X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=lib%2FAnalysis%2FPostDominators.cpp;h=6d929091e3d2ab4824cd0f0e3993595339386ae9;hp=48cc86fcaf542dc3612e1f1d6046112ad84ce7a2;hb=609d95290a4d913139ba0b46f5b5b982dc4b1d96;hpb=455889aa79e3463a4b0f2161e3d9d72a683268b6 diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp index 48cc86fcaf5..6d929091e3d 100644 --- a/lib/Analysis/PostDominators.cpp +++ b/lib/Analysis/PostDominators.cpp @@ -1,396 +1,50 @@ -//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// +//===- PostDominators.cpp - Post-Dominator Calculation --------------------===// // -// This file provides a simple class to calculate the dominator set of a method. +// The LLVM Compiler Infrastructure // -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/Dominators.h" -#include "llvm/Transforms/UnifyMethodExitNodes.h" -#include "llvm/Method.h" -#include "llvm/Support/CFG.h" -#include "Support/DepthFirstIterator.h" -#include "Support/STLExtras.h" -#include "Support/SetOperations.h" -#include -using std::set; - -//===----------------------------------------------------------------------===// -// DominatorSet Implementation -//===----------------------------------------------------------------------===// - -AnalysisID cfg::DominatorSet::ID(AnalysisID::create()); -AnalysisID cfg::DominatorSet::PostDomID(AnalysisID::create()); - -bool cfg::DominatorSet::runOnMethod(Method *M) { - Doms.clear(); // Reset from the last time we were run... - - if (isPostDominator()) - calcPostDominatorSet(M); - else - calcForwardDominatorSet(M); - return false; -} - - -// calcForwardDominatorSet - This method calculates the forward dominator sets -// for the specified method. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // -void cfg::DominatorSet::calcForwardDominatorSet(Method *M) { - Root = M->getEntryNode(); - assert(pred_begin(Root) == pred_end(Root) && - "Root node has predecessors in method!"); - - bool Changed; - do { - Changed = false; - - DomSetType WorkingSet; - df_iterator It = df_begin(M), End = df_end(M); - for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB); - if (PI != PEnd) { // Is there SOME predecessor? - // Loop until we get to a predecessor that has had it's dom set filled - // in at least once. We are guaranteed to have this because we are - // traversing the graph in DFO and have handled start nodes specially. - // - while (Doms[*PI].size() == 0) ++PI; - WorkingSet = Doms[*PI]; - - for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets - DomSetType &PredSet = Doms[*PI]; - if (PredSet.size()) - set_intersect(WorkingSet, PredSet); - } - } - - WorkingSet.insert(BB); // A block always dominates itself - DomSetType &BBSet = Doms[BB]; - if (BBSet != WorkingSet) { - BBSet.swap(WorkingSet); // Constant time operation! - Changed = true; // The sets changed. - } - WorkingSet.clear(); // Clear out the set for next iteration - } - } while (Changed); -} - -// Postdominator set constructor. This ctor converts the specified method to -// only have a single exit node (return stmt), then calculates the post -// dominance sets for the method. +//===----------------------------------------------------------------------===// // -void cfg::DominatorSet::calcPostDominatorSet(Method *M) { - // Since we require that the unify all exit nodes pass has been run, we know - // that there can be at most one return instruction in the method left. - // Get it. - // - Root = getAnalysis().getExitNode(); - - if (Root == 0) { // No exit node for the method? Postdomsets are all empty - for (Method::const_iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) - Doms[*MI] = DomSetType(); - return; - } - - bool Changed; - do { - Changed = false; - - set Visited; - DomSetType WorkingSet; - idf_iterator It = idf_begin(Root), End = idf_end(Root); - for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB); - if (PI != PEnd) { // Is there SOME predecessor? - // Loop until we get to a successor that has had it's dom set filled - // in at least once. We are guaranteed to have this because we are - // traversing the graph in DFO and have handled start nodes specially. - // - while (Doms[*PI].size() == 0) ++PI; - WorkingSet = Doms[*PI]; - - for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets - DomSetType &PredSet = Doms[*PI]; - if (PredSet.size()) - set_intersect(WorkingSet, PredSet); - } - } - - WorkingSet.insert(BB); // A block always dominates itself - DomSetType &BBSet = Doms[BB]; - if (BBSet != WorkingSet) { - BBSet.swap(WorkingSet); // Constant time operation! - Changed = true; // The sets changed. - } - WorkingSet.clear(); // Clear out the set for next iteration - } - } while (Changed); -} - -// getAnalysisUsageInfo - This obviously provides a dominator set, but it also -// uses the UnifyMethodExitNodes pass if building post-dominators +// This file implements the post-dominator construction algorithms. // -void cfg::DominatorSet::getAnalysisUsageInfo(Pass::AnalysisSet &Requires, - Pass::AnalysisSet &Destroyed, - Pass::AnalysisSet &Provided) { - if (isPostDominator()) { - Provided.push_back(PostDomID); - Requires.push_back(UnifyMethodExitNodes::ID); - } else { - Provided.push_back(ID); - } -} - - //===----------------------------------------------------------------------===// -// ImmediateDominators Implementation -//===----------------------------------------------------------------------===// - -AnalysisID cfg::ImmediateDominators::ID(AnalysisID::create()); -AnalysisID cfg::ImmediateDominators::PostDomID(AnalysisID::create()); -// calcIDoms - Calculate the immediate dominator mapping, given a set of -// dominators for every basic block. -void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { - // Loop over all of the nodes that have dominators... figuring out the IDOM - // for each node... - // - for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); - DI != DEnd; ++DI) { - const BasicBlock *BB = DI->first; - const DominatorSet::DomSetType &Dominators = DI->second; - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // Loop over all dominators of this node. This corresponds to looping over - // nodes in the dominator chain, looking for a node whose dominator set is - // equal to the current nodes, except that the current node does not exist - // in it. This means that it is one level higher in the dom chain than the - // current node, and it is our idom! - // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number of elements - // in the dominator set indicates what level the node is at in the chain. - // We want the node immediately above us, so it will have an identical - // dominator set, except that BB will not dominate it... therefore it's - // dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - IDoms[BB] = *I; - break; - } - } - } -} +#include "llvm/Analysis/PostDominators.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Instructions.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GenericDomTreeConstruction.h" +using namespace llvm; +#define DEBUG_TYPE "postdomtree" //===----------------------------------------------------------------------===// -// DominatorTree Implementation +// PostDominatorTree Implementation //===----------------------------------------------------------------------===// -AnalysisID cfg::DominatorTree::ID(AnalysisID::create()); -AnalysisID cfg::DominatorTree::PostDomID(AnalysisID::create()); +char PostDominatorTree::ID = 0; +INITIALIZE_PASS(PostDominatorTree, "postdomtree", + "Post-Dominator Tree Construction", true, true) -// DominatorTree::reset - Free all of the tree node memory. -// -void cfg::DominatorTree::reset() { - for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) - delete I->second; - Nodes.clear(); +bool PostDominatorTree::runOnFunction(Function &F) { + DT->recalculate(F); + return false; } - -#if 0 -// Given immediate dominators, we can also calculate the dominator tree -cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) - : DominatorBase(IDoms.getRoot()) { - const Method *M = Root->getParent(); - - Nodes[Root] = new Node(Root, 0); // Add a node for the root... - - // Iterate over all nodes in depth first order... - for (df_iterator I = df_begin(M), E = df_end(M); I != E; ++I) { - const BasicBlock *BB = *I, *IDom = IDoms[*I]; - - if (IDom != 0) { // Ignore the root node and other nasty nodes - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - assert(Nodes[IDom] && "No node for IDOM?"); - Node *IDomNode = Nodes[IDom]; - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - } - } +PostDominatorTree::~PostDominatorTree() { + delete DT; } -#endif - -void cfg::DominatorTree::calculate(const DominatorSet &DS) { - Nodes[Root] = new Node(Root, 0); // Add a node for the root... - if (!isPostDominator()) { - // Iterate over all nodes in depth first order... - for (df_iterator I = df_begin(Root), E = df_end(Root); - I != E; ++I) { - const BasicBlock *BB = *I; - const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // Loop over all dominators of this node. This corresponds to looping over - // nodes in the dominator chain, looking for a node whose dominator set is - // equal to the current nodes, except that the current node does not exist - // in it. This means that it is one level higher in the dom chain than the - // current node, and it is our idom! We know that we have already added - // a DominatorTree node for our idom, because the idom must be a - // predecessor in the depth first order that we are iterating through the - // method. - // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number of - // elements in the dominator set indicates what level the node is at in - // the chain. We want the node immediately above us, so it will have - // an identical dominator set, except that BB will not dominate it... - // therefore it's dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - Node *IDomNode = Nodes[*I]; - assert(IDomNode && "No node for IDOM?"); - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - break; - } - } - } - } else if (Root) { - // Iterate over all nodes in depth first order... - for (idf_iterator I = idf_begin(Root), E = idf_end(Root); - I != E; ++I) { - const BasicBlock *BB = *I; - const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // Loop over all dominators of this node. This corresponds to looping - // over nodes in the dominator chain, looking for a node whose dominator - // set is equal to the current nodes, except that the current node does - // not exist in it. This means that it is one level higher in the dom - // chain than the current node, and it is our idom! We know that we have - // already added a DominatorTree node for our idom, because the idom must - // be a predecessor in the depth first order that we are iterating through - // the method. - // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number - // of elements in the dominator set indicates what level the - // node is at in the chain. We want the node immediately - // above us, so it will have an identical dominator set, - // except that BB will not dominate it... therefore it's - // dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - Node *IDomNode = Nodes[*I]; - assert(IDomNode && "No node for IDOM?"); - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - break; - } - } - } - } +void PostDominatorTree::print(raw_ostream &OS, const Module *) const { + DT->print(OS); } - -//===----------------------------------------------------------------------===// -// DominanceFrontier Implementation -//===----------------------------------------------------------------------===// - -AnalysisID cfg::DominanceFrontier::ID(AnalysisID::create()); -AnalysisID cfg::DominanceFrontier::PostDomID(AnalysisID::create()); - -const cfg::DominanceFrontier::DomSetType & -cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, - const DominatorTree::Node *Node) { - // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); - DomSetType &S = Frontiers[BB]; // The new set to fill in... - - for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); - SI != SE; ++SI) { - // Does Node immediately dominate this successor? - if (DT[*SI]->getIDom() != Node) - S.insert(*SI); - } - - // At this point, S is DFlocal. Now we union in DFup's of our children... - // Loop through and visit the nodes that Node immediately dominates (Node's - // children in the IDomTree) - // - for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); - NI != NE; ++NI) { - DominatorTree::Node *IDominee = *NI; - const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); - - DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); - for (; CDFI != CDFE; ++CDFI) { - if (!Node->dominates(DT[*CDFI])) - S.insert(*CDFI); - } - } - - return S; +FunctionPass* llvm::createPostDomTree() { + return new PostDominatorTree(); } -const cfg::DominanceFrontier::DomSetType & -cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, - const DominatorTree::Node *Node) { - // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); - DomSetType &S = Frontiers[BB]; // The new set to fill in... - if (!Root) return S; - - for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB); - SI != SE; ++SI) { - // Does Node immediately dominate this predeccessor? - if (DT[*SI]->getIDom() != Node) - S.insert(*SI); - } - - // At this point, S is DFlocal. Now we union in DFup's of our children... - // Loop through and visit the nodes that Node immediately dominates (Node's - // children in the IDomTree) - // - for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); - NI != NE; ++NI) { - DominatorTree::Node *IDominee = *NI; - const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee); - - DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); - for (; CDFI != CDFE; ++CDFI) { - if (!Node->dominates(DT[*CDFI])) - S.insert(*CDFI); - } - } - - return S; -}