[Unroll] Fix a bug in UnrolledInstAnalyzer::visitLoad.
[oota-llvm.git] / lib / Transforms / Scalar / LoopUnrollPass.cpp
index e831d834070e92c151d66502b4f1ca952fd61f4b..0e4462618aaf0bdd9fb0db1cb0a4c1d3e540a855 100644 (file)
@@ -14,6 +14,7 @@
 
 #include "llvm/Transforms/Scalar.h"
 #include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/GlobalsModRef.h"
 #include "llvm/Analysis/AssumptionCache.h"
 #include "llvm/Analysis/CodeMetrics.h"
 #include "llvm/Analysis/InstructionSimplify.h"
@@ -137,20 +138,22 @@ namespace {
     ///
     void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.addRequired<AssumptionCacheTracker>();
+      AU.addRequired<DominatorTreeWrapperPass>();
       AU.addRequired<LoopInfoWrapperPass>();
       AU.addPreserved<LoopInfoWrapperPass>();
       AU.addRequiredID(LoopSimplifyID);
       AU.addPreservedID(LoopSimplifyID);
       AU.addRequiredID(LCSSAID);
       AU.addPreservedID(LCSSAID);
-      AU.addRequired<ScalarEvolution>();
-      AU.addPreserved<ScalarEvolution>();
+      AU.addRequired<ScalarEvolutionWrapperPass>();
+      AU.addPreserved<ScalarEvolutionWrapperPass>();
       AU.addRequired<TargetTransformInfoWrapperPass>();
       // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
       // If loop unroll does not preserve dom info then LCSSA pass on next
       // loop will receive invalid dom info.
       // For now, recreate dom info, if loop is unrolled.
       AU.addPreserved<DominatorTreeWrapperPass>();
+      AU.addPreserved<GlobalsAAWrapperPass>();
     }
 
     // Fill in the UnrollingPreferences parameter with values from the
@@ -186,7 +189,7 @@ namespace {
     // total unrolled size.  Parameters Threshold and PartialThreshold
     // are set to the maximum unrolled size for fully and partially
     // unrolled loops respectively.
-    void selectThresholds(const Loop *L, bool HasPragma,
+    void selectThresholds(const Loop *L, bool UsePragmaThreshold,
                           const TargetTransformInfo::UnrollingPreferences &UP,
                           unsigned &Threshold, unsigned &PartialThreshold,
                           unsigned &PercentDynamicCostSavedThreshold,
@@ -207,12 +210,13 @@ namespace {
                                        : UP.DynamicCostSavingsDiscount;
 
       if (!UserThreshold &&
+          // FIXME: Use Function::optForSize().
           L->getHeader()->getParent()->hasFnAttribute(
               Attribute::OptimizeForSize)) {
         Threshold = UP.OptSizeThreshold;
         PartialThreshold = UP.PartialOptSizeThreshold;
       }
-      if (HasPragma) {
+      if (UsePragmaThreshold) {
         // If the loop has an unrolling pragma, we want to be more
         // aggressive with unrolling limits.  Set thresholds to at
         // least the PragmaTheshold value which is larger than the
@@ -235,10 +239,11 @@ char LoopUnroll::ID = 0;
 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 INITIALIZE_PASS_DEPENDENCY(LCSSA)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
 
 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
@@ -250,187 +255,6 @@ Pass *llvm::createSimpleLoopUnrollPass() {
   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
 }
 
-namespace {
-/// \brief SCEV expressions visitor used for finding expressions that would
-/// become constants if the loop L is unrolled.
-struct FindConstantPointers {
-  /// \brief Shows whether the expression is ConstAddress+Constant or not.
-  bool IndexIsConstant;
-
-  /// \brief Used for filtering out SCEV expressions with two or more AddRec
-  /// subexpressions.
-  ///
-  /// Used to filter out complicated SCEV expressions, having several AddRec
-  /// sub-expressions. We don't handle them, because unrolling one loop
-  /// would help to replace only one of these inductions with a constant, and
-  /// consequently, the expression would remain non-constant.
-  bool HaveSeenAR;
-
-  /// \brief If the SCEV expression becomes ConstAddress+Constant, this value
-  /// holds ConstAddress. Otherwise, it's nullptr.
-  Value *BaseAddress;
-
-  /// \brief The loop, which we try to completely unroll.
-  const Loop *L;
-
-  ScalarEvolution &SE;
-
-  FindConstantPointers(const Loop *L, ScalarEvolution &SE)
-      : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr),
-        L(L), SE(SE) {}
-
-  /// Examine the given expression S and figure out, if it can be a part of an
-  /// expression, that could become a constant after the loop is unrolled.
-  /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis
-  /// results.
-  /// \returns true if we need to examine subexpressions, and false otherwise.
-  bool follow(const SCEV *S) {
-    if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
-      // We've reached the leaf node of SCEV, it's most probably just a
-      // variable.
-      // If it's the only one SCEV-subexpression, then it might be a base
-      // address of an index expression.
-      // If we've already recorded base address, then just give up on this SCEV
-      // - it's too complicated.
-      if (BaseAddress) {
-        IndexIsConstant = false;
-        return false;
-      }
-      BaseAddress = SC->getValue();
-      return false;
-    }
-    if (isa<SCEVConstant>(S))
-      return false;
-    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
-      // If the current SCEV expression is AddRec, and its loop isn't the loop
-      // we are about to unroll, then we won't get a constant address after
-      // unrolling, and thus, won't be able to eliminate the load.
-      if (AR->getLoop() != L) {
-        IndexIsConstant = false;
-        return false;
-      }
-      // We don't handle multiple AddRecs here, so give up in this case.
-      if (HaveSeenAR) {
-        IndexIsConstant = false;
-        return false;
-      }
-      HaveSeenAR = true;
-    }
-
-    // Continue traversal.
-    return true;
-  }
-  bool isDone() const { return !IndexIsConstant; }
-};
-} // End anonymous namespace.
-
-namespace {
-/// \brief A cache of SCEV results used to optimize repeated queries to SCEV on
-/// the same set of instructions.
-///
-/// The primary cost this saves is the cost of checking the validity of a SCEV
-/// every time it is looked up. However, in some cases we can provide a reduced
-/// and especially useful model for an instruction based upon SCEV that is
-/// non-trivial to compute but more useful to clients.
-class SCEVCache {
-public:
-  /// \brief Struct to represent a GEP whose start and step are known fixed
-  /// offsets from a base address due to SCEV's analysis.
-  struct GEPDescriptor {
-    Value *BaseAddr = nullptr;
-    unsigned Start = 0;
-    unsigned Step = 0;
-  };
-
-  Optional<GEPDescriptor> getGEPDescriptor(GetElementPtrInst *GEP);
-
-  SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {}
-
-private:
-  const Loop &L;
-  ScalarEvolution &SE;
-
-  SmallDenseMap<GetElementPtrInst *, GEPDescriptor> GEPDescriptors;
-};
-} // End anonymous namespace.
-
-/// \brief Get a simplified descriptor for a GEP instruction.
-///
-/// Where possible, this produces a simplified descriptor for a GEP instruction
-/// using SCEV analysis of the containing loop. If this isn't possible, it
-/// returns an empty optional.
-///
-/// The model is a base address, an initial offset, and a per-iteration step.
-/// This fits very common patterns of GEPs inside loops and is something we can
-/// use to simulate the behavior of a particular iteration of a loop.
-///
-/// This is a cached interface. The first call may do non-trivial work to
-/// compute the result, but all subsequent calls will return a fast answer
-/// based on a cached result. This includes caching negative results.
-Optional<SCEVCache::GEPDescriptor>
-SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) {
-  decltype(GEPDescriptors)::iterator It;
-  bool Inserted;
-
-  std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}});
-
-  if (!Inserted) {
-    if (!It->second.BaseAddr)
-      return None;
-
-    return It->second;
-  }
-
-  // We've inserted a new record into the cache, so compute the GEP descriptor
-  // if possible.
-  Value *V = cast<Value>(GEP);
-  if (!SE.isSCEVable(V->getType()))
-    return None;
-  const SCEV *S = SE.getSCEV(V);
-
-  // FIXME: It'd be nice if the worklist and set used by the
-  // SCEVTraversal could be re-used between loop iterations, but the
-  // interface doesn't support that. There is no way to clear the visited
-  // sets between uses.
-  FindConstantPointers Visitor(&L, SE);
-  SCEVTraversal<FindConstantPointers> T(Visitor);
-
-  // Try to find (BaseAddress+Step+Offset) tuple.
-  // If succeeded, save it to the cache - it might help in folding
-  // loads.
-  T.visitAll(S);
-  if (!Visitor.IndexIsConstant || !Visitor.BaseAddress)
-    return None;
-
-  const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress);
-  if (BaseAddrSE->getType() != S->getType())
-    return None;
-  const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
-  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
-
-  if (!AR)
-    return None;
-
-  const SCEVConstant *StepSE =
-      dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE));
-  const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart());
-  if (!StepSE || !StartSE)
-    return None;
-
-  // Check and skip caching if doing so would require lots of bits to
-  // avoid overflow.
-  APInt Start = StartSE->getValue()->getValue();
-  APInt Step = StepSE->getValue()->getValue();
-  if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32)
-    return None;
-
-  // We found a cacheable SCEV model for the GEP.
-  It->second.BaseAddr = Visitor.BaseAddress;
-  It->second.Start = Start.getLimitedValue();
-  It->second.Step = Step.getLimitedValue();
-  return It->second;
-}
-
 namespace {
 // This class is used to get an estimate of the optimization effects that we
 // could get from complete loop unrolling. It comes from the fact that some
@@ -451,17 +275,31 @@ namespace {
 class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
   typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
   friend class InstVisitor<UnrolledInstAnalyzer, bool>;
+  struct SimplifiedAddress {
+    Value *Base = nullptr;
+    ConstantInt *Offset = nullptr;
+  };
 
 public:
   UnrolledInstAnalyzer(unsigned Iteration,
                        DenseMap<Value *, Constant *> &SimplifiedValues,
-                       SCEVCache &SC)
-      : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {}
+                       const Loop *L, ScalarEvolution &SE)
+      : Iteration(Iteration), SimplifiedValues(SimplifiedValues), L(L), SE(SE) {
+      IterationNumber = SE.getConstant(APInt(64, Iteration));
+  }
 
   // Allow access to the initial visit method.
   using Base::visit;
 
 private:
+  /// \brief A cache of pointer bases and constant-folded offsets corresponding
+  /// to GEP (or derived from GEP) instructions.
+  ///
+  /// In order to find the base pointer one needs to perform non-trivial
+  /// traversal of the corresponding SCEV expression, so it's good to have the
+  /// results saved.
+  DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
+
   /// \brief Number of currently simulated iteration.
   ///
   /// If an expression is ConstAddress+Constant, then the Constant is
@@ -469,24 +307,75 @@ private:
   /// SCEVGEPCache.
   unsigned Iteration;
 
-  // While we walk the loop instructions, we we build up and maintain a mapping
-  // of simplified values specific to this iteration.  The idea is to propagate
-  // any special information we have about loads that can be replaced with
-  // constants after complete unrolling, and account for likely simplifications
-  // post-unrolling.
+  /// \brief SCEV expression corresponding to number of currently simulated
+  /// iteration.
+  const SCEV *IterationNumber;
+
+  /// \brief A Value->Constant map for keeping values that we managed to
+  /// constant-fold on the given iteration.
+  ///
+  /// While we walk the loop instructions, we build up and maintain a mapping
+  /// of simplified values specific to this iteration.  The idea is to propagate
+  /// any special information we have about loads that can be replaced with
+  /// constants after complete unrolling, and account for likely simplifications
+  /// post-unrolling.
   DenseMap<Value *, Constant *> &SimplifiedValues;
 
-  // We use a cache to wrap all our SCEV queries.
-  SCEVCache &SC;
+  const Loop *L;
+  ScalarEvolution &SE;
 
-  /// Base case for the instruction visitor.
-  bool visitInstruction(Instruction &I) { return false; };
+  /// \brief Try to simplify instruction \param I using its SCEV expression.
+  ///
+  /// The idea is that some AddRec expressions become constants, which then
+  /// could trigger folding of other instructions. However, that only happens
+  /// for expressions whose start value is also constant, which isn't always the
+  /// case. In another common and important case the start value is just some
+  /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
+  /// it along with the base address instead.
+  bool simplifyInstWithSCEV(Instruction *I) {
+    if (!SE.isSCEVable(I->getType()))
+      return false;
+
+    const SCEV *S = SE.getSCEV(I);
+    if (auto *SC = dyn_cast<SCEVConstant>(S)) {
+      SimplifiedValues[I] = SC->getValue();
+      return true;
+    }
+
+    auto *AR = dyn_cast<SCEVAddRecExpr>(S);
+    if (!AR)
+      return false;
+
+    const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
+    // Check if the AddRec expression becomes a constant.
+    if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
+      SimplifiedValues[I] = SC->getValue();
+      return true;
+    }
+
+    // Check if the offset from the base address becomes a constant.
+    auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
+    if (!Base)
+      return false;
+    auto *Offset =
+        dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
+    if (!Offset)
+      return false;
+    SimplifiedAddress Address;
+    Address.Base = Base->getValue();
+    Address.Offset = Offset->getValue();
+    SimplifiedAddresses[I] = Address;
+    return true;
+  }
 
-  /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.
+  /// Base case for the instruction visitor.
+  bool visitInstruction(Instruction &I) {
+    return simplifyInstWithSCEV(&I);
+  }
 
   /// Try to simplify binary operator I.
   ///
-  /// TODO: Probaly it's worth to hoist the code for estimating the
+  /// TODO: Probably it's worth to hoist the code for estimating the
   /// simplifications effects to a separate class, since we have a very similar
   /// code in InlineCost already.
   bool visitBinaryOperator(BinaryOperator &I) {
@@ -497,6 +386,7 @@ private:
     if (!isa<Constant>(RHS))
       if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
         RHS = SimpleRHS;
+
     Value *SimpleV = nullptr;
     const DataLayout &DL = I.getModule()->getDataLayout();
     if (auto FI = dyn_cast<FPMathOperator>(&I))
@@ -508,27 +398,24 @@ private:
     if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
       SimplifiedValues[&I] = C;
 
-    return SimpleV;
+    if (SimpleV)
+      return true;
+    return Base::visitBinaryOperator(I);
   }
 
   /// Try to fold load I.
   bool visitLoad(LoadInst &I) {
     Value *AddrOp = I.getPointerOperand();
-    if (!isa<Constant>(AddrOp))
-      if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp))
-        AddrOp = SimplifiedAddrOp;
 
-    auto *GEP = dyn_cast<GetElementPtrInst>(AddrOp);
-    if (!GEP)
-      return false;
-    auto OptionalGEPDesc = SC.getGEPDescriptor(GEP);
-    if (!OptionalGEPDesc)
+    auto AddressIt = SimplifiedAddresses.find(AddrOp);
+    if (AddressIt == SimplifiedAddresses.end())
       return false;
+    ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
 
-    auto GV = dyn_cast<GlobalVariable>(OptionalGEPDesc->BaseAddr);
+    auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
     // We're only interested in loads that can be completely folded to a
     // constant.
-    if (!GV || !GV->hasInitializer())
+    if (!GV || !GV->hasInitializer() || !GV->isConstant())
       return false;
 
     ConstantDataSequential *CDS =
@@ -536,13 +423,10 @@ private:
     if (!CDS)
       return false;
 
-    // This calculation should never overflow because we bound Iteration quite
-    // low and both the start and step are 32-bit integers. We use signed
-    // integers so that UBSan will catch if a bug sneaks into the code.
     int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
-    int64_t Index = ((int64_t)OptionalGEPDesc->Start +
-                     (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) /
-                    ElemSize;
+    assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
+           "Unexpectedly large index value.");
+    int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
     if (Index >= CDS->getNumElements()) {
       // FIXME: For now we conservatively ignore out of bound accesses, but
       // we're allowed to perform the optimization in this case.
@@ -555,6 +439,59 @@ private:
 
     return true;
   }
+
+  bool visitCastInst(CastInst &I) {
+    // Propagate constants through casts.
+    Constant *COp = dyn_cast<Constant>(I.getOperand(0));
+    if (!COp)
+      COp = SimplifiedValues.lookup(I.getOperand(0));
+    if (COp)
+      if (Constant *C =
+              ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
+        SimplifiedValues[&I] = C;
+        return true;
+      }
+
+    return Base::visitCastInst(I);
+  }
+
+  bool visitCmpInst(CmpInst &I) {
+    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+    // First try to handle simplified comparisons.
+    if (!isa<Constant>(LHS))
+      if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+        LHS = SimpleLHS;
+    if (!isa<Constant>(RHS))
+      if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+        RHS = SimpleRHS;
+
+    if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
+      auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
+      if (SimplifiedLHS != SimplifiedAddresses.end()) {
+        auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
+        if (SimplifiedRHS != SimplifiedAddresses.end()) {
+          SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
+          SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
+          if (LHSAddr.Base == RHSAddr.Base) {
+            LHS = LHSAddr.Offset;
+            RHS = RHSAddr.Offset;
+          }
+        }
+      }
+    }
+
+    if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
+        if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
+          SimplifiedValues[&I] = C;
+          return true;
+        }
+      }
+    }
+
+    return Base::visitCmpInst(I);
+  }
 };
 } // namespace
 
@@ -562,11 +499,11 @@ private:
 namespace {
 struct EstimatedUnrollCost {
   /// \brief The estimated cost after unrolling.
-  unsigned UnrolledCost;
+  int UnrolledCost;
 
   /// \brief The estimated dynamic cost of executing the instructions in the
   /// rolled form.
-  unsigned RolledDynamicCost;
+  int RolledDynamicCost;
 };
 }
 
@@ -574,17 +511,19 @@ struct EstimatedUnrollCost {
 ///
 /// Complete loop unrolling can make some loads constant, and we need to know
 /// if that would expose any further optimization opportunities.  This routine
-/// estimates this optimization.  It assigns computed number of instructions,
-/// that potentially might be optimized away, to
-/// NumberOfOptimizedInstructions, and total number of instructions to
-/// UnrolledLoopSize (not counting blocks that won't be reached, if we were
-/// able to compute the condition).
-/// \returns false if we can't analyze the loop, or if we discovered that
-/// unrolling won't give anything. Otherwise, returns true.
-Optional<EstimatedUnrollCost>
-analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
-                      const TargetTransformInfo &TTI,
-                      unsigned MaxUnrolledLoopSize) {
+/// estimates this optimization.  It computes cost of unrolled loop
+/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
+/// dynamic cost we mean that we won't count costs of blocks that are known not
+/// to be executed (i.e. if we have a branch in the loop and we know that at the
+/// given iteration its condition would be resolved to true, we won't add up the
+/// cost of the 'false'-block).
+/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
+/// the analysis failed (no benefits expected from the unrolling, or the loop is
+/// too big to analyze), the returned value is None.
+static Optional<EstimatedUnrollCost>
+analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
+                      ScalarEvolution &SE, const TargetTransformInfo &TTI,
+                      int MaxUnrolledLoopSize) {
   // We want to be able to scale offsets by the trip count and add more offsets
   // to them without checking for overflows, and we already don't want to
   // analyze *massive* trip counts, so we force the max to be reasonably small.
@@ -598,28 +537,61 @@ analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
 
   SmallSetVector<BasicBlock *, 16> BBWorklist;
   DenseMap<Value *, Constant *> SimplifiedValues;
-
-  // Use a cache to access SCEV expressions so that we don't pay the cost on
-  // each iteration. This cache is lazily self-populating.
-  SCEVCache SC(*L, SE);
+  SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
 
   // The estimated cost of the unrolled form of the loop. We try to estimate
   // this by simplifying as much as we can while computing the estimate.
-  unsigned UnrolledCost = 0;
+  int UnrolledCost = 0;
   // We also track the estimated dynamic (that is, actually executed) cost in
   // the rolled form. This helps identify cases when the savings from unrolling
   // aren't just exposing dead control flows, but actual reduced dynamic
   // instructions due to the simplifications which we expect to occur after
   // unrolling.
-  unsigned RolledDynamicCost = 0;
+  int RolledDynamicCost = 0;
+
+  // Ensure that we don't violate the loop structure invariants relied on by
+  // this analysis.
+  assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
+  assert(L->isLCSSAForm(DT) &&
+         "Must have loops in LCSSA form to track live-out values.");
+
+  DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
 
   // Simulate execution of each iteration of the loop counting instructions,
   // which would be simplified.
   // Since the same load will take different values on different iterations,
   // we literally have to go through all loop's iterations.
   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
+    DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
+
+    // Prepare for the iteration by collecting any simplified entry or backedge
+    // inputs.
+    for (Instruction &I : *L->getHeader()) {
+      auto *PHI = dyn_cast<PHINode>(&I);
+      if (!PHI)
+        break;
+
+      // The loop header PHI nodes must have exactly two input: one from the
+      // loop preheader and one from the loop latch.
+      assert(
+          PHI->getNumIncomingValues() == 2 &&
+          "Must have an incoming value only for the preheader and the latch.");
+
+      Value *V = PHI->getIncomingValueForBlock(
+          Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
+      Constant *C = dyn_cast<Constant>(V);
+      if (Iteration != 0 && !C)
+        C = SimplifiedValues.lookup(V);
+      if (C)
+        SimplifiedInputValues.push_back({PHI, C});
+    }
+
+    // Now clear and re-populate the map for the next iteration.
     SimplifiedValues.clear();
-    UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC);
+    while (!SimplifiedInputValues.empty())
+      SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
+
+    UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, L, SE);
 
     BBWorklist.clear();
     BBWorklist.insert(L->getHeader());
@@ -631,21 +603,67 @@ analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
       // it.  We don't change the actual IR, just count optimization
       // opportunities.
       for (Instruction &I : *BB) {
-        unsigned InstCost = TTI.getUserCost(&I);
+        int InstCost = TTI.getUserCost(&I);
 
         // Visit the instruction to analyze its loop cost after unrolling,
         // and if the visitor returns false, include this instruction in the
         // unrolled cost.
         if (!Analyzer.visit(I))
           UnrolledCost += InstCost;
+        else {
+          DEBUG(dbgs() << "  " << I
+                       << " would be simplified if loop is unrolled.\n");
+          (void)0;
+        }
 
         // Also track this instructions expected cost when executing the rolled
         // loop form.
         RolledDynamicCost += InstCost;
 
         // If unrolled body turns out to be too big, bail out.
-        if (UnrolledCost > MaxUnrolledLoopSize)
+        if (UnrolledCost > MaxUnrolledLoopSize) {
+          DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
+                       << "  UnrolledCost: " << UnrolledCost
+                       << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
+                       << "\n");
           return None;
+        }
+      }
+
+      TerminatorInst *TI = BB->getTerminator();
+
+      // Add in the live successors by first checking whether we have terminator
+      // that may be simplified based on the values simplified by this call.
+      if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+        if (BI->isConditional()) {
+          if (Constant *SimpleCond =
+                  SimplifiedValues.lookup(BI->getCondition())) {
+            BasicBlock *Succ = nullptr;
+            // Just take the first successor if condition is undef
+            if (isa<UndefValue>(SimpleCond))
+              Succ = BI->getSuccessor(0);
+            else
+              Succ = BI->getSuccessor(
+                  cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0);
+            if (L->contains(Succ))
+              BBWorklist.insert(Succ);
+            continue;
+          }
+        }
+      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+        if (Constant *SimpleCond =
+                SimplifiedValues.lookup(SI->getCondition())) {
+          BasicBlock *Succ = nullptr;
+          // Just take the first successor if condition is undef
+          if (isa<UndefValue>(SimpleCond))
+            Succ = SI->getSuccessor(0);
+          else
+            Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond))
+                       .getCaseSuccessor();
+          if (L->contains(Succ))
+            BBWorklist.insert(Succ);
+          continue;
+        }
       }
 
       // Add BB's successors to the worklist.
@@ -656,9 +674,15 @@ analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
 
     // If we found no optimization opportunities on the first iteration, we
     // won't find them on later ones too.
-    if (UnrolledCost == RolledDynamicCost)
+    if (UnrolledCost == RolledDynamicCost) {
+      DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
+                   << "  UnrolledCost: " << UnrolledCost << "\n");
       return None;
+    }
   }
+  DEBUG(dbgs() << "Analysis finished:\n"
+               << "UnrolledCost: " << UnrolledCost << ", "
+               << "RolledDynamicCost: " << RolledDynamicCost << "\n");
   return {{UnrolledCost, RolledDynamicCost}};
 }
 
@@ -704,6 +728,12 @@ static bool HasUnrollFullPragma(const Loop *L) {
   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
 }
 
+// Returns true if the loop has an unroll(enable) pragma. This metadata is used
+// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
+static bool HasUnrollEnablePragma(const Loop *L) {
+  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
+}
+
 // Returns true if the loop has an unroll(disable) pragma.
 static bool HasUnrollDisablePragma(const Loop *L) {
   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
@@ -829,7 +859,7 @@ unsigned LoopUnroll::selectUnrollCount(
   unsigned Count = UserCount ? CurrentCount : 0;
 
   // If there is no user-specified count, unroll pragmas have the next
-  // highest precendence.
+  // highest precedence.
   if (Count == 0) {
     if (PragmaCount) {
       Count = PragmaCount;
@@ -864,8 +894,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 
   Function &F = *L->getHeader()->getParent();
 
+  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
-  ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
+  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   const TargetTransformInfo &TTI =
       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
@@ -878,8 +909,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
     return false;
   }
   bool PragmaFullUnroll = HasUnrollFullPragma(L);
+  bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
   unsigned PragmaCount = UnrollCountPragmaValue(L);
-  bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
+  bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0;
 
   TargetTransformInfo::UnrollingPreferences UP;
   getUnrollingPreferences(L, TTI, UP);
@@ -927,7 +959,15 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
   unsigned Threshold, PartialThreshold;
   unsigned PercentDynamicCostSavedThreshold;
   unsigned DynamicCostSavingsDiscount;
-  selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
+  // Only use the high pragma threshold when we have a target unroll factor such
+  // as with "#pragma unroll N" or a pragma indicating full unrolling and the
+  // trip count is known. Otherwise we rely on the standard threshold to
+  // heuristically select a reasonable unroll count.
+  bool UsePragmaThreshold =
+      PragmaCount > 0 ||
+      ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0);
+
+  selectThresholds(L, UsePragmaThreshold, UP, Threshold, PartialThreshold,
                    PercentDynamicCostSavedThreshold,
                    DynamicCostSavingsDiscount);
 
@@ -945,8 +985,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
       // The loop isn't that small, but we still can fully unroll it if that
       // helps to remove a significant number of instructions.
       // To check that, run additional analysis on the loop.
-      if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
-              L, TripCount, *SE, TTI, Threshold + DynamicCostSavingsDiscount))
+      if (Optional<EstimatedUnrollCost> Cost =
+              analyzeLoopUnrollCost(L, TripCount, DT, *SE, TTI,
+                                    Threshold + DynamicCostSavingsDiscount))
         if (canUnrollCompletely(L, Threshold, PercentDynamicCostSavedThreshold,
                                 DynamicCostSavingsDiscount, Cost->UnrolledCost,
                                 Cost->RolledDynamicCost)) {
@@ -961,12 +1002,15 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 
   // Reduce count based on the type of unrolling and the threshold values.
   unsigned OriginalCount = Count;
-  bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
-  if (HasRuntimeUnrollDisablePragma(L)) {
+  bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) ||
+                      (UserRuntime ? CurrentRuntime : UP.Runtime);
+  // Don't unroll a runtime trip count loop with unroll full pragma.
+  if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
     AllowRuntime = false;
   }
   if (Unrolling == Partial) {
-    bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
+    bool AllowPartial = PragmaEnableUnroll ||
+                        (UserAllowPartial ? CurrentAllowPartial : UP.Partial);
     if (!AllowPartial && !CountSetExplicitly) {
       DEBUG(dbgs() << "  will not try to unroll partially because "
                    << "-unroll-allow-partial not given\n");
@@ -1006,23 +1050,27 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
     DebugLoc LoopLoc = L->getStartLoc();
     Function *F = Header->getParent();
     LLVMContext &Ctx = F->getContext();
-    if (PragmaFullUnroll && PragmaCount == 0) {
-      if (TripCount && Count != TripCount) {
-        emitOptimizationRemarkMissed(
-            Ctx, DEBUG_TYPE, *F, LoopLoc,
-            "Unable to fully unroll loop as directed by unroll(full) pragma "
-            "because unrolled size is too large.");
-      } else if (!TripCount) {
-        emitOptimizationRemarkMissed(
-            Ctx, DEBUG_TYPE, *F, LoopLoc,
-            "Unable to fully unroll loop as directed by unroll(full) pragma "
-            "because loop has a runtime trip count.");
-      }
-    } else if (PragmaCount > 0 && Count != OriginalCount) {
+    if ((PragmaCount > 0) && Count != OriginalCount) {
       emitOptimizationRemarkMissed(
           Ctx, DEBUG_TYPE, *F, LoopLoc,
           "Unable to unroll loop the number of times directed by "
           "unroll_count pragma because unrolled size is too large.");
+    } else if (PragmaFullUnroll && !TripCount) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to fully unroll loop as directed by unroll(full) pragma "
+          "because loop has a runtime trip count.");
+    } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to unroll loop as directed by unroll(enable) pragma because "
+          "unrolled size is too large.");
+    } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
+               Count != TripCount) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to fully unroll loop as directed by unroll pragma because "
+          "unrolled size is too large.");
     }
   }