[Unroll] Fix a bug in UnrolledInstAnalyzer::visitLoad.
[oota-llvm.git] / lib / Transforms / Scalar / LoopUnrollPass.cpp
index 583fdd4133010549742eff1dc467e5183fbc71fb..0e4462618aaf0bdd9fb0db1cb0a4c1d3e540a855 100644 (file)
 // counts of loops easily.
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "loop-unroll"
 #include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/AssumptionCache.h"
 #include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/InstructionSimplify.h"
 #include "llvm/Analysis/LoopPass.h"
 #include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 #include "llvm/Analysis/TargetTransformInfo.h"
 #include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
 #include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstVisitor.h"
 #include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
 
 using namespace llvm;
 
+#define DEBUG_TYPE "loop-unroll"
+
 static cl::opt<unsigned>
-UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
-  cl::desc("The cut-off point for automatic loop unrolling"));
+    UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
+                    cl::desc("The baseline cost threshold for loop unrolling"));
+
+static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
+    "unroll-percent-dynamic-cost-saved-threshold", cl::init(20), cl::Hidden,
+    cl::desc("The percentage of estimated dynamic cost which must be saved by "
+             "unrolling to allow unrolling up to the max threshold."));
+
+static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
+    "unroll-dynamic-cost-savings-discount", cl::init(2000), cl::Hidden,
+    cl::desc("This is the amount discounted from the total unroll cost when "
+             "the unrolled form has a high dynamic cost savings (triggered by "
+             "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
+
+static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
+    "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
+    cl::desc("Don't allow loop unrolling to simulate more than this number of"
+             "iterations when checking full unroll profitability"));
 
 static cl::opt<unsigned>
 UnrollCount("unroll-count", cl::init(0), cl::Hidden,
-  cl::desc("Use this unroll count for all loops, for testing purposes"));
+  cl::desc("Use this unroll count for all loops including those with "
+           "unroll_count pragma values, for testing purposes"));
 
 static cl::opt<bool>
 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
@@ -46,17 +72,29 @@ static cl::opt<bool>
 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
   cl::desc("Unroll loops with run-time trip counts"));
 
+static cl::opt<unsigned>
+PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
+  cl::desc("Unrolled size limit for loops with an unroll(full) or "
+           "unroll_count pragma."));
+
 namespace {
   class LoopUnroll : public LoopPass {
   public:
     static char ID; // Pass ID, replacement for typeid
     LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
       CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
+      CurrentPercentDynamicCostSavedThreshold =
+          UnrollPercentDynamicCostSavedThreshold;
+      CurrentDynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
       CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
       CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
       CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
 
       UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
+      UserPercentDynamicCostSavedThreshold =
+          (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0);
+      UserDynamicCostSavingsDiscount =
+          (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0);
       UserAllowPartial = (P != -1) ||
                          (UnrollAllowPartial.getNumOccurrences() > 0);
       UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
@@ -80,12 +118,18 @@ namespace {
 
     unsigned CurrentCount;
     unsigned CurrentThreshold;
-    bool     CurrentAllowPartial;
-    bool     CurrentRuntime;
-    bool     UserCount;            // CurrentCount is user-specified.
-    bool     UserThreshold;        // CurrentThreshold is user-specified.
-    bool     UserAllowPartial;     // CurrentAllowPartial is user-specified.
-    bool     UserRuntime;          // CurrentRuntime is user-specified.
+    unsigned CurrentPercentDynamicCostSavedThreshold;
+    unsigned CurrentDynamicCostSavingsDiscount;
+    bool CurrentAllowPartial;
+    bool CurrentRuntime;
+
+    // Flags for whether the 'current' settings are user-specified.
+    bool UserCount;
+    bool UserThreshold;
+    bool UserPercentDynamicCostSavedThreshold;
+    bool UserDynamicCostSavingsDiscount;
+    bool UserAllowPartial;
+    bool UserRuntime;
 
     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 
@@ -93,31 +137,113 @@ namespace {
     /// loop preheaders be inserted into the CFG...
     ///
     void getAnalysisUsage(AnalysisUsage &AU) const override {
-      AU.addRequired<LoopInfo>();
-      AU.addPreserved<LoopInfo>();
+      AU.addRequired<AssumptionCacheTracker>();
+      AU.addRequired<DominatorTreeWrapperPass>();
+      AU.addRequired<LoopInfoWrapperPass>();
+      AU.addPreserved<LoopInfoWrapperPass>();
       AU.addRequiredID(LoopSimplifyID);
       AU.addPreservedID(LoopSimplifyID);
       AU.addRequiredID(LCSSAID);
       AU.addPreservedID(LCSSAID);
-      AU.addRequired<ScalarEvolution>();
-      AU.addPreserved<ScalarEvolution>();
-      AU.addRequired<TargetTransformInfo>();
+      AU.addRequired<ScalarEvolutionWrapperPass>();
+      AU.addPreserved<ScalarEvolutionWrapperPass>();
+      AU.addRequired<TargetTransformInfoWrapperPass>();
       // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
       // If loop unroll does not preserve dom info then LCSSA pass on next
       // loop will receive invalid dom info.
       // For now, recreate dom info, if loop is unrolled.
       AU.addPreserved<DominatorTreeWrapperPass>();
+      AU.addPreserved<GlobalsAAWrapperPass>();
+    }
+
+    // Fill in the UnrollingPreferences parameter with values from the
+    // TargetTransformationInfo.
+    void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
+                                 TargetTransformInfo::UnrollingPreferences &UP) {
+      UP.Threshold = CurrentThreshold;
+      UP.PercentDynamicCostSavedThreshold =
+          CurrentPercentDynamicCostSavedThreshold;
+      UP.DynamicCostSavingsDiscount = CurrentDynamicCostSavingsDiscount;
+      UP.OptSizeThreshold = OptSizeUnrollThreshold;
+      UP.PartialThreshold = CurrentThreshold;
+      UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
+      UP.Count = CurrentCount;
+      UP.MaxCount = UINT_MAX;
+      UP.Partial = CurrentAllowPartial;
+      UP.Runtime = CurrentRuntime;
+      UP.AllowExpensiveTripCount = false;
+      TTI.getUnrollingPreferences(L, UP);
+    }
+
+    // Select and return an unroll count based on parameters from
+    // user, unroll preferences, unroll pragmas, or a heuristic.
+    // SetExplicitly is set to true if the unroll count is is set by
+    // the user or a pragma rather than selected heuristically.
+    unsigned
+    selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
+                      unsigned PragmaCount,
+                      const TargetTransformInfo::UnrollingPreferences &UP,
+                      bool &SetExplicitly);
+
+    // Select threshold values used to limit unrolling based on a
+    // total unrolled size.  Parameters Threshold and PartialThreshold
+    // are set to the maximum unrolled size for fully and partially
+    // unrolled loops respectively.
+    void selectThresholds(const Loop *L, bool UsePragmaThreshold,
+                          const TargetTransformInfo::UnrollingPreferences &UP,
+                          unsigned &Threshold, unsigned &PartialThreshold,
+                          unsigned &PercentDynamicCostSavedThreshold,
+                          unsigned &DynamicCostSavingsDiscount) {
+      // Determine the current unrolling threshold.  While this is
+      // normally set from UnrollThreshold, it is overridden to a
+      // smaller value if the current function is marked as
+      // optimize-for-size, and the unroll threshold was not user
+      // specified.
+      Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
+      PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
+      PercentDynamicCostSavedThreshold =
+          UserPercentDynamicCostSavedThreshold
+              ? CurrentPercentDynamicCostSavedThreshold
+              : UP.PercentDynamicCostSavedThreshold;
+      DynamicCostSavingsDiscount = UserDynamicCostSavingsDiscount
+                                       ? CurrentDynamicCostSavingsDiscount
+                                       : UP.DynamicCostSavingsDiscount;
+
+      if (!UserThreshold &&
+          // FIXME: Use Function::optForSize().
+          L->getHeader()->getParent()->hasFnAttribute(
+              Attribute::OptimizeForSize)) {
+        Threshold = UP.OptSizeThreshold;
+        PartialThreshold = UP.PartialOptSizeThreshold;
+      }
+      if (UsePragmaThreshold) {
+        // If the loop has an unrolling pragma, we want to be more
+        // aggressive with unrolling limits.  Set thresholds to at
+        // least the PragmaTheshold value which is larger than the
+        // default limits.
+        if (Threshold != NoThreshold)
+          Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
+        if (PartialThreshold != NoThreshold)
+          PartialThreshold =
+              std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
+      }
     }
+    bool canUnrollCompletely(Loop *L, unsigned Threshold,
+                             unsigned PercentDynamicCostSavedThreshold,
+                             unsigned DynamicCostSavingsDiscount,
+                             uint64_t UnrolledCost, uint64_t RolledDynamicCost);
   };
 }
 
 char LoopUnroll::ID = 0;
 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
-INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 INITIALIZE_PASS_DEPENDENCY(LCSSA)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
 
 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
@@ -125,14 +251,453 @@ Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
   return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
 }
 
+Pass *llvm::createSimpleLoopUnrollPass() {
+  return llvm::createLoopUnrollPass(-1, -1, 0, 0);
+}
+
+namespace {
+// This class is used to get an estimate of the optimization effects that we
+// could get from complete loop unrolling. It comes from the fact that some
+// loads might be replaced with concrete constant values and that could trigger
+// a chain of instruction simplifications.
+//
+// E.g. we might have:
+//   int a[] = {0, 1, 0};
+//   v = 0;
+//   for (i = 0; i < 3; i ++)
+//     v += b[i]*a[i];
+// If we completely unroll the loop, we would get:
+//   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
+// Which then will be simplified to:
+//   v = b[0]* 0 + b[1]* 1 + b[2]* 0
+// And finally:
+//   v = b[1]
+class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
+  typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
+  friend class InstVisitor<UnrolledInstAnalyzer, bool>;
+  struct SimplifiedAddress {
+    Value *Base = nullptr;
+    ConstantInt *Offset = nullptr;
+  };
+
+public:
+  UnrolledInstAnalyzer(unsigned Iteration,
+                       DenseMap<Value *, Constant *> &SimplifiedValues,
+                       const Loop *L, ScalarEvolution &SE)
+      : Iteration(Iteration), SimplifiedValues(SimplifiedValues), L(L), SE(SE) {
+      IterationNumber = SE.getConstant(APInt(64, Iteration));
+  }
+
+  // Allow access to the initial visit method.
+  using Base::visit;
+
+private:
+  /// \brief A cache of pointer bases and constant-folded offsets corresponding
+  /// to GEP (or derived from GEP) instructions.
+  ///
+  /// In order to find the base pointer one needs to perform non-trivial
+  /// traversal of the corresponding SCEV expression, so it's good to have the
+  /// results saved.
+  DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
+
+  /// \brief Number of currently simulated iteration.
+  ///
+  /// If an expression is ConstAddress+Constant, then the Constant is
+  /// Start + Iteration*Step, where Start and Step could be obtained from
+  /// SCEVGEPCache.
+  unsigned Iteration;
+
+  /// \brief SCEV expression corresponding to number of currently simulated
+  /// iteration.
+  const SCEV *IterationNumber;
+
+  /// \brief A Value->Constant map for keeping values that we managed to
+  /// constant-fold on the given iteration.
+  ///
+  /// While we walk the loop instructions, we build up and maintain a mapping
+  /// of simplified values specific to this iteration.  The idea is to propagate
+  /// any special information we have about loads that can be replaced with
+  /// constants after complete unrolling, and account for likely simplifications
+  /// post-unrolling.
+  DenseMap<Value *, Constant *> &SimplifiedValues;
+
+  const Loop *L;
+  ScalarEvolution &SE;
+
+  /// \brief Try to simplify instruction \param I using its SCEV expression.
+  ///
+  /// The idea is that some AddRec expressions become constants, which then
+  /// could trigger folding of other instructions. However, that only happens
+  /// for expressions whose start value is also constant, which isn't always the
+  /// case. In another common and important case the start value is just some
+  /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
+  /// it along with the base address instead.
+  bool simplifyInstWithSCEV(Instruction *I) {
+    if (!SE.isSCEVable(I->getType()))
+      return false;
+
+    const SCEV *S = SE.getSCEV(I);
+    if (auto *SC = dyn_cast<SCEVConstant>(S)) {
+      SimplifiedValues[I] = SC->getValue();
+      return true;
+    }
+
+    auto *AR = dyn_cast<SCEVAddRecExpr>(S);
+    if (!AR)
+      return false;
+
+    const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
+    // Check if the AddRec expression becomes a constant.
+    if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
+      SimplifiedValues[I] = SC->getValue();
+      return true;
+    }
+
+    // Check if the offset from the base address becomes a constant.
+    auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
+    if (!Base)
+      return false;
+    auto *Offset =
+        dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
+    if (!Offset)
+      return false;
+    SimplifiedAddress Address;
+    Address.Base = Base->getValue();
+    Address.Offset = Offset->getValue();
+    SimplifiedAddresses[I] = Address;
+    return true;
+  }
+
+  /// Base case for the instruction visitor.
+  bool visitInstruction(Instruction &I) {
+    return simplifyInstWithSCEV(&I);
+  }
+
+  /// Try to simplify binary operator I.
+  ///
+  /// TODO: Probably it's worth to hoist the code for estimating the
+  /// simplifications effects to a separate class, since we have a very similar
+  /// code in InlineCost already.
+  bool visitBinaryOperator(BinaryOperator &I) {
+    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+    if (!isa<Constant>(LHS))
+      if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+        LHS = SimpleLHS;
+    if (!isa<Constant>(RHS))
+      if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+        RHS = SimpleRHS;
+
+    Value *SimpleV = nullptr;
+    const DataLayout &DL = I.getModule()->getDataLayout();
+    if (auto FI = dyn_cast<FPMathOperator>(&I))
+      SimpleV =
+          SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
+    else
+      SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
+
+    if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+      SimplifiedValues[&I] = C;
+
+    if (SimpleV)
+      return true;
+    return Base::visitBinaryOperator(I);
+  }
+
+  /// Try to fold load I.
+  bool visitLoad(LoadInst &I) {
+    Value *AddrOp = I.getPointerOperand();
+
+    auto AddressIt = SimplifiedAddresses.find(AddrOp);
+    if (AddressIt == SimplifiedAddresses.end())
+      return false;
+    ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
+
+    auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
+    // We're only interested in loads that can be completely folded to a
+    // constant.
+    if (!GV || !GV->hasInitializer() || !GV->isConstant())
+      return false;
+
+    ConstantDataSequential *CDS =
+        dyn_cast<ConstantDataSequential>(GV->getInitializer());
+    if (!CDS)
+      return false;
+
+    int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
+    assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
+           "Unexpectedly large index value.");
+    int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
+    if (Index >= CDS->getNumElements()) {
+      // FIXME: For now we conservatively ignore out of bound accesses, but
+      // we're allowed to perform the optimization in this case.
+      return false;
+    }
+
+    Constant *CV = CDS->getElementAsConstant(Index);
+    assert(CV && "Constant expected.");
+    SimplifiedValues[&I] = CV;
+
+    return true;
+  }
+
+  bool visitCastInst(CastInst &I) {
+    // Propagate constants through casts.
+    Constant *COp = dyn_cast<Constant>(I.getOperand(0));
+    if (!COp)
+      COp = SimplifiedValues.lookup(I.getOperand(0));
+    if (COp)
+      if (Constant *C =
+              ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
+        SimplifiedValues[&I] = C;
+        return true;
+      }
+
+    return Base::visitCastInst(I);
+  }
+
+  bool visitCmpInst(CmpInst &I) {
+    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+    // First try to handle simplified comparisons.
+    if (!isa<Constant>(LHS))
+      if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+        LHS = SimpleLHS;
+    if (!isa<Constant>(RHS))
+      if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+        RHS = SimpleRHS;
+
+    if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
+      auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
+      if (SimplifiedLHS != SimplifiedAddresses.end()) {
+        auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
+        if (SimplifiedRHS != SimplifiedAddresses.end()) {
+          SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
+          SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
+          if (LHSAddr.Base == RHSAddr.Base) {
+            LHS = LHSAddr.Offset;
+            RHS = RHSAddr.Offset;
+          }
+        }
+      }
+    }
+
+    if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
+        if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
+          SimplifiedValues[&I] = C;
+          return true;
+        }
+      }
+    }
+
+    return Base::visitCmpInst(I);
+  }
+};
+} // namespace
+
+
+namespace {
+struct EstimatedUnrollCost {
+  /// \brief The estimated cost after unrolling.
+  int UnrolledCost;
+
+  /// \brief The estimated dynamic cost of executing the instructions in the
+  /// rolled form.
+  int RolledDynamicCost;
+};
+}
+
+/// \brief Figure out if the loop is worth full unrolling.
+///
+/// Complete loop unrolling can make some loads constant, and we need to know
+/// if that would expose any further optimization opportunities.  This routine
+/// estimates this optimization.  It computes cost of unrolled loop
+/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
+/// dynamic cost we mean that we won't count costs of blocks that are known not
+/// to be executed (i.e. if we have a branch in the loop and we know that at the
+/// given iteration its condition would be resolved to true, we won't add up the
+/// cost of the 'false'-block).
+/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
+/// the analysis failed (no benefits expected from the unrolling, or the loop is
+/// too big to analyze), the returned value is None.
+static Optional<EstimatedUnrollCost>
+analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
+                      ScalarEvolution &SE, const TargetTransformInfo &TTI,
+                      int MaxUnrolledLoopSize) {
+  // We want to be able to scale offsets by the trip count and add more offsets
+  // to them without checking for overflows, and we already don't want to
+  // analyze *massive* trip counts, so we force the max to be reasonably small.
+  assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
+         "The unroll iterations max is too large!");
+
+  // Don't simulate loops with a big or unknown tripcount
+  if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
+      TripCount > UnrollMaxIterationsCountToAnalyze)
+    return None;
+
+  SmallSetVector<BasicBlock *, 16> BBWorklist;
+  DenseMap<Value *, Constant *> SimplifiedValues;
+  SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
+
+  // The estimated cost of the unrolled form of the loop. We try to estimate
+  // this by simplifying as much as we can while computing the estimate.
+  int UnrolledCost = 0;
+  // We also track the estimated dynamic (that is, actually executed) cost in
+  // the rolled form. This helps identify cases when the savings from unrolling
+  // aren't just exposing dead control flows, but actual reduced dynamic
+  // instructions due to the simplifications which we expect to occur after
+  // unrolling.
+  int RolledDynamicCost = 0;
+
+  // Ensure that we don't violate the loop structure invariants relied on by
+  // this analysis.
+  assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
+  assert(L->isLCSSAForm(DT) &&
+         "Must have loops in LCSSA form to track live-out values.");
+
+  DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
+
+  // Simulate execution of each iteration of the loop counting instructions,
+  // which would be simplified.
+  // Since the same load will take different values on different iterations,
+  // we literally have to go through all loop's iterations.
+  for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
+    DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
+
+    // Prepare for the iteration by collecting any simplified entry or backedge
+    // inputs.
+    for (Instruction &I : *L->getHeader()) {
+      auto *PHI = dyn_cast<PHINode>(&I);
+      if (!PHI)
+        break;
+
+      // The loop header PHI nodes must have exactly two input: one from the
+      // loop preheader and one from the loop latch.
+      assert(
+          PHI->getNumIncomingValues() == 2 &&
+          "Must have an incoming value only for the preheader and the latch.");
+
+      Value *V = PHI->getIncomingValueForBlock(
+          Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
+      Constant *C = dyn_cast<Constant>(V);
+      if (Iteration != 0 && !C)
+        C = SimplifiedValues.lookup(V);
+      if (C)
+        SimplifiedInputValues.push_back({PHI, C});
+    }
+
+    // Now clear and re-populate the map for the next iteration.
+    SimplifiedValues.clear();
+    while (!SimplifiedInputValues.empty())
+      SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
+
+    UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, L, SE);
+
+    BBWorklist.clear();
+    BBWorklist.insert(L->getHeader());
+    // Note that we *must not* cache the size, this loop grows the worklist.
+    for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
+      BasicBlock *BB = BBWorklist[Idx];
+
+      // Visit all instructions in the given basic block and try to simplify
+      // it.  We don't change the actual IR, just count optimization
+      // opportunities.
+      for (Instruction &I : *BB) {
+        int InstCost = TTI.getUserCost(&I);
+
+        // Visit the instruction to analyze its loop cost after unrolling,
+        // and if the visitor returns false, include this instruction in the
+        // unrolled cost.
+        if (!Analyzer.visit(I))
+          UnrolledCost += InstCost;
+        else {
+          DEBUG(dbgs() << "  " << I
+                       << " would be simplified if loop is unrolled.\n");
+          (void)0;
+        }
+
+        // Also track this instructions expected cost when executing the rolled
+        // loop form.
+        RolledDynamicCost += InstCost;
+
+        // If unrolled body turns out to be too big, bail out.
+        if (UnrolledCost > MaxUnrolledLoopSize) {
+          DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
+                       << "  UnrolledCost: " << UnrolledCost
+                       << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
+                       << "\n");
+          return None;
+        }
+      }
+
+      TerminatorInst *TI = BB->getTerminator();
+
+      // Add in the live successors by first checking whether we have terminator
+      // that may be simplified based on the values simplified by this call.
+      if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+        if (BI->isConditional()) {
+          if (Constant *SimpleCond =
+                  SimplifiedValues.lookup(BI->getCondition())) {
+            BasicBlock *Succ = nullptr;
+            // Just take the first successor if condition is undef
+            if (isa<UndefValue>(SimpleCond))
+              Succ = BI->getSuccessor(0);
+            else
+              Succ = BI->getSuccessor(
+                  cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0);
+            if (L->contains(Succ))
+              BBWorklist.insert(Succ);
+            continue;
+          }
+        }
+      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+        if (Constant *SimpleCond =
+                SimplifiedValues.lookup(SI->getCondition())) {
+          BasicBlock *Succ = nullptr;
+          // Just take the first successor if condition is undef
+          if (isa<UndefValue>(SimpleCond))
+            Succ = SI->getSuccessor(0);
+          else
+            Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond))
+                       .getCaseSuccessor();
+          if (L->contains(Succ))
+            BBWorklist.insert(Succ);
+          continue;
+        }
+      }
+
+      // Add BB's successors to the worklist.
+      for (BasicBlock *Succ : successors(BB))
+        if (L->contains(Succ))
+          BBWorklist.insert(Succ);
+    }
+
+    // If we found no optimization opportunities on the first iteration, we
+    // won't find them on later ones too.
+    if (UnrolledCost == RolledDynamicCost) {
+      DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
+                   << "  UnrolledCost: " << UnrolledCost << "\n");
+      return None;
+    }
+  }
+  DEBUG(dbgs() << "Analysis finished:\n"
+               << "UnrolledCost: " << UnrolledCost << ", "
+               << "RolledDynamicCost: " << RolledDynamicCost << "\n");
+  return {{UnrolledCost, RolledDynamicCost}};
+}
+
 /// ApproximateLoopSize - Approximate the size of the loop.
 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
                                     bool &NotDuplicatable,
-                                    const TargetTransformInfo &TTI) {
+                                    const TargetTransformInfo &TTI,
+                                    AssumptionCache *AC) {
+  SmallPtrSet<const Value *, 32> EphValues;
+  CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
   CodeMetrics Metrics;
   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
        I != E; ++I)
-    Metrics.analyzeBasicBlock(*I, TTI);
+    Metrics.analyzeBasicBlock(*I, TTI, EphValues);
   NumCalls = Metrics.NumInlineCandidates;
   NotDuplicatable = Metrics.notDuplicatable;
 
@@ -140,124 +705,384 @@ static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
 
   // Don't allow an estimate of size zero.  This would allows unrolling of loops
   // with huge iteration counts, which is a compile time problem even if it's
-  // not a problem for code quality.
-  if (LoopSize == 0) LoopSize = 1;
+  // not a problem for code quality. Also, the code using this size may assume
+  // that each loop has at least three instructions (likely a conditional
+  // branch, a comparison feeding that branch, and some kind of loop increment
+  // feeding that comparison instruction).
+  LoopSize = std::max(LoopSize, 3u);
 
   return LoopSize;
 }
 
+// Returns the loop hint metadata node with the given name (for example,
+// "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
+// returned.
+static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
+  if (MDNode *LoopID = L->getLoopID())
+    return GetUnrollMetadata(LoopID, Name);
+  return nullptr;
+}
+
+// Returns true if the loop has an unroll(full) pragma.
+static bool HasUnrollFullPragma(const Loop *L) {
+  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
+}
+
+// Returns true if the loop has an unroll(enable) pragma. This metadata is used
+// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
+static bool HasUnrollEnablePragma(const Loop *L) {
+  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
+}
+
+// Returns true if the loop has an unroll(disable) pragma.
+static bool HasUnrollDisablePragma(const Loop *L) {
+  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
+}
+
+// Returns true if the loop has an runtime unroll(disable) pragma.
+static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
+  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
+}
+
+// If loop has an unroll_count pragma return the (necessarily
+// positive) value from the pragma.  Otherwise return 0.
+static unsigned UnrollCountPragmaValue(const Loop *L) {
+  MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
+  if (MD) {
+    assert(MD->getNumOperands() == 2 &&
+           "Unroll count hint metadata should have two operands.");
+    unsigned Count =
+        mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
+    assert(Count >= 1 && "Unroll count must be positive.");
+    return Count;
+  }
+  return 0;
+}
+
+// Remove existing unroll metadata and add unroll disable metadata to
+// indicate the loop has already been unrolled.  This prevents a loop
+// from being unrolled more than is directed by a pragma if the loop
+// unrolling pass is run more than once (which it generally is).
+static void SetLoopAlreadyUnrolled(Loop *L) {
+  MDNode *LoopID = L->getLoopID();
+  if (!LoopID) return;
+
+  // First remove any existing loop unrolling metadata.
+  SmallVector<Metadata *, 4> MDs;
+  // Reserve first location for self reference to the LoopID metadata node.
+  MDs.push_back(nullptr);
+  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+    bool IsUnrollMetadata = false;
+    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+    if (MD) {
+      const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+      IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
+    }
+    if (!IsUnrollMetadata)
+      MDs.push_back(LoopID->getOperand(i));
+  }
+
+  // Add unroll(disable) metadata to disable future unrolling.
+  LLVMContext &Context = L->getHeader()->getContext();
+  SmallVector<Metadata *, 1> DisableOperands;
+  DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
+  MDNode *DisableNode = MDNode::get(Context, DisableOperands);
+  MDs.push_back(DisableNode);
+
+  MDNode *NewLoopID = MDNode::get(Context, MDs);
+  // Set operand 0 to refer to the loop id itself.
+  NewLoopID->replaceOperandWith(0, NewLoopID);
+  L->setLoopID(NewLoopID);
+}
+
+bool LoopUnroll::canUnrollCompletely(Loop *L, unsigned Threshold,
+                                     unsigned PercentDynamicCostSavedThreshold,
+                                     unsigned DynamicCostSavingsDiscount,
+                                     uint64_t UnrolledCost,
+                                     uint64_t RolledDynamicCost) {
+
+  if (Threshold == NoThreshold) {
+    DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
+    return true;
+  }
+
+  if (UnrolledCost <= Threshold) {
+    DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
+                 << UnrolledCost << "<" << Threshold << "\n");
+    return true;
+  }
+
+  assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
+  assert(RolledDynamicCost >= UnrolledCost &&
+         "Cannot have a higher unrolled cost than a rolled cost!");
+
+  // Compute the percentage of the dynamic cost in the rolled form that is
+  // saved when unrolled. If unrolling dramatically reduces the estimated
+  // dynamic cost of the loop, we use a higher threshold to allow more
+  // unrolling.
+  unsigned PercentDynamicCostSaved =
+      (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
+
+  if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
+      (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
+          (int64_t)Threshold) {
+    DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
+                    "expected dynamic cost by " << PercentDynamicCostSaved
+                 << "% (threshold: " << PercentDynamicCostSavedThreshold
+                 << "%)\n"
+                 << "  and the unrolled cost (" << UnrolledCost
+                 << ") is less than the max threshold ("
+                 << DynamicCostSavingsDiscount << ").\n");
+    return true;
+  }
+
+  DEBUG(dbgs() << "  Too large to fully unroll:\n");
+  DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
+  DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
+  DEBUG(dbgs() << "    Percent cost saved threshold: "
+               << PercentDynamicCostSavedThreshold << "%\n");
+  DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
+  DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
+  DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
+               << "\n");
+  return false;
+}
+
+unsigned LoopUnroll::selectUnrollCount(
+    const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
+    unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
+    bool &SetExplicitly) {
+  SetExplicitly = true;
+
+  // User-specified count (either as a command-line option or
+  // constructor parameter) has highest precedence.
+  unsigned Count = UserCount ? CurrentCount : 0;
+
+  // If there is no user-specified count, unroll pragmas have the next
+  // highest precedence.
+  if (Count == 0) {
+    if (PragmaCount) {
+      Count = PragmaCount;
+    } else if (PragmaFullUnroll) {
+      Count = TripCount;
+    }
+  }
+
+  if (Count == 0)
+    Count = UP.Count;
+
+  if (Count == 0) {
+    SetExplicitly = false;
+    if (TripCount == 0)
+      // Runtime trip count.
+      Count = UnrollRuntimeCount;
+    else
+      // Conservative heuristic: if we know the trip count, see if we can
+      // completely unroll (subject to the threshold, checked below); otherwise
+      // try to find greatest modulo of the trip count which is still under
+      // threshold value.
+      Count = TripCount;
+  }
+  if (TripCount && Count > TripCount)
+    return TripCount;
+  return Count;
+}
+
 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
   if (skipOptnoneFunction(L))
     return false;
 
-  LoopInfo *LI = &getAnalysis<LoopInfo>();
-  ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
-  const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
+  Function &F = *L->getHeader()->getParent();
+
+  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+  const TargetTransformInfo &TTI =
+      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 
   BasicBlock *Header = L->getHeader();
   DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
         << "] Loop %" << Header->getName() << "\n");
-  (void)Header;
+
+  if (HasUnrollDisablePragma(L)) {
+    return false;
+  }
+  bool PragmaFullUnroll = HasUnrollFullPragma(L);
+  bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
+  unsigned PragmaCount = UnrollCountPragmaValue(L);
+  bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0;
 
   TargetTransformInfo::UnrollingPreferences UP;
-  UP.Threshold = CurrentThreshold;
-  UP.OptSizeThreshold = OptSizeUnrollThreshold;
-  UP.Count = CurrentCount;
-  UP.Partial = CurrentAllowPartial;
-  UP.Runtime = CurrentRuntime;
-  TTI.getUnrollingPreferences(L, UP);
-
-  // Determine the current unrolling threshold.  While this is normally set
-  // from UnrollThreshold, it is overridden to a smaller value if the current
-  // function is marked as optimize-for-size, and the unroll threshold was
-  // not user specified.
-  unsigned Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
-  if (!UserThreshold &&
-      Header->getParent()->getAttributes().
-        hasAttribute(AttributeSet::FunctionIndex,
-                     Attribute::OptimizeForSize))
-    Threshold = UP.OptSizeThreshold;
+  getUnrollingPreferences(L, TTI, UP);
 
   // Find trip count and trip multiple if count is not available
   unsigned TripCount = 0;
   unsigned TripMultiple = 1;
-  // Find "latch trip count". UnrollLoop assumes that control cannot exit
-  // via the loop latch on any iteration prior to TripCount. The loop may exit
-  // early via an earlier branch.
-  BasicBlock *LatchBlock = L->getLoopLatch();
-  if (LatchBlock) {
-    TripCount = SE->getSmallConstantTripCount(L, LatchBlock);
-    TripMultiple = SE->getSmallConstantTripMultiple(L, LatchBlock);
+  // If there are multiple exiting blocks but one of them is the latch, use the
+  // latch for the trip count estimation. Otherwise insist on a single exiting
+  // block for the trip count estimation.
+  BasicBlock *ExitingBlock = L->getLoopLatch();
+  if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
+    ExitingBlock = L->getExitingBlock();
+  if (ExitingBlock) {
+    TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
+    TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
   }
 
-  bool Runtime = UserRuntime ? CurrentRuntime : UP.Runtime;
+  // Select an initial unroll count.  This may be reduced later based
+  // on size thresholds.
+  bool CountSetExplicitly;
+  unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
+                                     PragmaCount, UP, CountSetExplicitly);
 
-  // Use a default unroll-count if the user doesn't specify a value
-  // and the trip count is a run-time value.  The default is different
-  // for run-time or compile-time trip count loops.
-  unsigned Count = UserCount ? CurrentCount : UP.Count;
-  if (Runtime && Count == 0 && TripCount == 0)
-    Count = UnrollRuntimeCount;
+  unsigned NumInlineCandidates;
+  bool notDuplicatable;
+  unsigned LoopSize =
+      ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
+  DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
 
-  if (Count == 0) {
-    // Conservative heuristic: if we know the trip count, see if we can
-    // completely unroll (subject to the threshold, checked below); otherwise
-    // try to find greatest modulo of the trip count which is still under
-    // threshold value.
-    if (TripCount == 0)
-      return false;
-    Count = TripCount;
+  // When computing the unrolled size, note that the conditional branch on the
+  // backedge and the comparison feeding it are not replicated like the rest of
+  // the loop body (which is why 2 is subtracted).
+  uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
+  if (notDuplicatable) {
+    DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
+                 << " instructions.\n");
+    return false;
+  }
+  if (NumInlineCandidates != 0) {
+    DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
+    return false;
+  }
+
+  unsigned Threshold, PartialThreshold;
+  unsigned PercentDynamicCostSavedThreshold;
+  unsigned DynamicCostSavingsDiscount;
+  // Only use the high pragma threshold when we have a target unroll factor such
+  // as with "#pragma unroll N" or a pragma indicating full unrolling and the
+  // trip count is known. Otherwise we rely on the standard threshold to
+  // heuristically select a reasonable unroll count.
+  bool UsePragmaThreshold =
+      PragmaCount > 0 ||
+      ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0);
+
+  selectThresholds(L, UsePragmaThreshold, UP, Threshold, PartialThreshold,
+                   PercentDynamicCostSavedThreshold,
+                   DynamicCostSavingsDiscount);
+
+  // Given Count, TripCount and thresholds determine the type of
+  // unrolling which is to be performed.
+  enum { Full = 0, Partial = 1, Runtime = 2 };
+  int Unrolling;
+  if (TripCount && Count == TripCount) {
+    Unrolling = Partial;
+    // If the loop is really small, we don't need to run an expensive analysis.
+    if (canUnrollCompletely(L, Threshold, 100, DynamicCostSavingsDiscount,
+                            UnrolledSize, UnrolledSize)) {
+      Unrolling = Full;
+    } else {
+      // The loop isn't that small, but we still can fully unroll it if that
+      // helps to remove a significant number of instructions.
+      // To check that, run additional analysis on the loop.
+      if (Optional<EstimatedUnrollCost> Cost =
+              analyzeLoopUnrollCost(L, TripCount, DT, *SE, TTI,
+                                    Threshold + DynamicCostSavingsDiscount))
+        if (canUnrollCompletely(L, Threshold, PercentDynamicCostSavedThreshold,
+                                DynamicCostSavingsDiscount, Cost->UnrolledCost,
+                                Cost->RolledDynamicCost)) {
+          Unrolling = Full;
+        }
+    }
+  } else if (TripCount && Count < TripCount) {
+    Unrolling = Partial;
+  } else {
+    Unrolling = Runtime;
   }
 
-  // Enforce the threshold.
-  if (Threshold != NoThreshold) {
-    unsigned NumInlineCandidates;
-    bool notDuplicatable;
-    unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates,
-                                            notDuplicatable, TTI);
-    DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
-    if (notDuplicatable) {
-      DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
-            << " instructions.\n");
+  // Reduce count based on the type of unrolling and the threshold values.
+  unsigned OriginalCount = Count;
+  bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) ||
+                      (UserRuntime ? CurrentRuntime : UP.Runtime);
+  // Don't unroll a runtime trip count loop with unroll full pragma.
+  if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
+    AllowRuntime = false;
+  }
+  if (Unrolling == Partial) {
+    bool AllowPartial = PragmaEnableUnroll ||
+                        (UserAllowPartial ? CurrentAllowPartial : UP.Partial);
+    if (!AllowPartial && !CountSetExplicitly) {
+      DEBUG(dbgs() << "  will not try to unroll partially because "
+                   << "-unroll-allow-partial not given\n");
       return false;
     }
-    if (NumInlineCandidates != 0) {
-      DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
+    if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
+      // Reduce unroll count to be modulo of TripCount for partial unrolling.
+      Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
+      while (Count != 0 && TripCount % Count != 0)
+        Count--;
+    }
+  } else if (Unrolling == Runtime) {
+    if (!AllowRuntime && !CountSetExplicitly) {
+      DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
+                   << "-unroll-runtime not given\n");
       return false;
     }
-    uint64_t Size = (uint64_t)LoopSize*Count;
-    if (TripCount != 1 && Size > Threshold) {
-      DEBUG(dbgs() << "  Too large to fully unroll with count: " << Count
-            << " because size: " << Size << ">" << Threshold << "\n");
-      bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
-      if (!AllowPartial && !(Runtime && TripCount == 0)) {
-        DEBUG(dbgs() << "  will not try to unroll partially because "
-              << "-unroll-allow-partial not given\n");
-        return false;
-      }
-      if (TripCount) {
-        // Reduce unroll count to be modulo of TripCount for partial unrolling
-        Count = Threshold / LoopSize;
-        while (Count != 0 && TripCount%Count != 0)
-          Count--;
-      }
-      else if (Runtime) {
-        // Reduce unroll count to be a lower power-of-two value
-        while (Count != 0 && Size > Threshold) {
-          Count >>= 1;
-          Size = LoopSize*Count;
-        }
-      }
-      if (Count < 2) {
-        DEBUG(dbgs() << "  could not unroll partially\n");
-        return false;
-      }
-      DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
+    // Reduce unroll count to be the largest power-of-two factor of
+    // the original count which satisfies the threshold limit.
+    while (Count != 0 && UnrolledSize > PartialThreshold) {
+      Count >>= 1;
+      UnrolledSize = (LoopSize-2) * Count + 2;
     }
+    if (Count > UP.MaxCount)
+      Count = UP.MaxCount;
+    DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
+  }
+
+  if (HasPragma) {
+    if (PragmaCount != 0)
+      // If loop has an unroll count pragma mark loop as unrolled to prevent
+      // unrolling beyond that requested by the pragma.
+      SetLoopAlreadyUnrolled(L);
+
+    // Emit optimization remarks if we are unable to unroll the loop
+    // as directed by a pragma.
+    DebugLoc LoopLoc = L->getStartLoc();
+    Function *F = Header->getParent();
+    LLVMContext &Ctx = F->getContext();
+    if ((PragmaCount > 0) && Count != OriginalCount) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to unroll loop the number of times directed by "
+          "unroll_count pragma because unrolled size is too large.");
+    } else if (PragmaFullUnroll && !TripCount) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to fully unroll loop as directed by unroll(full) pragma "
+          "because loop has a runtime trip count.");
+    } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to unroll loop as directed by unroll(enable) pragma because "
+          "unrolled size is too large.");
+    } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
+               Count != TripCount) {
+      emitOptimizationRemarkMissed(
+          Ctx, DEBUG_TYPE, *F, LoopLoc,
+          "Unable to fully unroll loop as directed by unroll pragma because "
+          "unrolled size is too large.");
+    }
+  }
+
+  if (Unrolling != Full && Count < 2) {
+    // Partial unrolling by 1 is a nop.  For full unrolling, a factor
+    // of 1 makes sense because loop control can be eliminated.
+    return false;
   }
 
   // Unroll the loop.
-  if (!UnrollLoop(L, Count, TripCount, Runtime, TripMultiple, LI, this, &LPM))
+  if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
+                  TripMultiple, LI, this, &LPM, &AC))
     return false;
 
   return true;