will be + // replaced after all landing pads have been outlined. + for (const auto MapEntry : VMap) { + // VMap maps all values and blocks that were just cloned, but dead + // blocks which were pruned will map to nullptr. + if (!isa(MapEntry.first) || MapEntry.second == nullptr) + continue; + const BasicBlock *MappedBB = cast(MapEntry.first); + for (auto *Pred : predecessors(const_cast(MappedBB))) { + auto *Branch = dyn_cast(Pred->getTerminator()); + if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1) + continue; + BasicBlock::iterator II = const_cast(Branch); + --II; + if (match(cast(II), m_Intrinsic())) { + // This would indicate that a nested landing pad wants to return + // to a block that is outlined into two different handlers. + assert(!LPadTargetBlocks.count(MappedBB)); + LPadTargetBlocks[MappedBB] = cast(MapEntry.second); + } + } + } + } // End if (CatchAction) + + Action->setHandlerBlockOrFunc(Handler); + return true; } -CloningDirector::CloningAction WinEHCatchDirector::handleInstruction( - ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { - // Intercept instructions which extract values from the landing pad aggregate. - if (auto *Extract = dyn_cast(Inst)) { - if (Extract->getAggregateOperand() == LPI) { - assert(Extract->getNumIndices() == 1 && - "Unexpected operation: extracting both landing pad values"); - assert((*(Extract->idx_begin()) == 0 || *(Extract->idx_begin()) == 1) && - "Unexpected operation: extracting an unknown landing pad element"); - - if (*(Extract->idx_begin()) == 0) { - // Element 0 doesn't directly corresponds to anything in the WinEH scheme. - // It will be stored to a memory location, then later loaded and finally - // the loaded value will be used as the argument to an llvm.eh.begincatch - // call. We're tracking it here so that we can skip the store and load. - ExtractedEHPtr = Inst; - } else { - // Element 1 corresponds to the filter selector. We'll map it to 1 for - // matching purposes, but it will also probably be stored to memory and - // reloaded, so we need to track the instuction so that we can map the - // loaded value too. - VMap[Inst] = ConstantInt::get(SelectorIDType, 1); - ExtractedSelector = Inst; - } +/// This BB must end in a selector dispatch. All we need to do is pass the +/// handler block to llvm.eh.actions and list it as a possible indirectbr +/// target. +void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction, + BasicBlock *StartBB) { + BasicBlock *HandlerBB; + BasicBlock *NextBB; + Constant *Selector; + bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB); + if (Res) { + // If this was EH dispatch, this must be a conditional branch to the handler + // block. + // FIXME: Handle instructions in the dispatch block. Currently we drop them, + // leading to crashes if some optimization hoists stuff here. + assert(CatchAction->getSelector() && HandlerBB && + "expected catch EH dispatch"); + } else { + // This must be a catch-all. Split the block after the landingpad. + assert(CatchAction->getSelector()->isNullValue() && "expected catch-all"); + HandlerBB = + StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all"); + } + CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB)); + TinyPtrVector Targets(HandlerBB); + CatchAction->setReturnTargets(Targets); +} + +void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { + // Each instance of this class should only ever be used to map a single + // landing pad. + assert(OriginLPad == nullptr || OriginLPad == LPad); + + // If the landing pad has already been mapped, there's nothing more to do. + if (OriginLPad == LPad) + return; - // Tell the caller not to clone this instruction. - return CloningDirector::SkipInstruction; + OriginLPad = LPad; + + // The landingpad instruction returns an aggregate value. Typically, its + // value will be passed to a pair of extract value instructions and the + // results of those extracts will have been promoted to reg values before + // this routine is called. + for (auto *U : LPad->users()) { + const ExtractValueInst *Extract = dyn_cast(U); + if (!Extract) + continue; + assert(Extract->getNumIndices() == 1 && + "Unexpected operation: extracting both landing pad values"); + unsigned int Idx = *(Extract->idx_begin()); + assert((Idx == 0 || Idx == 1) && + "Unexpected operation: extracting an unknown landing pad element"); + if (Idx == 0) { + ExtractedEHPtrs.push_back(Extract); + } else if (Idx == 1) { + ExtractedSelectors.push_back(Extract); } - // Other extract value instructions just get cloned. - return CloningDirector::CloneInstruction; } +} - if (auto *Store = dyn_cast(Inst)) { - // Look for and suppress stores of the extracted landingpad values. - const Value *StoredValue = Store->getValueOperand(); - if (StoredValue == ExtractedEHPtr) { - EHPtrStoreAddr = Store->getPointerOperand(); - return CloningDirector::SkipInstruction; - } - if (StoredValue == ExtractedSelector) { - SelectorStoreAddr = Store->getPointerOperand(); - return CloningDirector::SkipInstruction; - } +bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const { + return BB->getLandingPadInst() == OriginLPad; +} - // Any other store just gets cloned. - return CloningDirector::CloneInstruction; +bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { + if (Inst == OriginLPad) + return true; + for (auto *Extract : ExtractedEHPtrs) { + if (Inst == Extract) + return true; + } + for (auto *Extract : ExtractedSelectors) { + if (Inst == Extract) + return true; } + return false; +} - if (auto *Load = dyn_cast(Inst)) { - // Look for loads of (previously suppressed) landingpad values. - // The EHPtr load can be ignored (it should only be used as - // an argument to llvm.eh.begincatch), but the selector value - // needs to be mapped to a constant value of 1 to be used to - // simplify the branching to always flow to the current handler. - const Value *LoadAddr = Load->getPointerOperand(); - if (LoadAddr == EHPtrStoreAddr) { - VMap[Inst] = UndefValue::get(Int8PtrType); - return CloningDirector::SkipInstruction; - } - if (LoadAddr == SelectorStoreAddr) { - VMap[Inst] = ConstantInt::get(SelectorIDType, 1); - return CloningDirector::SkipInstruction; - } +void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, + Value *SelectorValue) const { + // Remap all landing pad extract instructions to the specified values. + for (auto *Extract : ExtractedEHPtrs) + VMap[Extract] = EHPtrValue; + for (auto *Extract : ExtractedSelectors) + VMap[Extract] = SelectorValue; +} - // Any other loads just get cloned. - return CloningDirector::CloneInstruction; +CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( + ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { + // If this is one of the boilerplate landing pad instructions, skip it. + // The instruction will have already been remapped in VMap. + if (LPadMap.isLandingPadSpecificInst(Inst)) + return CloningDirector::SkipInstruction; + + // Nested landing pads will be cloned as stubs, with just the + // landingpad instruction and an unreachable instruction. When + // all landingpads have been outlined, we'll replace this with the + // llvm.eh.actions call and indirect branch created when the + // landing pad was outlined. + if (auto *LPad = dyn_cast(Inst)) { + return handleLandingPad(VMap, LPad, NewBB); } - if (match(Inst, m_Intrinsic())) { - // The argument to the call is some form of the first element of the - // landingpad aggregate value, but that doesn't matter. It isn't used - // here. - // The return value of this instruction, however, is used to access the - // EH object pointer. We have generated an instruction to get that value - // from the EH alloc block, so we can just map to that here. - VMap[Inst] = EHObj; + if (auto *Invoke = dyn_cast(Inst)) + return handleInvoke(VMap, Invoke, NewBB); + + if (auto *Resume = dyn_cast(Inst)) + return handleResume(VMap, Resume, NewBB); + + if (match(Inst, m_Intrinsic())) + return handleBeginCatch(VMap, Inst, NewBB); + if (match(Inst, m_Intrinsic())) + return handleEndCatch(VMap, Inst, NewBB); + if (match(Inst, m_Intrinsic())) + return handleTypeIdFor(VMap, Inst, NewBB); + + // Continue with the default cloning behavior. + return CloningDirector::CloneInstruction; +} + +CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad( + ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { + Instruction *NewInst = LPad->clone(); + if (LPad->hasName()) + NewInst->setName(LPad->getName()); + // Save this correlation for later processing. + NestedLPtoOriginalLP[cast(NewInst)] = LPad; + VMap[LPad] = NewInst; + BasicBlock::InstListType &InstList = NewBB->getInstList(); + InstList.push_back(NewInst); + InstList.push_back(new UnreachableInst(NewBB->getContext())); + return CloningDirector::StopCloningBB; +} + +CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( + ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { + // The argument to the call is some form of the first element of the + // landingpad aggregate value, but that doesn't matter. It isn't used + // here. + // The second argument is an outparameter where the exception object will be + // stored. Typically the exception object is a scalar, but it can be an + // aggregate when catching by value. + // FIXME: Leave something behind to indicate where the exception object lives + // for this handler. Should it be part of llvm.eh.actions? + assert(ExceptionObjectVar == nullptr && "Multiple calls to " + "llvm.eh.begincatch found while " + "outlining catch handler."); + ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts(); + if (isa(ExceptionObjectVar)) + return CloningDirector::SkipInstruction; + assert(cast(ExceptionObjectVar)->isStaticAlloca() && + "catch parameter is not static alloca"); + Materializer.escapeCatchObject(ExceptionObjectVar); + return CloningDirector::SkipInstruction; +} + +CloningDirector::CloningAction +WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap, + const Instruction *Inst, BasicBlock *NewBB) { + auto *IntrinCall = dyn_cast(Inst); + // It might be interesting to track whether or not we are inside a catch + // function, but that might make the algorithm more brittle than it needs + // to be. + + // The end catch call can occur in one of two places: either in a + // landingpad block that is part of the catch handlers exception mechanism, + // or at the end of the catch block. However, a catch-all handler may call + // end catch from the original landing pad. If the call occurs in a nested + // landing pad block, we must skip it and continue so that the landing pad + // gets cloned. + auto *ParentBB = IntrinCall->getParent(); + if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB)) return CloningDirector::SkipInstruction; + + // If an end catch occurs anywhere else we want to terminate the handler + // with a return to the code that follows the endcatch call. If the + // next instruction is not an unconditional branch, we need to split the + // block to provide a clear target for the return instruction. + BasicBlock *ContinueBB; + auto Next = std::next(BasicBlock::const_iterator(IntrinCall)); + const BranchInst *Branch = dyn_cast(Next); + if (!Branch || !Branch->isUnconditional()) { + // We're interrupting the cloning process at this location, so the + // const_cast we're doing here will not cause a problem. + ContinueBB = SplitBlock(const_cast(ParentBB), + const_cast(cast(Next))); + } else { + ContinueBB = Branch->getSuccessor(0); } - if (match(Inst, m_Intrinsic())) { - auto *IntrinCall = dyn_cast(Inst); - // It might be interesting to track whether or not we are inside a catch - // function, but that might make the algorithm more brittle than it needs - // to be. - - // The end catch call can occur in one of two places: either in a - // landingpad - // block that is part of the catch handlers exception mechanism, or at the - // end of the catch block. If it occurs in a landing pad, we must skip it - // and continue so that the landing pad gets cloned. - // FIXME: This case isn't fully supported yet and shouldn't turn up in any - // of the test cases until it is. - if (IntrinCall->getParent()->isLandingPad()) - return CloningDirector::SkipInstruction; - - // If an end catch occurs anywhere else the next instruction should be an - // unconditional branch instruction that we want to replace with a return - // to the the address of the branch target. - const BasicBlock *EndCatchBB = IntrinCall->getParent(); - const TerminatorInst *Terminator = EndCatchBB->getTerminator(); - const BranchInst *Branch = dyn_cast(Terminator); - assert(Branch && Branch->isUnconditional()); - assert(std::next(BasicBlock::const_iterator(IntrinCall)) == - BasicBlock::const_iterator(Branch)); - ReturnInst::Create(NewBB->getContext(), - BlockAddress::get(Branch->getSuccessor(0)), NewBB); + ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB); + ReturnTargets.push_back(ContinueBB); + + // We just added a terminator to the cloned block. + // Tell the caller to stop processing the current basic block so that + // the branch instruction will be skipped. + return CloningDirector::StopCloningBB; +} - // We just added a terminator to the cloned block. - // Tell the caller to stop processing the current basic block so that - // the branch instruction will be skipped. +CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor( + ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { + auto *IntrinCall = dyn_cast(Inst); + Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); + // This causes a replacement that will collapse the landing pad CFG based + // on the filter function we intend to match. + if (Selector == CurrentSelector) + VMap[Inst] = ConstantInt::get(SelectorIDType, 1); + else + VMap[Inst] = ConstantInt::get(SelectorIDType, 0); + // Tell the caller not to clone this instruction. + return CloningDirector::SkipInstruction; +} + +CloningDirector::CloningAction +WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap, + const InvokeInst *Invoke, BasicBlock *NewBB) { + return CloningDirector::CloneInstruction; +} + +CloningDirector::CloningAction +WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap, + const ResumeInst *Resume, BasicBlock *NewBB) { + // Resume instructions shouldn't be reachable from catch handlers. + // We still need to handle it, but it will be pruned. + BasicBlock::InstListType &InstList = NewBB->getInstList(); + InstList.push_back(new UnreachableInst(NewBB->getContext())); + return CloningDirector::StopCloningBB; +} + +CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad( + ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { + // The MS runtime will terminate the process if an exception occurs in a + // cleanup handler, so we shouldn't encounter landing pads in the actual + // cleanup code, but they may appear in catch blocks. Depending on where + // we started cloning we may see one, but it will get dropped during dead + // block pruning. + Instruction *NewInst = new UnreachableInst(NewBB->getContext()); + VMap[LPad] = NewInst; + BasicBlock::InstListType &InstList = NewBB->getInstList(); + InstList.push_back(NewInst); + return CloningDirector::StopCloningBB; +} + +CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch( + ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { + // Catch blocks within cleanup handlers will always be unreachable. + // We'll insert an unreachable instruction now, but it will be pruned + // before the cloning process is complete. + BasicBlock::InstListType &InstList = NewBB->getInstList(); + InstList.push_back(new UnreachableInst(NewBB->getContext())); + return CloningDirector::StopCloningBB; +} + +CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch( + ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { + // Cleanup handlers nested within catch handlers may begin with a call to + // eh.endcatch. We can just ignore that instruction. + return CloningDirector::SkipInstruction; +} + +CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( + ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { + // If we encounter a selector comparison while cloning a cleanup handler, + // we want to stop cloning immediately. Anything after the dispatch + // will be outlined into a different handler. + BasicBlock *CatchHandler; + Constant *Selector; + BasicBlock *NextBB; + if (isSelectorDispatch(const_cast(Inst->getParent()), + CatchHandler, Selector, NextBB)) { + ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); return CloningDirector::StopCloningBB; } - if (match(Inst, m_Intrinsic())) { - auto *IntrinCall = dyn_cast(Inst); - Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); - // This causes a replacement that will collapse the landing pad CFG based - // on the filter function we intend to match. - if (Selector == CurrentSelector) - VMap[Inst] = ConstantInt::get(SelectorIDType, 1); + // If eg.typeid.for is called for any other reason, it can be ignored. + VMap[Inst] = ConstantInt::get(SelectorIDType, 0); + return CloningDirector::SkipInstruction; +} + +CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( + ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { + // All invokes in cleanup handlers can be replaced with calls. + SmallVector CallArgs(Invoke->op_begin(), Invoke->op_end() - 3); + // Insert a normal call instruction... + CallInst *NewCall = + CallInst::Create(const_cast(Invoke->getCalledValue()), CallArgs, + Invoke->getName(), NewBB); + NewCall->setCallingConv(Invoke->getCallingConv()); + NewCall->setAttributes(Invoke->getAttributes()); + NewCall->setDebugLoc(Invoke->getDebugLoc()); + VMap[Invoke] = NewCall; + + // Remap the operands. + llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer); + + // Insert an unconditional branch to the normal destination. + BranchInst::Create(Invoke->getNormalDest(), NewBB); + + // The unwind destination won't be cloned into the new function, so + // we don't need to clean up its phi nodes. + + // We just added a terminator to the cloned block. + // Tell the caller to stop processing the current basic block. + return CloningDirector::CloneSuccessors; +} + +CloningDirector::CloningAction WinEHCleanupDirector::handleResume( + ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { + ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); + + // We just added a terminator to the cloned block. + // Tell the caller to stop processing the current basic block so that + // the branch instruction will be skipped. + return CloningDirector::StopCloningBB; +} + +WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer( + Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo) + : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) { + BasicBlock *EntryBB = &OutlinedFn->getEntryBlock(); + Builder.SetInsertPoint(EntryBB, EntryBB->getFirstInsertionPt()); +} + +Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) { + // If we're asked to materialize a value that is an instruction, we + // temporarily create an alloca in the outlined function and add this + // to the FrameVarInfo map. When all the outlining is complete, we'll + // collect these into a structure, spilling non-alloca values in the + // parent frame as necessary, and replace these temporary allocas with + // GEPs referencing the frame allocation block. + + // If the value is an alloca, the mapping is direct. + if (auto *AV = dyn_cast(V)) { + AllocaInst *NewAlloca = dyn_cast(AV->clone()); + Builder.Insert(NewAlloca, AV->getName()); + FrameVarInfo[AV].push_back(NewAlloca); + return NewAlloca; + } + + // For other types of instructions or arguments, we need an alloca based on + // the value's type and a load of the alloca. The alloca will be replaced + // by a GEP, but the load will stay. In the parent function, the value will + // be spilled to a location in the frame allocation block. + if (isa(V) || isa(V)) { + AllocaInst *NewAlloca = + Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca"); + FrameVarInfo[V].push_back(NewAlloca); + LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload"); + return NewLoad; + } + + // Don't materialize other values. + return nullptr; +} + +void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) { + // Catch parameter objects have to live in the parent frame. When we see a use + // of a catch parameter, add a sentinel to the multimap to indicate that it's + // used from another handler. This will prevent us from trying to sink the + // alloca into the handler and ensure that the catch parameter is present in + // the call to llvm.frameescape. + FrameVarInfo[V].push_back(getCatchObjectSentinel()); +} + +// This function maps the catch and cleanup handlers that are reachable from the +// specified landing pad. The landing pad sequence will have this basic shape: +// +// +// +// +// +// +// +// +// ... +// +// Any of the cleanup slots may be absent. The cleanup slots may be occupied by +// any arbitrary control flow, but all paths through the cleanup code must +// eventually reach the next selector comparison and no path can skip to a +// different selector comparisons, though some paths may terminate abnormally. +// Therefore, we will use a depth first search from the start of any given +// cleanup block and stop searching when we find the next selector comparison. +// +// If the landingpad instruction does not have a catch clause, we will assume +// that any instructions other than selector comparisons and catch handlers can +// be ignored. In practice, these will only be the boilerplate instructions. +// +// The catch handlers may also have any control structure, but we are only +// interested in the start of the catch handlers, so we don't need to actually +// follow the flow of the catch handlers. The start of the catch handlers can +// be located from the compare instructions, but they can be skipped in the +// flow by following the contrary branch. +void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, + LandingPadActions &Actions) { + unsigned int NumClauses = LPad->getNumClauses(); + unsigned int HandlersFound = 0; + BasicBlock *BB = LPad->getParent(); + + DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n"); + + if (NumClauses == 0) { + findCleanupHandlers(Actions, BB, nullptr); + return; + } + + VisitedBlockSet VisitedBlocks; + + while (HandlersFound != NumClauses) { + BasicBlock *NextBB = nullptr; + + // See if the clause we're looking for is a catch-all. + // If so, the catch begins immediately. + if (isa(LPad->getClause(HandlersFound))) { + // The catch all must occur last. + assert(HandlersFound == NumClauses - 1); + + // For C++ EH, check if there is any interesting cleanup code before we + // begin the catch. This is important because cleanups cannot rethrow + // exceptions but code called from catches can. For SEH, it isn't + // important if some finally code before a catch-all is executed out of + // line or after recovering from the exception. + if (Personality == EHPersonality::MSVC_CXX) + findCleanupHandlers(Actions, BB, BB); + + // Add the catch handler to the action list. + CatchHandler *Action = + new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr); + CatchHandlerMap[BB] = Action; + Actions.insertCatchHandler(Action); + DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n"); + ++HandlersFound; + + // Once we reach a catch-all, don't expect to hit a resume instruction. + BB = nullptr; + break; + } + + CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks); + // See if there is any interesting code executed before the dispatch. + findCleanupHandlers(Actions, BB, CatchAction->getStartBlock()); + + assert(CatchAction); + ++HandlersFound; + + // Add the catch handler to the action list. + Actions.insertCatchHandler(CatchAction); + DEBUG(dbgs() << " Found catch dispatch in block " + << CatchAction->getStartBlock()->getName() << "\n"); + + // Move on to the block after the catch handler. + BB = NextBB; + } + + // If we didn't wind up in a catch-all, see if there is any interesting code + // executed before the resume. + findCleanupHandlers(Actions, BB, BB); + + // It's possible that some optimization moved code into a landingpad that + // wasn't + // previously being used for cleanup. If that happens, we need to execute + // that + // extra code from a cleanup handler. + if (Actions.includesCleanup() && !LPad->isCleanup()) + LPad->setCleanup(true); +} + +// This function searches starting with the input block for the next +// block that terminates with a branch whose condition is based on a selector +// comparison. This may be the input block. See the mapLandingPadBlocks +// comments for a discussion of control flow assumptions. +// +CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, + BasicBlock *&NextBB, + VisitedBlockSet &VisitedBlocks) { + // See if we've already found a catch handler use it. + // Call count() first to avoid creating a null entry for blocks + // we haven't seen before. + if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { + CatchHandler *Action = cast(CatchHandlerMap[BB]); + NextBB = Action->getNextBB(); + return Action; + } + + // VisitedBlocks applies only to the current search. We still + // need to consider blocks that we've visited while mapping other + // landing pads. + VisitedBlocks.insert(BB); + + BasicBlock *CatchBlock = nullptr; + Constant *Selector = nullptr; + + // If this is the first time we've visited this block from any landing pad + // look to see if it is a selector dispatch block. + if (!CatchHandlerMap.count(BB)) { + if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { + CatchHandler *Action = new CatchHandler(BB, Selector, NextBB); + CatchHandlerMap[BB] = Action; + return Action; + } + } + + // Visit each successor, looking for the dispatch. + // FIXME: We expect to find the dispatch quickly, so this will probably + // work better as a breadth first search. + for (BasicBlock *Succ : successors(BB)) { + if (VisitedBlocks.count(Succ)) + continue; + + CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks); + if (Action) + return Action; + } + return nullptr; +} + +// These are helper functions to combine repeated code from findCleanupHandlers. +static void createCleanupHandler(LandingPadActions &Actions, + CleanupHandlerMapTy &CleanupHandlerMap, + BasicBlock *BB) { + CleanupHandler *Action = new CleanupHandler(BB); + CleanupHandlerMap[BB] = Action; + Actions.insertCleanupHandler(Action); + DEBUG(dbgs() << " Found cleanup code in block " + << Action->getStartBlock()->getName() << "\n"); +} + +static bool isFrameAddressCall(Value *V) { + return match(V, m_Intrinsic(m_SpecificInt(0))); +} + +static CallSite matchOutlinedFinallyCall(BasicBlock *BB, + Instruction *MaybeCall) { + // Look for finally blocks that Clang has already outlined for us. + // %fp = call i8* @llvm.frameaddress(i32 0) + // call void @"fin$parent"(iN 1, i8* %fp) + if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator()) + MaybeCall = MaybeCall->getNextNode(); + CallSite FinallyCall(MaybeCall); + if (!FinallyCall || FinallyCall.arg_size() != 2) + return CallSite(); + if (!match(FinallyCall.getArgument(0), m_SpecificInt(1))) + return CallSite(); + if (!isFrameAddressCall(FinallyCall.getArgument(1))) + return CallSite(); + return FinallyCall; +} + +static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) { + // Skip single ubr blocks. + while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) { + auto *Br = dyn_cast(BB->getTerminator()); + if (Br && Br->isUnconditional()) + BB = Br->getSuccessor(0); else - VMap[Inst] = ConstantInt::get(SelectorIDType, 0); - // Tell the caller not to clone this instruction. - return CloningDirector::SkipInstruction; + return BB; } + return BB; +} - // Continue with the default cloning behavior. - return CloningDirector::CloneInstruction; +// This function searches starting with the input block for the next block that +// contains code that is not part of a catch handler and would not be eliminated +// during handler outlining. +// +void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions, + BasicBlock *StartBB, BasicBlock *EndBB) { + // Here we will skip over the following: + // + // landing pad prolog: + // + // Unconditional branches + // + // Selector dispatch + // + // Resume pattern + // + // Anything else marks the start of an interesting block + + BasicBlock *BB = StartBB; + // Anything other than an unconditional branch will kick us out of this loop + // one way or another. + while (BB) { + BB = followSingleUnconditionalBranches(BB); + // If we've already scanned this block, don't scan it again. If it is + // a cleanup block, there will be an action in the CleanupHandlerMap. + // If we've scanned it and it is not a cleanup block, there will be a + // nullptr in the CleanupHandlerMap. If we have not scanned it, there will + // be no entry in the CleanupHandlerMap. We must call count() first to + // avoid creating a null entry for blocks we haven't scanned. + if (CleanupHandlerMap.count(BB)) { + if (auto *Action = CleanupHandlerMap[BB]) { + Actions.insertCleanupHandler(Action); + DEBUG(dbgs() << " Found cleanup code in block " + << Action->getStartBlock()->getName() << "\n"); + // FIXME: This cleanup might chain into another, and we need to discover + // that. + return; + } else { + // Here we handle the case where the cleanup handler map contains a + // value for this block but the value is a nullptr. This means that + // we have previously analyzed the block and determined that it did + // not contain any cleanup code. Based on the earlier analysis, we + // know the the block must end in either an unconditional branch, a + // resume or a conditional branch that is predicated on a comparison + // with a selector. Either the resume or the selector dispatch + // would terminate the search for cleanup code, so the unconditional + // branch is the only case for which we might need to continue + // searching. + BasicBlock *SuccBB = followSingleUnconditionalBranches(BB); + if (SuccBB == BB || SuccBB == EndBB) + return; + BB = SuccBB; + continue; + } + } + + // Create an entry in the cleanup handler map for this block. Initially + // we create an entry that says this isn't a cleanup block. If we find + // cleanup code, the caller will replace this entry. + CleanupHandlerMap[BB] = nullptr; + + TerminatorInst *Terminator = BB->getTerminator(); + + // Landing pad blocks have extra instructions we need to accept. + LandingPadMap *LPadMap = nullptr; + if (BB->isLandingPad()) { + LandingPadInst *LPad = BB->getLandingPadInst(); + LPadMap = &LPadMaps[LPad]; + if (!LPadMap->isInitialized()) + LPadMap->mapLandingPad(LPad); + } + + // Look for the bare resume pattern: + // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0 + // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1 + // resume { i8*, i32 } %lpad.val2 + if (auto *Resume = dyn_cast(Terminator)) { + InsertValueInst *Insert1 = nullptr; + InsertValueInst *Insert2 = nullptr; + Value *ResumeVal = Resume->getOperand(0); + // If the resume value isn't a phi or landingpad value, it should be a + // series of insertions. Identify them so we can avoid them when scanning + // for cleanups. + if (!isa(ResumeVal) && !isa(ResumeVal)) { + Insert2 = dyn_cast(ResumeVal); + if (!Insert2) + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + Insert1 = dyn_cast(Insert2->getAggregateOperand()); + if (!Insert1) + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + } + for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); + II != IE; ++II) { + Instruction *Inst = II; + if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) + continue; + if (Inst == Insert1 || Inst == Insert2 || Inst == Resume) + continue; + if (!Inst->hasOneUse() || + (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) { + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + } + } + return; + } + + BranchInst *Branch = dyn_cast(Terminator); + if (Branch && Branch->isConditional()) { + // Look for the selector dispatch. + // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) + // %matches = icmp eq i32 %sel, %2 + // br i1 %matches, label %catch14, label %eh.resume + CmpInst *Compare = dyn_cast(Branch->getCondition()); + if (!Compare || !Compare->isEquality()) + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); + II != IE; ++II) { + Instruction *Inst = II; + if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) + continue; + if (Inst == Compare || Inst == Branch) + continue; + if (match(Inst, m_Intrinsic())) + continue; + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + } + // The selector dispatch block should always terminate our search. + assert(BB == EndBB); + return; + } + + if (isAsynchronousEHPersonality(Personality)) { + // If this is a landingpad block, split the block at the first non-landing + // pad instruction. + Instruction *MaybeCall = BB->getFirstNonPHIOrDbg(); + if (LPadMap) { + while (MaybeCall != BB->getTerminator() && + LPadMap->isLandingPadSpecificInst(MaybeCall)) + MaybeCall = MaybeCall->getNextNode(); + } + + // Look for outlined finally calls. + if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) { + Function *Fin = FinallyCall.getCalledFunction(); + assert(Fin && "outlined finally call should be direct"); + auto *Action = new CleanupHandler(BB); + Action->setHandlerBlockOrFunc(Fin); + Actions.insertCleanupHandler(Action); + CleanupHandlerMap[BB] = Action; + DEBUG(dbgs() << " Found frontend-outlined finally call to " + << Fin->getName() << " in block " + << Action->getStartBlock()->getName() << "\n"); + + // Split the block if there were more interesting instructions and look + // for finally calls in the normal successor block. + BasicBlock *SuccBB = BB; + if (FinallyCall.getInstruction() != BB->getTerminator() && + FinallyCall.getInstruction()->getNextNode() != BB->getTerminator()) { + SuccBB = BB->splitBasicBlock(FinallyCall.getInstruction()->getNextNode()); + } else { + if (FinallyCall.isInvoke()) { + SuccBB = cast(FinallyCall.getInstruction())->getNormalDest(); + } else { + SuccBB = BB->getUniqueSuccessor(); + assert(SuccBB && "splitOutlinedFinallyCalls didn't insert a branch"); + } + } + BB = SuccBB; + if (BB == EndBB) + return; + continue; + } + } + + // Anything else is either a catch block or interesting cleanup code. + for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); + II != IE; ++II) { + Instruction *Inst = II; + if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) + continue; + // Unconditional branches fall through to this loop. + if (Inst == Branch) + continue; + // If this is a catch block, there is no cleanup code to be found. + if (match(Inst, m_Intrinsic())) + return; + // If this a nested landing pad, it may contain an endcatch call. + if (match(Inst, m_Intrinsic())) + return; + // Anything else makes this interesting cleanup code. + return createCleanupHandler(Actions, CleanupHandlerMap, BB); + } + + // Only unconditional branches in empty blocks should get this far. + assert(Branch && Branch->isUnconditional()); + if (BB == EndBB) + return; + BB = Branch->getSuccessor(0); + } +} + +// This is a public function, declared in WinEHFuncInfo.h and is also +// referenced by WinEHNumbering in FunctionLoweringInfo.cpp. +void llvm::parseEHActions(const IntrinsicInst *II, + SmallVectorImpl &Actions) { + for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) { + uint64_t ActionKind = + cast(II->getArgOperand(I))->getZExtValue(); + if (ActionKind == /*catch=*/1) { + auto *Selector = cast(II->getArgOperand(I + 1)); + ConstantInt *EHObjIndex = cast(II->getArgOperand(I + 2)); + int64_t EHObjIndexVal = EHObjIndex->getSExtValue(); + Constant *Handler = cast(II->getArgOperand(I + 3)); + I += 4; + auto *CH = new CatchHandler(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr); + CH->setHandlerBlockOrFunc(Handler); + CH->setExceptionVarIndex(EHObjIndexVal); + Actions.push_back(CH); + } else if (ActionKind == 0) { + Constant *Handler = cast(II->getArgOperand(I + 1)); + I += 2; + auto *CH = new CleanupHandler(/*BB=*/nullptr); + CH->setHandlerBlockOrFunc(Handler); + Actions.push_back(CH); + } else { + llvm_unreachable("Expected either a catch or cleanup handler!"); + } + } + std::reverse(Actions.begin(), Actions.end()); }