X-Git-Url: http://plrg.eecs.uci.edu/git/?p=oota-llvm.git;a=blobdiff_plain;f=include%2Fllvm%2FExecutionEngine%2FExecutionEngine.h;h=04756ca601f1770c7288bebcec809d6b5e7e3870;hp=adc2b2f5c774e8a010939a848ffbac0bf4b882a1;hb=3574eca1b02600bac4e625297f4ecf745f4c4f32;hpb=c1d035a8818058461d776fc0ffb9cdbfa4cfccd3 diff --git a/include/llvm/ExecutionEngine/ExecutionEngine.h b/include/llvm/ExecutionEngine/ExecutionEngine.h index adc2b2f5c77..04756ca601f 100644 --- a/include/llvm/ExecutionEngine/ExecutionEngine.h +++ b/include/llvm/ExecutionEngine/ExecutionEngine.h @@ -1,10 +1,10 @@ //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===// -// +// // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// //===----------------------------------------------------------------------===// // // This file defines the abstract interface that implements execution support @@ -12,67 +12,256 @@ // //===----------------------------------------------------------------------===// -#ifndef EXECUTION_ENGINE_H -#define EXECUTION_ENGINE_H +#ifndef LLVM_EXECUTION_ENGINE_H +#define LLVM_EXECUTION_ENGINE_H +#include "llvm/MC/MCCodeGenInfo.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/ValueMap.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/Mutex.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" #include #include -#include #include namespace llvm { -union GenericValue; +struct GenericValue; class Constant; +class ExecutionEngine; class Function; class GlobalVariable; class GlobalValue; +class JITEventListener; +class JITMemoryManager; +class MachineCodeInfo; class Module; -class ModuleProvider; -class TargetData; +class MutexGuard; +class DataLayout; +class Triple; class Type; -class IntrinsicLowering; -class ExecutionEngine { - Module &CurMod; - const TargetData *TD; +/// \brief Helper class for helping synchronize access to the global address map +/// table. +class ExecutionEngineState { +public: + struct AddressMapConfig : public ValueMapConfig { + typedef ExecutionEngineState *ExtraData; + static sys::Mutex *getMutex(ExecutionEngineState *EES); + static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old); + static void onRAUW(ExecutionEngineState *, const GlobalValue *, + const GlobalValue *); + }; + + typedef ValueMap + GlobalAddressMapTy; + +private: + ExecutionEngine ⅇ /// GlobalAddressMap - A mapping between LLVM global values and their /// actualized version... - std::map GlobalAddressMap; + GlobalAddressMapTy GlobalAddressMap; /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap, /// used to convert raw addresses into the LLVM global value that is emitted /// at the address. This map is not computed unless getGlobalValueAtAddress /// is called at some point. - std::map GlobalAddressReverseMap; -protected: - ModuleProvider *MP; + std::map > GlobalAddressReverseMap; + +public: + ExecutionEngineState(ExecutionEngine &EE); + + GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) { + return GlobalAddressMap; + } - void setTargetData(const TargetData &td) { - TD = &td; + std::map > & + getGlobalAddressReverseMap(const MutexGuard &) { + return GlobalAddressReverseMap; } + /// \brief Erase an entry from the mapping table. + /// + /// \returns The address that \p ToUnmap was happed to. + void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap); +}; + +/// \brief Abstract interface for implementation execution of LLVM modules, +/// designed to support both interpreter and just-in-time (JIT) compiler +/// implementations. +class ExecutionEngine { + /// The state object holding the global address mapping, which must be + /// accessed synchronously. + // + // FIXME: There is no particular need the entire map needs to be + // synchronized. Wouldn't a reader-writer design be better here? + ExecutionEngineState EEState; + + /// The target data for the platform for which execution is being performed. + const DataLayout *TD; + + /// Whether lazy JIT compilation is enabled. + bool CompilingLazily; + + /// Whether JIT compilation of external global variables is allowed. + bool GVCompilationDisabled; + + /// Whether the JIT should perform lookups of external symbols (e.g., + /// using dlsym). + bool SymbolSearchingDisabled; + + friend class EngineBuilder; // To allow access to JITCtor and InterpCtor. + +protected: + /// The list of Modules that we are JIT'ing from. We use a SmallVector to + /// optimize for the case where there is only one module. + SmallVector Modules; + + void setDataLayout(const DataLayout *td) { TD = td; } + + /// getMemoryforGV - Allocate memory for a global variable. + virtual char *getMemoryForGV(const GlobalVariable *GV); + + // To avoid having libexecutionengine depend on the JIT and interpreter + // libraries, the execution engine implementations set these functions to ctor + // pointers at startup time if they are linked in. + static ExecutionEngine *(*JITCtor)( + Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + bool GVsWithCode, + TargetMachine *TM); + static ExecutionEngine *(*MCJITCtor)( + Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + bool GVsWithCode, + TargetMachine *TM); + static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr); + + /// LazyFunctionCreator - If an unknown function is needed, this function + /// pointer is invoked to create it. If this returns null, the JIT will + /// abort. + void *(*LazyFunctionCreator)(const std::string &); + + /// ExceptionTableRegister - If Exception Handling is set, the JIT will + /// register dwarf tables with this function. + typedef void (*EERegisterFn)(void*); + EERegisterFn ExceptionTableRegister; + EERegisterFn ExceptionTableDeregister; + /// This maps functions to their exception tables frames. + DenseMap AllExceptionTables; + + public: - ExecutionEngine(ModuleProvider *P); - ExecutionEngine(Module *M); + /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and + /// JITEmitter classes. It must be held while changing the internal state of + /// any of those classes. + sys::Mutex lock; + + //===--------------------------------------------------------------------===// + // ExecutionEngine Startup + //===--------------------------------------------------------------------===// + virtual ~ExecutionEngine(); - - Module &getModule() const { return CurMod; } - const TargetData &getTargetData() const { return *TD; } /// create - This is the factory method for creating an execution engine which - /// is appropriate for the current machine. If specified, the - /// IntrinsicLowering implementation should be allocated on the heap. - static ExecutionEngine *create(ModuleProvider *MP, bool ForceInterpreter, - IntrinsicLowering *IL = 0); + /// is appropriate for the current machine. This takes ownership of the + /// module. + /// + /// \param GVsWithCode - Allocating globals with code breaks + /// freeMachineCodeForFunction and is probably unsafe and bad for performance. + /// However, we have clients who depend on this behavior, so we must support + /// it. Eventually, when we're willing to break some backwards compatibility, + /// this flag should be flipped to false, so that by default + /// freeMachineCodeForFunction works. + static ExecutionEngine *create(Module *M, + bool ForceInterpreter = false, + std::string *ErrorStr = 0, + CodeGenOpt::Level OptLevel = + CodeGenOpt::Default, + bool GVsWithCode = true); + + /// createJIT - This is the factory method for creating a JIT for the current + /// machine, it does not fall back to the interpreter. This takes ownership + /// of the Module and JITMemoryManager if successful. + /// + /// Clients should make sure to initialize targets prior to calling this + /// function. + static ExecutionEngine *createJIT(Module *M, + std::string *ErrorStr = 0, + JITMemoryManager *JMM = 0, + CodeGenOpt::Level OptLevel = + CodeGenOpt::Default, + bool GVsWithCode = true, + Reloc::Model RM = Reloc::Default, + CodeModel::Model CMM = + CodeModel::JITDefault); + + /// addModule - Add a Module to the list of modules that we can JIT from. + /// Note that this takes ownership of the Module: when the ExecutionEngine is + /// destroyed, it destroys the Module as well. + virtual void addModule(Module *M) { + Modules.push_back(M); + } + + //===--------------------------------------------------------------------===// + + const DataLayout *getDataLayout() const { return TD; } + + /// removeModule - Remove a Module from the list of modules. Returns true if + /// M is found. + virtual bool removeModule(Module *M); + + /// FindFunctionNamed - Search all of the active modules to find the one that + /// defines FnName. This is very slow operation and shouldn't be used for + /// general code. + Function *FindFunctionNamed(const char *FnName); /// runFunction - Execute the specified function with the specified arguments, /// and return the result. - /// virtual GenericValue runFunction(Function *F, const std::vector &ArgValues) = 0; + /// getPointerToNamedFunction - This method returns the address of the + /// specified function by using the dlsym function call. As such it is only + /// useful for resolving library symbols, not code generated symbols. + /// + /// If AbortOnFailure is false and no function with the given name is + /// found, this function silently returns a null pointer. Otherwise, + /// it prints a message to stderr and aborts. + /// + virtual void *getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure = true) = 0; + + /// mapSectionAddress - map a section to its target address space value. + /// Map the address of a JIT section as returned from the memory manager + /// to the address in the target process as the running code will see it. + /// This is the address which will be used for relocation resolution. + virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) { + llvm_unreachable("Re-mapping of section addresses not supported with this " + "EE!"); + } + + /// runStaticConstructorsDestructors - This method is used to execute all of + /// the static constructors or destructors for a program. + /// + /// \param isDtors - Run the destructors instead of constructors. + void runStaticConstructorsDestructors(bool isDtors); + + /// runStaticConstructorsDestructors - This method is used to execute all of + /// the static constructors or destructors for a particular module. + /// + /// \param isDtors - Run the destructors instead of constructors. + void runStaticConstructorsDestructors(Module *module, bool isDtors); + + /// runFunctionAsMain - This is a helper function which wraps runFunction to /// handle the common task of starting up main with the specified argc, argv, /// and envp parameters. @@ -80,94 +269,353 @@ public: const char * const * envp); - void addGlobalMapping(const GlobalValue *GV, void *Addr) { - void *&CurVal = GlobalAddressMap[GV]; - assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); - CurVal = Addr; + /// addGlobalMapping - Tell the execution engine that the specified global is + /// at the specified location. This is used internally as functions are JIT'd + /// and as global variables are laid out in memory. It can and should also be + /// used by clients of the EE that want to have an LLVM global overlay + /// existing data in memory. Mappings are automatically removed when their + /// GlobalValue is destroyed. + void addGlobalMapping(const GlobalValue *GV, void *Addr); - // If we are using the reverse mapping, add it too - if (!GlobalAddressReverseMap.empty()) { - const GlobalValue *&V = GlobalAddressReverseMap[Addr]; - assert((V == 0 || GV == 0) && "GlobalMapping already established!"); - V = GV; - } - } + /// clearAllGlobalMappings - Clear all global mappings and start over again, + /// for use in dynamic compilation scenarios to move globals. + void clearAllGlobalMappings(); - /// FIXME: I have no idea if this is right, I just implemented it to get - /// the build to compile because it is called by JIT/Emitter.cpp. - void updateGlobalMapping(const GlobalValue *GV, void*Addr) { - GlobalAddressMap[GV] = Addr; - GlobalAddressReverseMap[Addr] = GV; - } + /// clearGlobalMappingsFromModule - Clear all global mappings that came from a + /// particular module, because it has been removed from the JIT. + void clearGlobalMappingsFromModule(Module *M); + + /// updateGlobalMapping - Replace an existing mapping for GV with a new + /// address. This updates both maps as required. If "Addr" is null, the + /// entry for the global is removed from the mappings. This returns the old + /// value of the pointer, or null if it was not in the map. + void *updateGlobalMapping(const GlobalValue *GV, void *Addr); /// getPointerToGlobalIfAvailable - This returns the address of the specified - /// global value if it is available, otherwise it returns null. - /// - void *getPointerToGlobalIfAvailable(const GlobalValue *GV) { - std::map::iterator I = GlobalAddressMap.find(GV); - return I != GlobalAddressMap.end() ? I->second : 0; - } + /// global value if it is has already been codegen'd, otherwise it returns + /// null. + void *getPointerToGlobalIfAvailable(const GlobalValue *GV); /// getPointerToGlobal - This returns the address of the specified global - /// value. This may involve code generation if it's a function. - /// + /// value. This may involve code generation if it's a function. void *getPointerToGlobal(const GlobalValue *GV); /// getPointerToFunction - The different EE's represent function bodies in /// different ways. They should each implement this to say what a function - /// pointer should look like. - /// + /// pointer should look like. When F is destroyed, the ExecutionEngine will + /// remove its global mapping and free any machine code. Be sure no threads + /// are running inside F when that happens. virtual void *getPointerToFunction(Function *F) = 0; + /// getPointerToBasicBlock - The different EE's represent basic blocks in + /// different ways. Return the representation for a blockaddress of the + /// specified block. + virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0; + /// getPointerToFunctionOrStub - If the specified function has been /// code-gen'd, return a pointer to the function. If not, compile it, or use - /// a stub to implement lazy compilation if available. - /// + /// a stub to implement lazy compilation if available. See + /// getPointerToFunction for the requirements on destroying F. virtual void *getPointerToFunctionOrStub(Function *F) { // Default implementation, just codegen the function. return getPointerToFunction(F); } + // The JIT overrides a version that actually does this. + virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { } + /// getGlobalValueAtAddress - Return the LLVM global value object that starts /// at the specified address. /// const GlobalValue *getGlobalValueAtAddress(void *Addr); + /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. + /// Ptr is the address of the memory at which to store Val, cast to + /// GenericValue *. It is not a pointer to a GenericValue containing the + /// address at which to store Val. + void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, + Type *Ty); - void StoreValueToMemory(GenericValue Val, GenericValue *Ptr, const Type *Ty); void InitializeMemory(const Constant *Init, void *Addr); - /// recompileAndRelinkFunction - This method is used to force a function - /// which has already been compiled to be compiled again, possibly - /// after it has been modified. Then the entry to the old copy is overwritten - /// with a branch to the new copy. If there was no old copy, this acts - /// just like VM::getPointerToFunction(). - /// + /// recompileAndRelinkFunction - This method is used to force a function which + /// has already been compiled to be compiled again, possibly after it has been + /// modified. Then the entry to the old copy is overwritten with a branch to + /// the new copy. If there was no old copy, this acts just like + /// VM::getPointerToFunction(). virtual void *recompileAndRelinkFunction(Function *F) = 0; /// freeMachineCodeForFunction - Release memory in the ExecutionEngine /// corresponding to the machine code emitted to execute this function, useful /// for garbage-collecting generated code. - /// virtual void freeMachineCodeForFunction(Function *F) = 0; /// getOrEmitGlobalVariable - Return the address of the specified global /// variable, possibly emitting it to memory if needed. This is used by the /// Emitter. virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) { - return getPointerToGlobal((GlobalValue*)GV); + return getPointerToGlobal((const GlobalValue *)GV); + } + + /// Registers a listener to be called back on various events within + /// the JIT. See JITEventListener.h for more details. Does not + /// take ownership of the argument. The argument may be NULL, in + /// which case these functions do nothing. + virtual void RegisterJITEventListener(JITEventListener *) {} + virtual void UnregisterJITEventListener(JITEventListener *) {} + + /// DisableLazyCompilation - When lazy compilation is off (the default), the + /// JIT will eagerly compile every function reachable from the argument to + /// getPointerToFunction. If lazy compilation is turned on, the JIT will only + /// compile the one function and emit stubs to compile the rest when they're + /// first called. If lazy compilation is turned off again while some lazy + /// stubs are still around, and one of those stubs is called, the program will + /// abort. + /// + /// In order to safely compile lazily in a threaded program, the user must + /// ensure that 1) only one thread at a time can call any particular lazy + /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock + /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a + /// lazy stub. See http://llvm.org/PR5184 for details. + void DisableLazyCompilation(bool Disabled = true) { + CompilingLazily = !Disabled; + } + bool isCompilingLazily() const { + return CompilingLazily; + } + // Deprecated in favor of isCompilingLazily (to reduce double-negatives). + // Remove this in LLVM 2.8. + bool isLazyCompilationDisabled() const { + return !CompilingLazily; + } + + /// DisableGVCompilation - If called, the JIT will abort if it's asked to + /// allocate space and populate a GlobalVariable that is not internal to + /// the module. + void DisableGVCompilation(bool Disabled = true) { + GVCompilationDisabled = Disabled; + } + bool isGVCompilationDisabled() const { + return GVCompilationDisabled; + } + + /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown + /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to + /// resolve symbols in a custom way. + void DisableSymbolSearching(bool Disabled = true) { + SymbolSearchingDisabled = Disabled; + } + bool isSymbolSearchingDisabled() const { + return SymbolSearchingDisabled; + } + + /// InstallLazyFunctionCreator - If an unknown function is needed, the + /// specified function pointer is invoked to create it. If it returns null, + /// the JIT will abort. + void InstallLazyFunctionCreator(void* (*P)(const std::string &)) { + LazyFunctionCreator = P; + } + + /// InstallExceptionTableRegister - The JIT will use the given function + /// to register the exception tables it generates. + void InstallExceptionTableRegister(EERegisterFn F) { + ExceptionTableRegister = F; + } + void InstallExceptionTableDeregister(EERegisterFn F) { + ExceptionTableDeregister = F; + } + + /// RegisterTable - Registers the given pointer as an exception table. It + /// uses the ExceptionTableRegister function. + void RegisterTable(const Function *fn, void* res) { + if (ExceptionTableRegister) { + ExceptionTableRegister(res); + AllExceptionTables[fn] = res; + } + } + + /// DeregisterTable - Deregisters the exception frame previously registered + /// for the given function. + void DeregisterTable(const Function *Fn) { + if (ExceptionTableDeregister) { + DenseMap::iterator frame = + AllExceptionTables.find(Fn); + if(frame != AllExceptionTables.end()) { + ExceptionTableDeregister(frame->second); + AllExceptionTables.erase(frame); + } + } } + /// DeregisterAllTables - Deregisters all previously registered pointers to an + /// exception tables. It uses the ExceptionTableoDeregister function. + void DeregisterAllTables(); + protected: + explicit ExecutionEngine(Module *M); + void emitGlobals(); - // EmitGlobalVariable - This method emits the specified global variable to the - // address specified in GlobalAddresses, or allocates new memory if it's not - // already in the map. void EmitGlobalVariable(const GlobalVariable *GV); GenericValue getConstantValue(const Constant *C); - GenericValue LoadValueFromMemory(GenericValue *Ptr, const Type *Ty); + void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, + Type *Ty); +}; + +namespace EngineKind { + // These are actually bitmasks that get or-ed together. + enum Kind { + JIT = 0x1, + Interpreter = 0x2 + }; + const static Kind Either = (Kind)(JIT | Interpreter); +} + +/// EngineBuilder - Builder class for ExecutionEngines. Use this by +/// stack-allocating a builder, chaining the various set* methods, and +/// terminating it with a .create() call. +class EngineBuilder { +private: + Module *M; + EngineKind::Kind WhichEngine; + std::string *ErrorStr; + CodeGenOpt::Level OptLevel; + JITMemoryManager *JMM; + bool AllocateGVsWithCode; + TargetOptions Options; + Reloc::Model RelocModel; + CodeModel::Model CMModel; + std::string MArch; + std::string MCPU; + SmallVector MAttrs; + bool UseMCJIT; + + /// InitEngine - Does the common initialization of default options. + void InitEngine() { + WhichEngine = EngineKind::Either; + ErrorStr = NULL; + OptLevel = CodeGenOpt::Default; + JMM = NULL; + Options = TargetOptions(); + AllocateGVsWithCode = false; + RelocModel = Reloc::Default; + CMModel = CodeModel::JITDefault; + UseMCJIT = false; + } + +public: + /// EngineBuilder - Constructor for EngineBuilder. If create() is called and + /// is successful, the created engine takes ownership of the module. + EngineBuilder(Module *m) : M(m) { + InitEngine(); + } + + /// setEngineKind - Controls whether the user wants the interpreter, the JIT, + /// or whichever engine works. This option defaults to EngineKind::Either. + EngineBuilder &setEngineKind(EngineKind::Kind w) { + WhichEngine = w; + return *this; + } + + /// setJITMemoryManager - Sets the memory manager to use. This allows + /// clients to customize their memory allocation policies. If create() is + /// called and is successful, the created engine takes ownership of the + /// memory manager. This option defaults to NULL. + EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) { + JMM = jmm; + return *this; + } + + /// setErrorStr - Set the error string to write to on error. This option + /// defaults to NULL. + EngineBuilder &setErrorStr(std::string *e) { + ErrorStr = e; + return *this; + } + + /// setOptLevel - Set the optimization level for the JIT. This option + /// defaults to CodeGenOpt::Default. + EngineBuilder &setOptLevel(CodeGenOpt::Level l) { + OptLevel = l; + return *this; + } + + /// setTargetOptions - Set the target options that the ExecutionEngine + /// target is using. Defaults to TargetOptions(). + EngineBuilder &setTargetOptions(const TargetOptions &Opts) { + Options = Opts; + return *this; + } + + /// setRelocationModel - Set the relocation model that the ExecutionEngine + /// target is using. Defaults to target specific default "Reloc::Default". + EngineBuilder &setRelocationModel(Reloc::Model RM) { + RelocModel = RM; + return *this; + } + + /// setCodeModel - Set the CodeModel that the ExecutionEngine target + /// data is using. Defaults to target specific default + /// "CodeModel::JITDefault". + EngineBuilder &setCodeModel(CodeModel::Model M) { + CMModel = M; + return *this; + } + + /// setAllocateGVsWithCode - Sets whether global values should be allocated + /// into the same buffer as code. For most applications this should be set + /// to false. Allocating globals with code breaks freeMachineCodeForFunction + /// and is probably unsafe and bad for performance. However, we have clients + /// who depend on this behavior, so we must support it. This option defaults + /// to false so that users of the new API can safely use the new memory + /// manager and free machine code. + EngineBuilder &setAllocateGVsWithCode(bool a) { + AllocateGVsWithCode = a; + return *this; + } + + /// setMArch - Override the architecture set by the Module's triple. + EngineBuilder &setMArch(StringRef march) { + MArch.assign(march.begin(), march.end()); + return *this; + } + + /// setMCPU - Target a specific cpu type. + EngineBuilder &setMCPU(StringRef mcpu) { + MCPU.assign(mcpu.begin(), mcpu.end()); + return *this; + } + + /// setUseMCJIT - Set whether the MC-JIT implementation should be used + /// (experimental). + EngineBuilder &setUseMCJIT(bool Value) { + UseMCJIT = Value; + return *this; + } + + /// setMAttrs - Set cpu-specific attributes. + template + EngineBuilder &setMAttrs(const StringSequence &mattrs) { + MAttrs.clear(); + MAttrs.append(mattrs.begin(), mattrs.end()); + return *this; + } + + TargetMachine *selectTarget(); + + /// selectTarget - Pick a target either via -march or by guessing the native + /// arch. Add any CPU features specified via -mcpu or -mattr. + TargetMachine *selectTarget(const Triple &TargetTriple, + StringRef MArch, + StringRef MCPU, + const SmallVectorImpl& MAttrs); + + ExecutionEngine *create() { + return create(selectTarget()); + } + + ExecutionEngine *create(TargetMachine *TM); }; } // End llvm namespace