[AVX512] Fix VSQRT packed instructions internal names.
[oota-llvm.git] / lib / Target / X86 / X86InstrInfo.cpp
index 876a63f87b0153eb9c956c99c1aa65571ca987e2..e95e18b5512a8176f397db403d753a4afe23f037 100644 (file)
 #include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineInstrBuilder.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
 #include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
 #include "llvm/MC/MCInst.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Target/TargetOptions.h"
 #include <limits>
 
-#define GET_INSTRINFO_CTOR
-#include "X86GenInstrInfo.inc"
-
 using namespace llvm;
 
+#define DEBUG_TYPE "x86-instr-info"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "X86GenInstrInfo.inc"
+
 static cl::opt<bool>
 NoFusing("disable-spill-fusing",
          cl::desc("Disable fusing of spill code into instructions"));
@@ -81,6 +86,7 @@ enum {
   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
+  TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
 };
 
@@ -90,14 +96,14 @@ struct X86OpTblEntry {
   uint16_t Flags;
 };
 
-X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
-  : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
-                     ? X86::ADJCALLSTACKDOWN64
-                     : X86::ADJCALLSTACKDOWN32),
-                    (tm.getSubtarget<X86Subtarget>().is64Bit()
-                     ? X86::ADJCALLSTACKUP64
-                     : X86::ADJCALLSTACKUP32)),
-    TM(tm), RI(tm, *this) {
+// Pin the vtable to this file.
+void X86InstrInfo::anchor() {}
+
+X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
+    : X86GenInstrInfo(
+          (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
+          (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
+      Subtarget(STI), RI(STI) {
 
   static const X86OpTblEntry OpTbl2Addr[] = {
     { X86::ADC32ri,     X86::ADC32mi,    0 },
@@ -297,9 +303,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
-    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 },
-    { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
-    { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
+    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
@@ -355,9 +359,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
     // AVX 128-bit versions of foldable instructions
-    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 },
-    { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
-    { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
+    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
@@ -374,7 +376,41 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
-    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
+    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
+    // AVX-512 foldable instructions
+    { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
+    { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
+    { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
+    { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
+    { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
+    { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE },
+    { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE },
+    { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE },
+    { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE },
+    { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE },
+    { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE },
+    // AVX-512 foldable instructions (256-bit versions)
+    { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
+    { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
+    { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
+    { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
+    { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE },
+    { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE },
+    { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE },
+    { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE },
+    { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE },
+    { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE },
+    // AVX-512 foldable instructions (128-bit versions)
+    { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
+    { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
+    { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
+    { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
+    { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE },
+    { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE },
+    { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE },
+    { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE },
+    { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE },
+    { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE }
   };
 
   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
@@ -400,8 +436,6 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
-    { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
-    { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
@@ -444,16 +478,12 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
-    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
-    { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
-    { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
-    { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
@@ -467,9 +497,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
-    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 },
     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
-    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 },
     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
@@ -498,8 +526,6 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
-    { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
-    { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
@@ -510,27 +536,24 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
-    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 },
+    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
-    { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
-    { X86::VPABSBrr128,     X86::VPABSBrm128,         TB_ALIGN_16 },
-    { X86::VPABSDrr128,     X86::VPABSDrm128,         TB_ALIGN_16 },
-    { X86::VPABSWrr128,     X86::VPABSWrm128,         TB_ALIGN_16 },
-    { X86::VPERMILPDri,     X86::VPERMILPDmi,         TB_ALIGN_16 },
-    { X86::VPERMILPSri,     X86::VPERMILPSmi,         TB_ALIGN_16 },
-    { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 },
-    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 },
-    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 },
-    { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 },
-    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 },
-    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 },
-    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 },
-    { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 },
-    { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 },
-    { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 },
-    { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 },
+    { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
+    { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
+    { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
+    { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
+    { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
+    { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
+    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
+    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
+    { X86::VRCPPSr,         X86::VRCPPSm,             0 },
+    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
+    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
+    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
+    { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
+    { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
@@ -541,32 +564,45 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
-    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        TB_ALIGN_32 },
-    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        TB_ALIGN_32 },
-
-    // AVX2 foldable instructions
-    { X86::VPABSBrr256,     X86::VPABSBrm256,         TB_ALIGN_32 },
-    { X86::VPABSDrr256,     X86::VPABSDrm256,         TB_ALIGN_32 },
-    { X86::VPABSWrr256,     X86::VPABSWrm256,         TB_ALIGN_32 },
-    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          TB_ALIGN_32 },
-    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         TB_ALIGN_32 },
-    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         TB_ALIGN_32 },
-    { X86::VRCPPSYr,        X86::VRCPPSYm,            TB_ALIGN_32 },
-    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        TB_ALIGN_32 },
-    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          TB_ALIGN_32 },
-    { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      TB_ALIGN_32 },
-    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           TB_ALIGN_32 },
-    { X86::VSQRTPDYr_Int,   X86::VSQRTPDYm_Int,       TB_ALIGN_32 },
-    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           TB_ALIGN_32 },
-    { X86::VSQRTPSYr_Int,   X86::VSQRTPSYm_Int,       TB_ALIGN_32 },
+    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
+    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
+    { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
+    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
+    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
+    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
+    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
 
-    // BMI/BMI2/LZCNT/POPCNT foldable instructions
+    // AVX2 foldable instructions
+    { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
+    { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
+    { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
+    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
+    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
+    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
+
+    // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
     { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
     { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
+    { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
+    { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
+    { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
+    { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
+    { X86::BLCI32rr,        X86::BLCI32rm,            0 },
+    { X86::BLCI64rr,        X86::BLCI64rm,            0 },
+    { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
+    { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
+    { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
+    { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
+    { X86::BLCS32rr,        X86::BLCS32rm,            0 },
+    { X86::BLCS64rr,        X86::BLCS64rm,            0 },
+    { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
+    { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
     { X86::BLSI32rr,        X86::BLSI32rm,            0 },
     { X86::BLSI64rr,        X86::BLSI64rm,            0 },
+    { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
+    { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
     { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
     { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
     { X86::BLSR32rr,        X86::BLSR32rm,            0 },
@@ -587,9 +623,57 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::SHRX64rr,        X86::SHRX64rm,            0 },
     { X86::SHLX32rr,        X86::SHLX32rm,            0 },
     { X86::SHLX64rr,        X86::SHLX64rm,            0 },
+    { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
+    { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
     { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
     { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
     { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
+    { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
+    { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
+
+    // AVX-512 foldable instructions
+    { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
+    { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
+    { X86::VMOVAPDZrr,      X86::VMOVAPDZrm,          TB_ALIGN_64 },
+    { X86::VMOVAPSZrr,      X86::VMOVAPSZrm,          TB_ALIGN_64 },
+    { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zrm,        TB_ALIGN_64 },
+    { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zrm,        TB_ALIGN_64 },
+    { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zrm,         0 },
+    { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zrm,        0 },
+    { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zrm,        0 },
+    { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zrm,        0 },
+    { X86::VMOVUPDZrr,      X86::VMOVUPDZrm,          0 },
+    { X86::VMOVUPSZrr,      X86::VMOVUPSZrm,          0 },
+    { X86::VPABSDZrr,       X86::VPABSDZrm,           0 },
+    { X86::VPABSQZrr,       X86::VPABSQZrm,           0 },
+    // AVX-512 foldable instructions (256-bit versions)
+    { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256rm,          TB_ALIGN_32 },
+    { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256rm,          TB_ALIGN_32 },
+    { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256rm,        TB_ALIGN_32 },
+    { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256rm,        TB_ALIGN_32 },
+    { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256rm,         0 },
+    { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256rm,        0 },
+    { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256rm,        0 },
+    { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256rm,        0 },
+    { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256rm,          0 },
+    { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256rm,          0 },
+    // AVX-512 foldable instructions (256-bit versions)
+    { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128rm,          TB_ALIGN_16 },
+    { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128rm,          TB_ALIGN_16 },
+    { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128rm,        TB_ALIGN_16 },
+    { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128rm,        TB_ALIGN_16 },
+    { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128rm,         0 },
+    { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128rm,        0 },
+    { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128rm,        0 },
+    { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128rm,        0 },
+    { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128rm,          0 },
+    { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128rm,          0 },
+
+    // AES foldable instructions
+    { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
+    { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
+    { X86::VAESIMCrr,             X86::VAESIMCrm,             TB_ALIGN_16 },
+    { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 }
   };
 
   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
@@ -710,21 +794,13 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
-    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 },
     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
-    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 },
     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
-    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
-    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
-    { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 },
     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
-    { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 },
     { X86::MINSDrr,         X86::MINSDrm,       0 },
-    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
     { X86::MINSSrr,         X86::MINSSrm,       0 },
-    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
@@ -889,31 +965,23 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
     { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
     { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
-    { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 },
-    { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 },
-    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 },
-    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 },
+    { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
+    { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
+    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
+    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
-    { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 },
-    { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 },
-    { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 },
-    { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 },
+    { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
+    { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
-    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
-    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
-    { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 },
-    { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 },
-    { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 },
-    { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 },
+    { X86::VMINPDrr,          X86::VMINPDrm,           0 },
+    { X86::VMINPSrr,          X86::VMINPSrm,           0 },
     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
-    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
-    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
-    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        TB_ALIGN_16 },
-    { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 },
-    { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 },
+    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
+    { X86::VMULPDrr,          X86::VMULPDrm,           0 },
+    { X86::VMULPSrr,          X86::VMULPSrm,           0 },
     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
     { X86::VORPDrr,           X86::VORPDrm,            0 },
@@ -1037,13 +1105,9 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
-    { X86::VMAXPDYrr_Int,     X86::VMAXPDYrm_Int,      0 },
     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
-    { X86::VMAXPSYrr_Int,     X86::VMAXPSYrm_Int,      0 },
     { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
-    { X86::VMINPDYrr_Int,     X86::VMINPDYrm_Int,      0 },
     { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
-    { X86::VMINPSYrr_Int,     X86::VMINPSYrm_Int,      0 },
     { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
     { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
     { X86::VORPDYrr,          X86::VORPDYrm,           0 },
@@ -1207,6 +1271,64 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::PDEP64rr,          X86::PDEP64rm,            0 },
     { X86::PEXT32rr,          X86::PEXT32rm,            0 },
     { X86::PEXT64rr,          X86::PEXT64rm,            0 },
+
+    // AVX-512 foldable instructions
+    { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
+    { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
+    { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
+    { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
+    { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
+    { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
+    { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
+    { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
+    { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
+    { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
+    { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
+    { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
+    { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
+    { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
+    { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
+    { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
+    { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
+    { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
+    { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
+    { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
+    { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
+    { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
+    { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
+    { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
+    { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
+    { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
+    { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
+    { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
+    { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
+    { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
+    { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
+    { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
+    { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
+    { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
+    { X86::VALIGNQrri,        X86::VALIGNQrmi,          0 },
+    { X86::VALIGNDrri,        X86::VALIGNDrmi,          0 },
+    { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
+
+    // AES foldable instructions
+    { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
+    { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
+    { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
+    { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
+    { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       TB_ALIGN_16 },
+    { X86::VAESDECrr,         X86::VAESDECrm,           TB_ALIGN_16 },
+    { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       TB_ALIGN_16 },
+    { X86::VAESENCrr,         X86::VAESENCrm,           TB_ALIGN_16 },
+
+    // SHA foldable instructions
+    { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
+    { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
+    { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
+    { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
+    { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
+    { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
+    { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 },
   };
 
   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
@@ -1221,119 +1343,111 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
 
   static const X86OpTblEntry OpTbl3[] = {
     // FMA foldable instructions
-    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         0 },
-    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         0 },
-    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         0 },
-    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         0 },
-    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         0 },
-    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         0 },
-    { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     0 },
-    { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     0 },
-
-    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_16 },
-    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_16 },
-    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_16 },
-    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_16 },
-    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_16 },
-    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_16 },
-    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_32 },
-    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_32 },
-    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_32 },
-    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_32 },
-    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_32 },
-    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_32 },
-
-    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        0 },
-    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        0 },
-    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        0 },
-    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        0 },
-    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        0 },
-    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        0 },
-    { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    0 },
-    { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    0 },
-
-    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_16 },
-    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_16 },
-    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_16 },
-    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_16 },
-    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_16 },
-    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_16 },
-    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_32 },
-    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_32 },
-    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_32 },
-    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_32 },
-    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_32 },
-    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_32 },
-
-    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         0 },
-    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         0 },
-    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         0 },
-    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         0 },
-    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         0 },
-    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         0 },
-    { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     0 },
-    { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     0 },
-
-    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_16 },
-    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_16 },
-    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_16 },
-    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_16 },
-    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_16 },
-    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_16 },
-    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_32 },
-    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_32 },
-    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_32 },
-    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_32 },
-    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_32 },
-    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_32 },
-
-    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        0 },
-    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        0 },
-    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        0 },
-    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        0 },
-    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        0 },
-    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        0 },
-    { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    0 },
-    { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    0 },
-
-    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_16 },
-    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_16 },
-    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_16 },
-    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_16 },
-    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_16 },
-    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_16 },
-    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_32 },
-    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_32 },
-    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_32 },
-    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_32 },
-    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_32 },
-    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_32 },
-
-    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_16 },
-    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_16 },
-    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_16 },
-    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_16 },
-    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_16 },
-    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_16 },
-    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_32 },
-    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_32 },
-    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_32 },
-    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_32 },
-    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_32 },
-    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_32 },
-
-    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_16 },
-    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_16 },
-    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_16 },
-    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_16 },
-    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_16 },
-    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_16 },
-    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_32 },
-    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_32 },
-    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_32 },
-    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_32 },
-    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_32 },
-    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_32 },
+    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
+    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
+    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
+    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
+    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
+    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
+
+    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
+    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
+    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
+    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
+    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
+    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
+    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
+    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
+    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
+    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
+    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
+    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
+
+    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
+    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
+    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
+    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
+    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
+    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
+
+    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
+    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
+    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
+    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
+    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
+    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
+    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
+    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
+    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
+    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
+    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
+    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
+
+    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
+    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
+    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
+    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
+    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
+    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
+
+    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
+    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
+    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
+    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
+    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
+    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
+    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
+    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
+    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
+    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
+    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
+    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
+
+    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
+
+    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
+    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
+    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
+    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
+    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
+    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
+    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
+
+    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
+    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
+    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
+    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
+    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
+    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
+    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
+    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
+    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
+    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
+    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
+    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
+
+    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
+    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
+    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
+    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
+    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
+    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
+    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
+    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
+    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
+    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
+    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
+    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
 
     // FMA4 foldable patterns
     { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
@@ -1368,6 +1482,15 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
     { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
     { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
+    // AVX-512 VPERMI instructions with 3 source operands.
+    { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
+    { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
+    { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
+    { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
+    { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
+    { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
+    { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
+    { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 }
   };
 
   for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
@@ -1408,17 +1531,14 @@ X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
   case X86::MOVSX32rr8:
   case X86::MOVZX32rr8:
   case X86::MOVSX64rr8:
-  case X86::MOVZX64rr8:
-    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
+    if (!Subtarget.is64Bit())
       // It's not always legal to reference the low 8-bit of the larger
       // register in 32-bit mode.
       return false;
   case X86::MOVSX32rr16:
   case X86::MOVZX32rr16:
   case X86::MOVSX64rr16:
-  case X86::MOVZX64rr16:
-  case X86::MOVSX64rr32:
-  case X86::MOVZX64rr32: {
+  case X86::MOVSX64rr32: {
     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
       // Be conservative.
       return false;
@@ -1431,17 +1551,14 @@ X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
     case X86::MOVSX32rr8:
     case X86::MOVZX32rr8:
     case X86::MOVSX64rr8:
-    case X86::MOVZX64rr8:
       SubIdx = X86::sub_8bit;
       break;
     case X86::MOVSX32rr16:
     case X86::MOVZX32rr16:
     case X86::MOVSX64rr16:
-    case X86::MOVZX64rr16:
       SubIdx = X86::sub_16bit;
       break;
     case X86::MOVSX64rr32:
-    case X86::MOVZX64rr32:
       SubIdx = X86::sub_32bit;
       break;
     }
@@ -1455,12 +1572,14 @@ X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 /// operand and follow operands form a reference to the stack frame.
 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
                                   int &FrameIndex) const {
-  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
-      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
-      MI->getOperand(Op+1).getImm() == 1 &&
-      MI->getOperand(Op+2).getReg() == 0 &&
-      MI->getOperand(Op+3).getImm() == 0) {
-    FrameIndex = MI->getOperand(Op).getIndex();
+  if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
+      MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
+      MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
+      MI->getOperand(Op+X86::AddrDisp).isImm() &&
+      MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
+      MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
+      MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
+    FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
     return true;
   }
   return false;
@@ -1490,6 +1609,8 @@ static bool isFrameLoadOpcode(int Opcode) {
   case X86::VMOVDQAYrm:
   case X86::MMX_MOVD64rm:
   case X86::MMX_MOVQ64rm:
+  case X86::VMOVAPSZrm:
+  case X86::VMOVUPSZrm:
     return true;
   }
 }
@@ -1515,6 +1636,8 @@ static bool isFrameStoreOpcode(int Opcode) {
   case X86::VMOVAPSYmr:
   case X86::VMOVAPDYmr:
   case X86::VMOVDQAYmr:
+  case X86::VMOVUPSZmr:
+  case X86::VMOVAPSZmr:
   case X86::MMX_MOVD64mr:
   case X86::MMX_MOVQ64mr:
   case X86::MMX_MOVNTQmr:
@@ -1573,9 +1696,9 @@ static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
     return false;
   bool isPICBase = false;
-  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
-         E = MRI.def_end(); I != E; ++I) {
-    MachineInstr *DefMI = I.getOperand().getParent();
+  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
+         E = MRI.def_instr_end(); I != E; ++I) {
+    MachineInstr *DefMI = &*I;
     if (DefMI->getOpcode() != X86::MOVPC32r)
       return false;
     assert(!isPICBase && "More than one PIC base?");
@@ -1620,15 +1743,16 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
   case X86::FsMOVAPSrm:
   case X86::FsMOVAPDrm: {
     // Loads from constant pools are trivially rematerializable.
-    if (MI->getOperand(1).isReg() &&
-        MI->getOperand(2).isImm() &&
-        MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
+    if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
+        MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
+        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
+        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
         MI->isInvariantLoad(AA)) {
-      unsigned BaseReg = MI->getOperand(1).getReg();
+      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
       if (BaseReg == 0 || BaseReg == X86::RIP)
         return true;
       // Allow re-materialization of PIC load.
-      if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
+      if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
         return false;
       const MachineFunction &MF = *MI->getParent()->getParent();
       const MachineRegisterInfo &MRI = MF.getRegInfo();
@@ -1639,13 +1763,14 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
 
   case X86::LEA32r:
   case X86::LEA64r: {
-    if (MI->getOperand(2).isImm() &&
-        MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
-        !MI->getOperand(4).isReg()) {
+    if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
+        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
+        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
+        !MI->getOperand(1+X86::AddrDisp).isReg()) {
       // lea fi#, lea GV, etc. are all rematerializable.
-      if (!MI->getOperand(1).isReg())
+      if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
         return true;
-      unsigned BaseReg = MI->getOperand(1).getReg();
+      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
       if (BaseReg == 0)
         return true;
       // Allow re-materialization of lea PICBase + x.
@@ -1662,12 +1787,8 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
   return true;
 }
 
-/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
-/// would clobber the EFLAGS condition register. Note the result may be
-/// conservative. If it cannot definitely determine the safety after visiting
-/// a few instructions in each direction it assumes it's not safe.
-static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
-                                  MachineBasicBlock::iterator I) {
+bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
+                                         MachineBasicBlock::iterator I) const {
   MachineBasicBlock::iterator E = MBB.end();
 
   // For compile time consideration, if we are not able to determine the
@@ -1749,40 +1870,19 @@ void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
                                  unsigned DestReg, unsigned SubIdx,
                                  const MachineInstr *Orig,
                                  const TargetRegisterInfo &TRI) const {
-  DebugLoc DL = Orig->getDebugLoc();
-
-  // MOV32r0 etc. are implemented with xor which clobbers condition code.
-  // Re-materialize them as movri instructions to avoid side effects.
-  bool Clone = true;
+  // MOV32r0 is implemented with a xor which clobbers condition code.
+  // Re-materialize it as movri instructions to avoid side effects.
   unsigned Opc = Orig->getOpcode();
-  switch (Opc) {
-  default: break;
-  case X86::MOV8r0:
-  case X86::MOV16r0:
-  case X86::MOV32r0:
-  case X86::MOV64r0: {
-    if (!isSafeToClobberEFLAGS(MBB, I)) {
-      switch (Opc) {
-      default: llvm_unreachable("Unreachable!");
-      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
-      case X86::MOV16r0: Opc = X86::MOV16ri; break;
-      case X86::MOV32r0: Opc = X86::MOV32ri; break;
-      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
-      }
-      Clone = false;
-    }
-    break;
-  }
-  }
-
-  if (Clone) {
+  if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
+    DebugLoc DL = Orig->getDebugLoc();
+    BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
+      .addImm(0);
+  } else {
     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
     MBB.insert(I, MI);
-  } else {
-    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
   }
 
-  MachineInstr *NewMI = prior(I);
+  MachineInstr *NewMI = std::prev(I);
   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
 }
 
@@ -1799,6 +1899,98 @@ static bool hasLiveCondCodeDef(MachineInstr *MI) {
   return false;
 }
 
+/// getTruncatedShiftCount - check whether the shift count for a machine operand
+/// is non-zero.
+inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
+                                              unsigned ShiftAmtOperandIdx) {
+  // The shift count is six bits with the REX.W prefix and five bits without.
+  unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
+  unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
+  return Imm & ShiftCountMask;
+}
+
+/// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
+/// can be represented by a LEA instruction.
+inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
+  // Left shift instructions can be transformed into load-effective-address
+  // instructions if we can encode them appropriately.
+  // A LEA instruction utilizes a SIB byte to encode it's scale factor.
+  // The SIB.scale field is two bits wide which means that we can encode any
+  // shift amount less than 4.
+  return ShAmt < 4 && ShAmt > 0;
+}
+
+bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
+                                  unsigned Opc, bool AllowSP,
+                                  unsigned &NewSrc, bool &isKill, bool &isUndef,
+                                  MachineOperand &ImplicitOp) const {
+  MachineFunction &MF = *MI->getParent()->getParent();
+  const TargetRegisterClass *RC;
+  if (AllowSP) {
+    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
+  } else {
+    RC = Opc != X86::LEA32r ?
+      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
+  }
+  unsigned SrcReg = Src.getReg();
+
+  // For both LEA64 and LEA32 the register already has essentially the right
+  // type (32-bit or 64-bit) we may just need to forbid SP.
+  if (Opc != X86::LEA64_32r) {
+    NewSrc = SrcReg;
+    isKill = Src.isKill();
+    isUndef = Src.isUndef();
+
+    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
+        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
+      return false;
+
+    return true;
+  }
+
+  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
+  // another we need to add 64-bit registers to the final MI.
+  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
+    ImplicitOp = Src;
+    ImplicitOp.setImplicit();
+
+    NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
+    MachineBasicBlock::LivenessQueryResult LQR =
+      MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
+
+    switch (LQR) {
+    case MachineBasicBlock::LQR_Unknown:
+      // We can't give sane liveness flags to the instruction, abandon LEA
+      // formation.
+      return false;
+    case MachineBasicBlock::LQR_Live:
+      isKill = MI->killsRegister(SrcReg);
+      isUndef = false;
+      break;
+    default:
+      // The physreg itself is dead, so we have to use it as an <undef>.
+      isKill = false;
+      isUndef = true;
+      break;
+    }
+  } else {
+    // Virtual register of the wrong class, we have to create a temporary 64-bit
+    // vreg to feed into the LEA.
+    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
+    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+            get(TargetOpcode::COPY))
+      .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
+        .addOperand(Src);
+
+    // Which is obviously going to be dead after we're done with it.
+    isKill = true;
+    isUndef = false;
+  }
+
+  // We've set all the parameters without issue.
+  return true;
+}
+
 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
 /// to a 32-bit superregister and then truncating back down to a 16-bit
@@ -1814,11 +2006,16 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
   bool isDead = MI->getOperand(0).isDead();
   bool isKill = MI->getOperand(1).isKill();
 
-  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
-    ? X86::LEA64_32r : X86::LEA32r;
   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
-  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+  unsigned Opc, leaInReg;
+  if (Subtarget.is64Bit()) {
+    Opc = X86::LEA64_32r;
+    leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
+  } else {
+    Opc = X86::LEA32r;
+    leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+  }
 
   // Build and insert into an implicit UNDEF value. This is OK because
   // well be shifting and then extracting the lower 16-bits.
@@ -1862,13 +2059,16 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
     unsigned Src2 = MI->getOperand(2).getReg();
     bool isKill2 = MI->getOperand(2).isKill();
     unsigned leaInReg2 = 0;
-    MachineInstr *InsMI2 = 0;
+    MachineInstr *InsMI2 = nullptr;
     if (Src == Src2) {
       // ADD16rr %reg1028<kill>, %reg1028
       // just a single insert_subreg.
       addRegReg(MIB, leaInReg, true, leaInReg, false);
     } else {
-      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
+      if (Subtarget.is64Bit())
+        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
+      else
+        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
       // Build and insert into an implicit UNDEF value. This is OK because
       // well be shifting and then extracting the lower 16-bits.
       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
@@ -1918,60 +2118,37 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
                                     MachineBasicBlock::iterator &MBBI,
                                     LiveVariables *LV) const {
   MachineInstr *MI = MBBI;
+
+  // The following opcodes also sets the condition code register(s). Only
+  // convert them to equivalent lea if the condition code register def's
+  // are dead!
+  if (hasLiveCondCodeDef(MI))
+    return nullptr;
+
   MachineFunction &MF = *MI->getParent()->getParent();
   // All instructions input are two-addr instructions.  Get the known operands.
   const MachineOperand &Dest = MI->getOperand(0);
   const MachineOperand &Src = MI->getOperand(1);
 
-  MachineInstr *NewMI = NULL;
+  MachineInstr *NewMI = nullptr;
   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
   // we have better subtarget support, enable the 16-bit LEA generation here.
   // 16-bit LEA is also slow on Core2.
   bool DisableLEA16 = true;
-  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
+  bool is64Bit = Subtarget.is64Bit();
 
   unsigned MIOpc = MI->getOpcode();
   switch (MIOpc) {
-  case X86::SHUFPSrri: {
-    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
-    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
-
-    unsigned B = MI->getOperand(1).getReg();
-    unsigned C = MI->getOperand(2).getReg();
-    if (B != C) return 0;
-    unsigned M = MI->getOperand(3).getImm();
-    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
-      .addOperand(Dest).addOperand(Src).addImm(M);
-    break;
-  }
-  case X86::SHUFPDrri: {
-    assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
-    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
-
-    unsigned B = MI->getOperand(1).getReg();
-    unsigned C = MI->getOperand(2).getReg();
-    if (B != C) return 0;
-    unsigned M = MI->getOperand(3).getImm();
-
-    // Convert to PSHUFD mask.
-    M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
-
-    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
-      .addOperand(Dest).addOperand(Src).addImm(M);
-    break;
-  }
   case X86::SHL64ri: {
     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
-    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
-    // the flags produced by a shift yet, so this is safe.
-    unsigned ShAmt = MI->getOperand(2).getImm();
-    if (ShAmt == 0 || ShAmt >= 4) return 0;
+    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
 
     // LEA can't handle RSP.
     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
         !MF.getRegInfo().constrainRegClass(Src.getReg(),
                                            &X86::GR64_NOSPRegClass))
-      return 0;
+      return nullptr;
 
     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
       .addOperand(Dest)
@@ -1980,69 +2157,73 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   }
   case X86::SHL32ri: {
     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
-    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
-    // the flags produced by a shift yet, so this is safe.
-    unsigned ShAmt = MI->getOperand(2).getImm();
-    if (ShAmt == 0 || ShAmt >= 4) return 0;
-
-    // LEA can't handle ESP.
-    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
-        !MF.getRegInfo().constrainRegClass(Src.getReg(),
-                                           &X86::GR32_NOSPRegClass))
-      return 0;
+    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
 
     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
-    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+
+    // LEA can't handle ESP.
+    bool isKill, isUndef;
+    unsigned SrcReg;
+    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+                        SrcReg, isKill, isUndef, ImplicitOp))
+      return nullptr;
+
+    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
       .addOperand(Dest)
-      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
+      .addReg(0).addImm(1 << ShAmt)
+      .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+      .addImm(0).addReg(0);
+    if (ImplicitOp.getReg() != 0)
+      MIB.addOperand(ImplicitOp);
+    NewMI = MIB;
+
     break;
   }
   case X86::SHL16ri: {
     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
-    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
-    // the flags produced by a shift yet, so this is safe.
-    unsigned ShAmt = MI->getOperand(2).getImm();
-    if (ShAmt == 0 || ShAmt >= 4) return 0;
+    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
 
     if (DisableLEA16)
-      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
       .addOperand(Dest)
       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
     break;
   }
   default: {
-    // The following opcodes also sets the condition code register(s). Only
-    // convert them to equivalent lea if the condition code register def's
-    // are dead!
-    if (hasLiveCondCodeDef(MI))
-      return 0;
 
     switch (MIOpc) {
-    default: return 0;
+    default: return nullptr;
     case X86::INC64r:
     case X86::INC32r:
     case X86::INC64_32r: {
       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
-      const TargetRegisterClass *RC = MIOpc == X86::INC64r ?
-        (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
-        (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
-
-      // LEA can't handle RSP.
-      if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
-          !MF.getRegInfo().constrainRegClass(Src.getReg(), RC))
-        return 0;
-
-      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
-                        .addOperand(Dest).addOperand(Src), 1);
+      bool isKill, isUndef;
+      unsigned SrcReg;
+      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+                          SrcReg, isKill, isUndef, ImplicitOp))
+        return nullptr;
+
+      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+          .addOperand(Dest)
+          .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
+      if (ImplicitOp.getReg() != 0)
+        MIB.addOperand(ImplicitOp);
+
+      NewMI = addOffset(MIB, 1);
       break;
     }
     case X86::INC16r:
     case X86::INC64_16r:
       if (DisableLEA16)
-        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+                       : nullptr;
       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
                         .addOperand(Dest).addOperand(Src), 1);
@@ -2053,22 +2234,29 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
-      const TargetRegisterClass *RC = MIOpc == X86::DEC64r ?
-        (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
-        (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
-      // LEA can't handle RSP.
-      if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
-          !MF.getRegInfo().constrainRegClass(Src.getReg(), RC))
-        return 0;
-
-      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
-                        .addOperand(Dest).addOperand(Src), -1);
+
+      bool isKill, isUndef;
+      unsigned SrcReg;
+      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
+                          SrcReg, isKill, isUndef, ImplicitOp))
+        return nullptr;
+
+      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+          .addOperand(Dest)
+          .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+      if (ImplicitOp.getReg() != 0)
+        MIB.addOperand(ImplicitOp);
+
+      NewMI = addOffset(MIB, -1);
+
       break;
     }
     case X86::DEC16r:
     case X86::DEC64_16r:
       if (DisableLEA16)
-        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+                       : nullptr;
       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
                         .addOperand(Dest).addOperand(Src), -1);
@@ -2079,42 +2267,48 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
     case X86::ADD32rr_DB: {
       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
       unsigned Opc;
-      const TargetRegisterClass *RC;
-      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
+      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
         Opc = X86::LEA64r;
-        RC = &X86::GR64_NOSPRegClass;
-      } else {
+      else
         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
-        RC = &X86::GR32_NOSPRegClass;
-      }
-
 
-      unsigned Src2 = MI->getOperand(2).getReg();
-      bool isKill2 = MI->getOperand(2).isKill();
-
-      // LEA can't handle RSP.
-      if (TargetRegisterInfo::isVirtualRegister(Src2) &&
-          !MF.getRegInfo().constrainRegClass(Src2, RC))
-        return 0;
-
-      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
-                        .addOperand(Dest),
-                        Src.getReg(), Src.isKill(), Src2, isKill2);
+      bool isKill, isUndef;
+      unsigned SrcReg;
+      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+                          SrcReg, isKill, isUndef, ImplicitOp))
+        return nullptr;
+
+      const MachineOperand &Src2 = MI->getOperand(2);
+      bool isKill2, isUndef2;
+      unsigned SrcReg2;
+      MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
+      if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
+                          SrcReg2, isKill2, isUndef2, ImplicitOp2))
+        return nullptr;
+
+      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+        .addOperand(Dest);
+      if (ImplicitOp.getReg() != 0)
+        MIB.addOperand(ImplicitOp);
+      if (ImplicitOp2.getReg() != 0)
+        MIB.addOperand(ImplicitOp2);
+
+      NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
 
       // Preserve undefness of the operands.
-      bool isUndef = MI->getOperand(1).isUndef();
-      bool isUndef2 = MI->getOperand(2).isUndef();
       NewMI->getOperand(1).setIsUndef(isUndef);
       NewMI->getOperand(3).setIsUndef(isUndef2);
 
-      if (LV && isKill2)
-        LV->replaceKillInstruction(Src2, MI, NewMI);
+      if (LV && Src2.isKill())
+        LV->replaceKillInstruction(SrcReg2, MI, NewMI);
       break;
     }
     case X86::ADD16rr:
     case X86::ADD16rr_DB: {
       if (DisableLEA16)
-        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+                       : nullptr;
       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
       unsigned Src2 = MI->getOperand(2).getReg();
       bool isKill2 = MI->getOperand(2).isKill();
@@ -2147,9 +2341,21 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
     case X86::ADD32ri8_DB: {
       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
-      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
-                        .addOperand(Dest).addOperand(Src),
-                        MI->getOperand(2).getImm());
+
+      bool isKill, isUndef;
+      unsigned SrcReg;
+      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
+      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
+                          SrcReg, isKill, isUndef, ImplicitOp))
+        return nullptr;
+
+      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+          .addOperand(Dest)
+          .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
+      if (ImplicitOp.getReg() != 0)
+        MIB.addOperand(ImplicitOp);
+
+      NewMI = addOffset(MIB, MI->getOperand(2).getImm());
       break;
     }
     case X86::ADD16ri:
@@ -2157,7 +2363,8 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
     case X86::ADD16ri_DB:
     case X86::ADD16ri8_DB:
       if (DisableLEA16)
-        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
+                       : nullptr;
       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
                         .addOperand(Dest).addOperand(Src),
@@ -2167,7 +2374,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   }
   }
 
-  if (!NewMI) return 0;
+  if (!NewMI) return nullptr;
 
   if (LV) {  // Update live variables
     if (Src.isKill())
@@ -2294,6 +2501,41 @@ X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   }
 }
 
+bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
+                                         unsigned &SrcOpIdx2) const {
+  switch (MI->getOpcode()) {
+    case X86::VFMADDPDr231r:
+    case X86::VFMADDPSr231r:
+    case X86::VFMADDSDr231r:
+    case X86::VFMADDSSr231r:
+    case X86::VFMSUBPDr231r:
+    case X86::VFMSUBPSr231r:
+    case X86::VFMSUBSDr231r:
+    case X86::VFMSUBSSr231r:
+    case X86::VFNMADDPDr231r:
+    case X86::VFNMADDPSr231r:
+    case X86::VFNMADDSDr231r:
+    case X86::VFNMADDSSr231r:
+    case X86::VFNMSUBPDr231r:
+    case X86::VFNMSUBPSr231r:
+    case X86::VFNMSUBSDr231r:
+    case X86::VFNMSUBSSr231r:
+    case X86::VFMADDPDr231rY:
+    case X86::VFMADDPSr231rY:
+    case X86::VFMSUBPDr231rY:
+    case X86::VFMSUBPSr231rY:
+    case X86::VFNMADDPDr231rY:
+    case X86::VFNMADDPSr231rY:
+    case X86::VFNMSUBPDr231rY:
+    case X86::VFNMSUBPSr231rY:
+      SrcOpIdx1 = 2;
+      SrcOpIdx2 = 3;
+      return true;
+    default:
+      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
+  }
+}
+
 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
   switch (BrOpc) {
   default: return X86::COND_INVALID;
@@ -2461,8 +2703,7 @@ static X86::CondCode getSwappedCondition(X86::CondCode CC) {
 
 /// getSETFromCond - Return a set opcode for the given condition and
 /// whether it has memory operand.
-static unsigned getSETFromCond(X86::CondCode CC,
-                               bool HasMemoryOperand) {
+unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
   static const uint16_t Opc[16][2] = {
     { X86::SETAr,  X86::SETAm  },
     { X86::SETAEr, X86::SETAEm },
@@ -2482,14 +2723,14 @@ static unsigned getSETFromCond(X86::CondCode CC,
     { X86::SETSr,  X86::SETSm  }
   };
 
-  assert(CC < 16 && "Can only handle standard cond codes");
+  assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
   return Opc[CC][HasMemoryOperand ? 1 : 0];
 }
 
 /// getCMovFromCond - Return a cmov opcode for the given condition,
 /// register size in bytes, and operand type.
-static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
-                                bool HasMemoryOperand) {
+unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
+                              bool HasMemoryOperand) {
   static const uint16_t Opc[32][3] = {
     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
@@ -2580,15 +2821,15 @@ bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
       }
 
       // If the block has any instructions after a JMP, delete them.
-      while (llvm::next(I) != MBB.end())
-        llvm::next(I)->eraseFromParent();
+      while (std::next(I) != MBB.end())
+        std::next(I)->eraseFromParent();
 
       Cond.clear();
-      FBB = 0;
+      FBB = nullptr;
 
       // Delete the JMP if it's equivalent to a fall-through.
       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
-        TBB = 0;
+        TBB = nullptr;
         I->eraseFromParent();
         I = MBB.end();
         UnCondBrIter = MBB.end();
@@ -2765,7 +3006,7 @@ canInsertSelect(const MachineBasicBlock &MBB,
                 unsigned TrueReg, unsigned FalseReg,
                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
   // Not all subtargets have cmov instructions.
-  if (!TM.getSubtarget<X86Subtarget>().hasCMov())
+  if (!Subtarget.hasCMov())
     return false;
   if (Cond.size() != 1)
     return false;
@@ -2816,23 +3057,28 @@ static bool isHReg(unsigned Reg) {
 
 // Try and copy between VR128/VR64 and GR64 registers.
 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
-                                        bool HasAVX) {
+                                        const X86Subtarget &Subtarget) {
+
   // SrcReg(VR128) -> DestReg(GR64)
   // SrcReg(VR64)  -> DestReg(GR64)
   // SrcReg(GR64)  -> DestReg(VR128)
   // SrcReg(GR64)  -> DestReg(VR64)
 
+  bool HasAVX = Subtarget.hasAVX();
+  bool HasAVX512 = Subtarget.hasAVX512();
   if (X86::GR64RegClass.contains(DestReg)) {
-    if (X86::VR128RegClass.contains(SrcReg))
+    if (X86::VR128XRegClass.contains(SrcReg))
       // Copy from a VR128 register to a GR64 register.
-      return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
+      return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
+                                               X86::MOVPQIto64rr);
     if (X86::VR64RegClass.contains(SrcReg))
       // Copy from a VR64 register to a GR64 register.
       return X86::MOVSDto64rr;
   } else if (X86::GR64RegClass.contains(SrcReg)) {
     // Copy from a GR64 register to a VR128 register.
-    if (X86::VR128RegClass.contains(DestReg))
-      return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
+    if (X86::VR128XRegClass.contains(DestReg))
+      return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
+                                               X86::MOV64toPQIrr);
     // Copy from a GR64 register to a VR64 register.
     if (X86::VR64RegClass.contains(DestReg))
       return X86::MOV64toSDrr;
@@ -2841,14 +3087,49 @@ static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
   // SrcReg(FR32) -> DestReg(GR32)
   // SrcReg(GR32) -> DestReg(FR32)
 
-  if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
+  if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
     // Copy from a FR32 register to a GR32 register.
-    return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
+    return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
 
-  if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
+  if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
     // Copy from a GR32 register to a FR32 register.
-    return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
+    return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
+  return 0;
+}
 
+inline static bool MaskRegClassContains(unsigned Reg) {
+  return X86::VK8RegClass.contains(Reg) ||
+         X86::VK16RegClass.contains(Reg) ||
+         X86::VK32RegClass.contains(Reg) ||
+         X86::VK64RegClass.contains(Reg) ||
+         X86::VK1RegClass.contains(Reg);
+}
+static
+unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
+  if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
+      X86::VR256XRegClass.contains(DestReg, SrcReg) ||
+      X86::VR512RegClass.contains(DestReg, SrcReg)) {
+     DestReg = get512BitSuperRegister(DestReg);
+     SrcReg = get512BitSuperRegister(SrcReg);
+     return X86::VMOVAPSZrr;
+  }
+  if (MaskRegClassContains(DestReg) &&
+      MaskRegClassContains(SrcReg))
+    return X86::KMOVWkk;
+  if (MaskRegClassContains(DestReg) &&
+      (X86::GR32RegClass.contains(SrcReg) ||
+       X86::GR16RegClass.contains(SrcReg) ||
+       X86::GR8RegClass.contains(SrcReg))) {
+    SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
+    return X86::KMOVWkr;
+  }
+  if ((X86::GR32RegClass.contains(DestReg) ||
+       X86::GR16RegClass.contains(DestReg) ||
+       X86::GR8RegClass.contains(DestReg)) &&
+       MaskRegClassContains(SrcReg)) {
+    DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
+    return X86::KMOVWrk;
+  }
   return 0;
 }
 
@@ -2857,8 +3138,9 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                unsigned DestReg, unsigned SrcReg,
                                bool KillSrc) const {
   // First deal with the normal symmetric copies.
-  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
-  unsigned Opc;
+  bool HasAVX = Subtarget.hasAVX();
+  bool HasAVX512 = Subtarget.hasAVX512();
+  unsigned Opc = 0;
   if (X86::GR64RegClass.contains(DestReg, SrcReg))
     Opc = X86::MOV64rr;
   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
@@ -2869,21 +3151,24 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
     // Copying to or from a physical H register on x86-64 requires a NOREX
     // move.  Otherwise use a normal move.
     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
-        TM.getSubtarget<X86Subtarget>().is64Bit()) {
+        Subtarget.is64Bit()) {
       Opc = X86::MOV8rr_NOREX;
       // Both operands must be encodable without an REX prefix.
       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
              "8-bit H register can not be copied outside GR8_NOREX");
     } else
       Opc = X86::MOV8rr;
-  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
+  }
+  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
+    Opc = X86::MMX_MOVQ64rr;
+  else if (HasAVX512)
+    Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
+  else if (X86::VR128RegClass.contains(DestReg, SrcReg))
     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
     Opc = X86::VMOVAPSYrr;
-  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
-    Opc = X86::MMX_MOVQ64rr;
-  else
-    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
+  if (!Opc)
+    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
 
   if (Opc) {
     BuildMI(MBB, MI, DL, get(Opc), DestReg)
@@ -2893,7 +3178,7 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 
   // Moving EFLAGS to / from another register requires a push and a pop.
   // Notice that we have to adjust the stack if we don't want to clobber the
-  // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
+  // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
   if (SrcReg == X86::EFLAGS) {
     if (X86::GR64RegClass.contains(DestReg)) {
       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
@@ -2929,15 +3214,27 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 static unsigned getLoadStoreRegOpcode(unsigned Reg,
                                       const TargetRegisterClass *RC,
                                       bool isStackAligned,
-                                      const TargetMachine &TM,
+                                      const X86Subtarget &STI,
                                       bool load) {
-  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
+  if (STI.hasAVX512()) {
+    if (X86::VK8RegClass.hasSubClassEq(RC)  ||
+      X86::VK16RegClass.hasSubClassEq(RC))
+      return load ? X86::KMOVWkm : X86::KMOVWmk;
+    if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
+      return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
+    if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
+      return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
+    if (X86::VR512RegClass.hasSubClassEq(RC))
+      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
+  }
+
+  bool HasAVX = STI.hasAVX();
   switch (RC->getSize()) {
   default:
     llvm_unreachable("Unknown spill size");
   case 1:
     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
-    if (TM.getSubtarget<X86Subtarget>().is64Bit())
+    if (STI.is64Bit())
       // Copying to or from a physical H register on x86-64 requires a NOREX
       // move.  Otherwise use a normal move.
       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
@@ -2972,7 +3269,8 @@ static unsigned getLoadStoreRegOpcode(unsigned Reg,
     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
   case 16: {
-    assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
+    assert((X86::VR128RegClass.hasSubClassEq(RC) ||
+            X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
     // If stack is realigned we can use aligned stores.
     if (isStackAligned)
       return load ?
@@ -2984,28 +3282,35 @@ static unsigned getLoadStoreRegOpcode(unsigned Reg,
         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
   }
   case 32:
-    assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
+    assert((X86::VR256RegClass.hasSubClassEq(RC) ||
+            X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
     // If stack is realigned we can use aligned stores.
     if (isStackAligned)
       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
     else
       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
+  case 64:
+    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
+    if (isStackAligned)
+      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
+    else
+      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
   }
 }
 
 static unsigned getStoreRegOpcode(unsigned SrcReg,
                                   const TargetRegisterClass *RC,
                                   bool isStackAligned,
-                                  TargetMachine &TM) {
-  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
+                                  const X86Subtarget &STI) {
+  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
 }
 
 
 static unsigned getLoadRegOpcode(unsigned DestReg,
                                  const TargetRegisterClass *RC,
                                  bool isStackAligned,
-                                 const TargetMachine &TM) {
-  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
+                                 const X86Subtarget &STI) {
+  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
 }
 
 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
@@ -3016,10 +3321,13 @@ void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   const MachineFunction &MF = *MBB.getParent();
   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
          "Stack slot too small for store");
-  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
-  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
-    RI.canRealignStack(MF);
-  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
+  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+  bool isAligned = (MF.getTarget()
+                        .getSubtargetImpl()
+                        ->getFrameLowering()
+                        ->getStackAlignment() >= Alignment) ||
+                   RI.canRealignStack(MF);
+  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   DebugLoc DL = MBB.findDebugLoc(MI);
   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
     .addReg(SrcReg, getKillRegState(isKill));
@@ -3032,10 +3340,10 @@ void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
                                   MachineInstr::mmo_iterator MMOBegin,
                                   MachineInstr::mmo_iterator MMOEnd,
                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
-  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
+  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   bool isAligned = MMOBegin != MMOEnd &&
                    (*MMOBegin)->getAlignment() >= Alignment;
-  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
+  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   DebugLoc DL;
   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
@@ -3052,10 +3360,13 @@ void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                         const TargetRegisterClass *RC,
                                         const TargetRegisterInfo *TRI) const {
   const MachineFunction &MF = *MBB.getParent();
-  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
-  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
-    RI.canRealignStack(MF);
-  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
+  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
+  bool isAligned = (MF.getTarget()
+                        .getSubtargetImpl()
+                        ->getFrameLowering()
+                        ->getStackAlignment() >= Alignment) ||
+                   RI.canRealignStack(MF);
+  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   DebugLoc DL = MBB.findDebugLoc(MI);
   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
 }
@@ -3066,10 +3377,10 @@ void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
                                  MachineInstr::mmo_iterator MMOBegin,
                                  MachineInstr::mmo_iterator MMOEnd,
                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
-  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
+  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   bool isAligned = MMOBegin != MMOEnd &&
                    (*MMOBegin)->getAlignment() >= Alignment;
-  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
+  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   DebugLoc DL;
   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
@@ -3198,6 +3509,25 @@ inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
 inline static bool isDefConvertible(MachineInstr *MI) {
   switch (MI->getOpcode()) {
   default: return false;
+
+  // The shift instructions only modify ZF if their shift count is non-zero.
+  // N.B.: The processor truncates the shift count depending on the encoding.
+  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
+  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
+     return getTruncatedShiftCount(MI, 2) != 0;
+
+  // Some left shift instructions can be turned into LEA instructions but only
+  // if their flags aren't used. Avoid transforming such instructions.
+  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
+    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
+    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
+    return ShAmt != 0;
+  }
+
+  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
+  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
+     return getTruncatedShiftCount(MI, 3) != 0;
+
   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
@@ -3227,12 +3557,61 @@ inline static bool isDefConvertible(MachineInstr *MI) {
   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
+  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
+  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
+  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
+  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
+  case X86::ADC32ri:   case X86::ADC32ri8:
+  case X86::ADC32rr:   case X86::ADC64ri32:
+  case X86::ADC64ri8:  case X86::ADC64rr:
+  case X86::SBB32ri:   case X86::SBB32ri8:
+  case X86::SBB32rr:   case X86::SBB64ri32:
+  case X86::SBB64ri8:  case X86::SBB64rr:
   case X86::ANDN32rr:  case X86::ANDN32rm:
   case X86::ANDN64rr:  case X86::ANDN64rm:
+  case X86::BEXTR32rr: case X86::BEXTR64rr:
+  case X86::BEXTR32rm: case X86::BEXTR64rm:
+  case X86::BLSI32rr:  case X86::BLSI32rm:
+  case X86::BLSI64rr:  case X86::BLSI64rm:
+  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
+  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
+  case X86::BLSR32rr:  case X86::BLSR32rm:
+  case X86::BLSR64rr:  case X86::BLSR64rm:
+  case X86::BZHI32rr:  case X86::BZHI32rm:
+  case X86::BZHI64rr:  case X86::BZHI64rm:
+  case X86::LZCNT16rr: case X86::LZCNT16rm:
+  case X86::LZCNT32rr: case X86::LZCNT32rm:
+  case X86::LZCNT64rr: case X86::LZCNT64rm:
+  case X86::POPCNT16rr:case X86::POPCNT16rm:
+  case X86::POPCNT32rr:case X86::POPCNT32rm:
+  case X86::POPCNT64rr:case X86::POPCNT64rm:
+  case X86::TZCNT16rr: case X86::TZCNT16rm:
+  case X86::TZCNT32rr: case X86::TZCNT32rm:
+  case X86::TZCNT64rr: case X86::TZCNT64rm:
     return true;
   }
 }
 
+/// isUseDefConvertible - check whether the use can be converted
+/// to remove a comparison against zero.
+static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
+  switch (MI->getOpcode()) {
+  default: return X86::COND_INVALID;
+  case X86::LZCNT16rr: case X86::LZCNT16rm:
+  case X86::LZCNT32rr: case X86::LZCNT32rm:
+  case X86::LZCNT64rr: case X86::LZCNT64rm:
+    return X86::COND_B;
+  case X86::POPCNT16rr:case X86::POPCNT16rm:
+  case X86::POPCNT32rr:case X86::POPCNT32rm:
+  case X86::POPCNT64rr:case X86::POPCNT64rm:
+    return X86::COND_E;
+  case X86::TZCNT16rr: case X86::TZCNT16rm:
+  case X86::TZCNT32rr: case X86::TZCNT32rm:
+  case X86::TZCNT64rr: case X86::TZCNT64rm:
+    return X86::COND_B;
+  }
+}
+
 /// optimizeCompareInstr - Check if there exists an earlier instruction that
 /// operates on the same source operands and sets flags in the same way as
 /// Compare; remove Compare if possible.
@@ -3299,13 +3678,38 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
   // If we are comparing against zero, check whether we can use MI to update
   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
-  if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
-      !isDefConvertible(MI)))
+  if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
     return false;
 
+  // If we have a use of the source register between the def and our compare
+  // instruction we can eliminate the compare iff the use sets EFLAGS in the
+  // right way.
+  bool ShouldUpdateCC = false;
+  X86::CondCode NewCC = X86::COND_INVALID;
+  if (IsCmpZero && !isDefConvertible(MI)) {
+    // Scan forward from the use until we hit the use we're looking for or the
+    // compare instruction.
+    for (MachineBasicBlock::iterator J = MI;; ++J) {
+      // Do we have a convertible instruction?
+      NewCC = isUseDefConvertible(J);
+      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
+          J->getOperand(1).getReg() == SrcReg) {
+        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
+        ShouldUpdateCC = true; // Update CC later on.
+        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
+        // with the new def.
+        MI = Def = J;
+        break;
+      }
+
+      if (J == I)
+        return false;
+    }
+  }
+
   // We are searching for an earlier instruction that can make CmpInstr
   // redundant and that instruction will be saved in Sub.
-  MachineInstr *Sub = NULL;
+  MachineInstr *Sub = nullptr;
   const TargetRegisterInfo *TRI = &getRegisterInfo();
 
   // We iterate backward, starting from the instruction before CmpInstr and
@@ -3318,7 +3722,7 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
       RE = CmpInstr->getParent() == MI->getParent() ?
            MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
            CmpInstr->getParent()->rend();
-  MachineInstr *Movr0Inst = 0;
+  MachineInstr *Movr0Inst = nullptr;
   for (; RI != RE; ++RI) {
     MachineInstr *Instr = &*RI;
     // Check whether CmpInstr can be made redundant by the current instruction.
@@ -3335,10 +3739,7 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
       // MOV32r0 etc. are implemented with xor which clobbers condition code.
       // They are safe to move up, if the definition to EFLAGS is dead and
       // earlier instructions do not read or write EFLAGS.
-      if (!Movr0Inst && (Instr->getOpcode() == X86::MOV8r0 ||
-           Instr->getOpcode() == X86::MOV16r0 ||
-           Instr->getOpcode() == X86::MOV32r0 ||
-           Instr->getOpcode() == X86::MOV64r0) &&
+      if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
           Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
         Movr0Inst = Instr;
         continue;
@@ -3377,7 +3778,7 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
       continue;
 
     // EFLAGS is used by this instruction.
-    X86::CondCode OldCC;
+    X86::CondCode OldCC = X86::COND_INVALID;
     bool OpcIsSET = false;
     if (IsCmpZero || IsSwapped) {
       // We decode the condition code from opcode.
@@ -3403,13 +3804,28 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
         // CF and OF are used, we can't perform this optimization.
         return false;
       }
+
+      // If we're updating the condition code check if we have to reverse the
+      // condition.
+      if (ShouldUpdateCC)
+        switch (OldCC) {
+        default:
+          return false;
+        case X86::COND_E:
+          break;
+        case X86::COND_NE:
+          NewCC = GetOppositeBranchCondition(NewCC);
+          break;
+        }
     } else if (IsSwapped) {
       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
       // We swap the condition code and synthesize the new opcode.
-      X86::CondCode NewCC = getSwappedCondition(OldCC);
+      NewCC = getSwappedCondition(OldCC);
       if (NewCC == X86::COND_INVALID) return false;
+    }
 
+    if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
       // Synthesize the new opcode.
       bool HasMemoryOperand = Instr.hasOneMemOperand();
       unsigned NewOpc;
@@ -3447,20 +3863,38 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
 
   // The instruction to be updated is either Sub or MI.
   Sub = IsCmpZero ? MI : Sub;
-  // Move Movr0Inst to the place right before Sub.
+  // Move Movr0Inst to the appropriate place before Sub.
   if (Movr0Inst) {
-    Sub->getParent()->remove(Movr0Inst);
-    Sub->getParent()->insert(MachineBasicBlock::iterator(Sub), Movr0Inst);
+    // Look backwards until we find a def that doesn't use the current EFLAGS.
+    Def = Sub;
+    MachineBasicBlock::reverse_iterator
+      InsertI = MachineBasicBlock::reverse_iterator(++Def),
+                InsertE = Sub->getParent()->rend();
+    for (; InsertI != InsertE; ++InsertI) {
+      MachineInstr *Instr = &*InsertI;
+      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
+          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
+        Sub->getParent()->remove(Movr0Inst);
+        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
+                                   Movr0Inst);
+        break;
+      }
+    }
+    if (InsertI == InsertE)
+      return false;
   }
 
   // Make sure Sub instruction defines EFLAGS and mark the def live.
-  unsigned LastOperand = Sub->getNumOperands() - 1;
-  assert(Sub->getNumOperands() >= 2 &&
-         Sub->getOperand(LastOperand).isReg() &&
-         Sub->getOperand(LastOperand).getReg() == X86::EFLAGS &&
-         "EFLAGS should be the last operand of SUB, ADD, OR, XOR, AND");
-  Sub->getOperand(LastOperand).setIsDef(true);
-  Sub->getOperand(LastOperand).setIsDead(false);
+  unsigned i = 0, e = Sub->getNumOperands();
+  for (; i != e; ++i) {
+    MachineOperand &MO = Sub->getOperand(i);
+    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
+      MO.setIsDead(false);
+      break;
+    }
+  }
+  assert(i != e && "Unable to locate a def EFLAGS operand");
+
   CmpInstr->eraseFromParent();
 
   // Modify the condition code of instructions in OpsToUpdate.
@@ -3473,75 +3907,55 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
 /// operand at the use. We fold the load instructions if load defines a virtual
 /// register, the virtual register is used once in the same BB, and the
 /// instructions in-between do not load or store, and have no side effects.
-MachineInstr* X86InstrInfo::
-optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
-                  unsigned &FoldAsLoadDefReg,
-                  MachineInstr *&DefMI) const {
+MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
+                                              const MachineRegisterInfo *MRI,
+                                              unsigned &FoldAsLoadDefReg,
+                                              MachineInstr *&DefMI) const {
   if (FoldAsLoadDefReg == 0)
-    return 0;
+    return nullptr;
   // To be conservative, if there exists another load, clear the load candidate.
   if (MI->mayLoad()) {
     FoldAsLoadDefReg = 0;
-    return 0;
+    return nullptr;
   }
 
   // Check whether we can move DefMI here.
   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
   assert(DefMI);
   bool SawStore = false;
-  if (!DefMI->isSafeToMove(this, 0, SawStore))
-    return 0;
-
-  // We try to commute MI if possible.
-  unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
-  for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
-    // Collect information about virtual register operands of MI.
-    unsigned SrcOperandId = 0;
-    bool FoundSrcOperand = false;
-    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
-      MachineOperand &MO = MI->getOperand(i);
-      if (!MO.isReg())
-        continue;
-      unsigned Reg = MO.getReg();
-      if (Reg != FoldAsLoadDefReg)
-        continue;
-      // Do not fold if we have a subreg use or a def or multiple uses.
-      if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
-        return 0;
+  if (!DefMI->isSafeToMove(this, nullptr, SawStore))
+    return nullptr;
 
-      SrcOperandId = i;
-      FoundSrcOperand = true;
-    }
-    if (!FoundSrcOperand) return 0;
-
-    // Check whether we can fold the def into SrcOperandId.
-    SmallVector<unsigned, 8> Ops;
-    Ops.push_back(SrcOperandId);
-    MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
-    if (FoldMI) {
-      FoldAsLoadDefReg = 0;
-      return FoldMI;
-    }
-
-    if (Idx == 1) {
-      // MI was changed but it didn't help, commute it back!
-      commuteInstruction(MI, false);
-      return 0;
-    }
+  // Collect information about virtual register operands of MI.
+  unsigned SrcOperandId = 0;
+  bool FoundSrcOperand = false;
+  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (Reg != FoldAsLoadDefReg)
+      continue;
+    // Do not fold if we have a subreg use or a def or multiple uses.
+    if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
+      return nullptr;
 
-    // Check whether we can commute MI and enable folding.
-    if (MI->isCommutable()) {
-      MachineInstr *NewMI = commuteInstruction(MI, false);
-      // Unable to commute.
-      if (!NewMI) return 0;
-      if (NewMI != MI) {
-        // New instruction. It doesn't need to be kept.
-        NewMI->eraseFromParent();
-        return 0;
-      }
-    }
+    SrcOperandId = i;
+    FoundSrcOperand = true;
   }
-  return 0;
+  if (!FoundSrcOperand)
+    return nullptr;
+
+  // Check whether we can fold the def into SrcOperandId.
+  SmallVector<unsigned, 8> Ops;
+  Ops.push_back(SrcOperandId);
+  MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
+  if (FoldMI) {
+    FoldAsLoadDefReg = 0;
+    return FoldMI;
+  }
+
+  return nullptr;
 }
 
 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
@@ -3566,10 +3980,34 @@ static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
   return true;
 }
 
+// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
+// code sequence is needed for other targets.
+static void expandLoadStackGuard(MachineInstrBuilder &MIB,
+                                 const TargetInstrInfo &TII) {
+  MachineBasicBlock &MBB = *MIB->getParent();
+  DebugLoc DL = MIB->getDebugLoc();
+  unsigned Reg = MIB->getOperand(0).getReg();
+  const GlobalValue *GV =
+      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
+  unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
+  MachineMemOperand *MMO = MBB.getParent()->
+      getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
+  MachineBasicBlock::iterator I = MIB;
+
+  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
+      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
+      .addMemOperand(MMO);
+  MIB->setDebugLoc(DL);
+  MIB->setDesc(TII.get(X86::MOV64rm));
+  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
+}
+
 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
-  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
+  bool HasAVX = Subtarget.hasAVX();
   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
   switch (MI->getOpcode()) {
+  case X86::MOV32r0:
+    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
   case X86::SETB_C8r:
     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
   case X86::SETB_C16r:
@@ -3585,6 +4023,8 @@ bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
   case X86::AVX_SET0:
     assert(HasAVX && "AVX not supported");
     return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
+  case X86::AVX512_512_SET0:
+    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
   case X86::V_SETALLONES:
     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
   case X86::AVX2_SETALLONES:
@@ -3592,23 +4032,17 @@ bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
   case X86::TEST8ri_NOREX:
     MI->setDesc(get(X86::TEST8ri));
     return true;
+  case X86::KSET0B: 
+  case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
+  case X86::KSET1B:
+  case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
+  case TargetOpcode::LOAD_STACK_GUARD:
+    expandLoadStackGuard(MIB, *this);
+    return true;
   }
   return false;
 }
 
-MachineInstr*
-X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
-                                       int FrameIx, uint64_t Offset,
-                                       const MDNode *MDPtr,
-                                       DebugLoc DL) const {
-  X86AddressMode AM;
-  AM.BaseType = X86AddressMode::FrameIndexBase;
-  AM.Base.FrameIndex = FrameIx;
-  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
-  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
-  return &*MIB;
-}
-
 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
                                      const SmallVectorImpl<MachineOperand> &MOs,
                                      MachineInstr *MI,
@@ -3680,9 +4114,20 @@ MachineInstr*
 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
                                     MachineInstr *MI, unsigned i,
                                     const SmallVectorImpl<MachineOperand> &MOs,
-                                    unsigned Size, unsigned Align) const {
-  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
+                                    unsigned Size, unsigned Align,
+                                    bool AllowCommute) const {
+  const DenseMap<unsigned,
+                 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
+  bool isCallRegIndirect = Subtarget.callRegIndirect();
   bool isTwoAddrFold = false;
+
+  // Atom favors register form of call. So, we do not fold loads into calls
+  // when X86Subtarget is Atom.
+  if (isCallRegIndirect &&
+    (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
+    return nullptr;
+  }
+
   unsigned NumOps = MI->getDesc().getNumOperands();
   bool isTwoAddr = NumOps > 1 &&
     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
@@ -3691,9 +4136,9 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   if (MI->getOpcode() == X86::ADD32ri &&
       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
-    return NULL;
+    return nullptr;
 
-  MachineInstr *NewMI = NULL;
+  MachineInstr *NewMI = nullptr;
   // Folding a memory location into the two-address part of a two-address
   // instruction is different than folding it other places.  It requires
   // replacing the *two* registers with the memory location.
@@ -3704,18 +4149,11 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
     isTwoAddrFold = true;
   } else if (i == 0) { // If operand 0
-    unsigned Opc = 0;
-    switch (MI->getOpcode()) {
-    default: break;
-    case X86::MOV64r0: Opc = X86::MOV64mi32; break;
-    case X86::MOV32r0: Opc = X86::MOV32mi;   break;
-    case X86::MOV16r0: Opc = X86::MOV16mi;   break;
-    case X86::MOV8r0:  Opc = X86::MOV8mi;    break;
+    if (MI->getOpcode() == X86::MOV32r0) {
+      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
+      if (NewMI)
+        return NewMI;
     }
-    if (Opc)
-       NewMI = MakeM0Inst(*this, Opc, MOs, MI);
-    if (NewMI)
-      return NewMI;
 
     OpcodeTablePtr = &RegOp2MemOpTable0;
   } else if (i == 1) {
@@ -3735,7 +4173,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
       unsigned Opcode = I->second.first;
       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
       if (Align < MinAlign)
-        return NULL;
+        return nullptr;
       bool NarrowToMOV32rm = false;
       if (Size) {
         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
@@ -3743,12 +4181,12 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
           // Check if it's safe to fold the load. If the size of the object is
           // narrower than the load width, then it's not.
           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
-            return NULL;
+            return nullptr;
           // If this is a 64-bit load, but the spill slot is 32, then we can do
-          // a 32-bit load which is implicitly zero-extended. This likely is due
-          // to liveintervalanalysis remat'ing a load from stack slot.
+          // a 32-bit load which is implicitly zero-extended. This likely is
+          // due to live interval analysis remat'ing a load from stack slot.
           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
-            return NULL;
+            return nullptr;
           Opcode = X86::MOV32rm;
           NarrowToMOV32rm = true;
         }
@@ -3765,8 +4203,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
         // to a 32-bit one.
         unsigned DstReg = NewMI->getOperand(0).getReg();
         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
-          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
-                                                   X86::sub_32bit));
+          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
         else
           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
       }
@@ -3774,10 +4211,69 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
     }
   }
 
+  // If the instruction and target operand are commutable, commute the
+  // instruction and try again.
+  if (AllowCommute) {
+    unsigned OriginalOpIdx = i, CommuteOpIdx1, CommuteOpIdx2;
+    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
+      bool HasDef = MI->getDesc().getNumDefs();
+      unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
+      unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
+      unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
+      bool Tied0 =
+          0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
+      bool Tied1 =
+          0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
+
+      // If either of the commutable operands are tied to the destination
+      // then we can not commute + fold.
+      if ((HasDef && Reg0 == Reg1 && Tied0) ||
+          (HasDef && Reg0 == Reg2 && Tied1))
+        return nullptr;
+
+      if ((CommuteOpIdx1 == OriginalOpIdx) ||
+          (CommuteOpIdx2 == OriginalOpIdx)) {
+        MachineInstr *CommutedMI = commuteInstruction(MI, false);
+        if (!CommutedMI) {
+          // Unable to commute.
+          return nullptr;
+        }
+        if (CommutedMI != MI) {
+          // New instruction. We can't fold from this.
+          CommutedMI->eraseFromParent();
+          return nullptr;
+        }
+
+        // Attempt to fold with the commuted version of the instruction.
+        unsigned CommuteOp =
+            (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
+        NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
+                                      /*AllowCommute=*/false);
+        if (NewMI)
+          return NewMI;
+
+        // Folding failed again - undo the commute before returning.
+        MachineInstr *UncommutedMI = commuteInstruction(MI, false);
+        if (!UncommutedMI) {
+          // Unable to commute.
+          return nullptr;
+        }
+        if (UncommutedMI != MI) {
+          // New instruction. It doesn't need to be kept.
+          UncommutedMI->eraseFromParent();
+          return nullptr;
+        }
+
+        // Return here to prevent duplicate fuse failure report.
+        return nullptr;
+      }
+    }
+  }
+
   // No fusion
   if (PrintFailedFusing && !MI->isCopy())
     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
-  return NULL;
+  return nullptr;
 }
 
 /// hasPartialRegUpdate - Return true for all instructions that only update
@@ -3816,18 +4312,6 @@ static bool hasPartialRegUpdate(unsigned Opcode) {
   case X86::RSQRTSSr_Int:
   case X86::SQRTSSr:
   case X86::SQRTSSr_Int:
-  // AVX encoded versions
-  case X86::VCVTSD2SSrr:
-  case X86::Int_VCVTSD2SSrr:
-  case X86::VCVTSS2SDrr:
-  case X86::Int_VCVTSS2SDrr:
-  case X86::VRCPSSr:
-  case X86::VROUNDSDr:
-  case X86::VROUNDSDr_Int:
-  case X86::VROUNDSSr:
-  case X86::VROUNDSSr_Int:
-  case X86::VRSQRTSSr:
-  case X86::VSQRTSSr:
     return true;
   }
 
@@ -3859,14 +4343,81 @@ getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
   return 16;
 }
 
+// Return true for any instruction the copies the high bits of the first source
+// operand into the unused high bits of the destination operand.
+static bool hasUndefRegUpdate(unsigned Opcode) {
+  switch (Opcode) {
+  case X86::VCVTSI2SSrr:
+  case X86::Int_VCVTSI2SSrr:
+  case X86::VCVTSI2SS64rr:
+  case X86::Int_VCVTSI2SS64rr:
+  case X86::VCVTSI2SDrr:
+  case X86::Int_VCVTSI2SDrr:
+  case X86::VCVTSI2SD64rr:
+  case X86::Int_VCVTSI2SD64rr:
+  case X86::VCVTSD2SSrr:
+  case X86::Int_VCVTSD2SSrr:
+  case X86::VCVTSS2SDrr:
+  case X86::Int_VCVTSS2SDrr:
+  case X86::VRCPSSr:
+  case X86::VROUNDSDr:
+  case X86::VROUNDSDr_Int:
+  case X86::VROUNDSSr:
+  case X86::VROUNDSSr_Int:
+  case X86::VRSQRTSSr:
+  case X86::VSQRTSSr:
+
+  // AVX-512
+  case X86::VCVTSD2SSZrr:
+  case X86::VCVTSS2SDZrr:
+    return true;
+  }
+
+  return false;
+}
+
+/// Inform the ExeDepsFix pass how many idle instructions we would like before
+/// certain undef register reads.
+///
+/// This catches the VCVTSI2SD family of instructions:
+///
+/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
+///
+/// We should to be careful *not* to catch VXOR idioms which are presumably
+/// handled specially in the pipeline:
+///
+/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
+///
+/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
+/// high bits that are passed-through are not live.
+unsigned X86InstrInfo::
+getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
+                     const TargetRegisterInfo *TRI) const {
+  if (!hasUndefRegUpdate(MI->getOpcode()))
+    return 0;
+
+  // Set the OpNum parameter to the first source operand.
+  OpNum = 1;
+
+  const MachineOperand &MO = MI->getOperand(OpNum);
+  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+    // Use the same magic number as getPartialRegUpdateClearance.
+    return 16;
+  }
+  return 0;
+}
+
 void X86InstrInfo::
 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
                           const TargetRegisterInfo *TRI) const {
   unsigned Reg = MI->getOperand(OpNum).getReg();
+  // If MI kills this register, the false dependence is already broken.
+  if (MI->killsRegister(Reg, TRI))
+    return;
   if (X86::VR128RegClass.contains(Reg)) {
     // These instructions are all floating point domain, so xorps is the best
     // choice.
-    bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
+    bool HasAVX = Subtarget.hasAVX();
     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
@@ -3882,28 +4433,35 @@ breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   MI->addRegisterKilled(Reg, TRI, true);
 }
 
-MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
-                                                  MachineInstr *MI,
-                                           const SmallVectorImpl<unsigned> &Ops,
-                                                  int FrameIndex) const {
+MachineInstr*
+X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+                                    const SmallVectorImpl<unsigned> &Ops,
+                                    int FrameIndex) const {
   // Check switch flag
-  if (NoFusing) return NULL;
+  if (NoFusing) return nullptr;
 
   // Unless optimizing for size, don't fold to avoid partial
   // register update stalls
-  if (!MF.getFunction()->getFnAttributes().
-        hasAttribute(Attribute::OptimizeForSize) &&
+  if (!MF.getFunction()->getAttributes().
+        hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
       hasPartialRegUpdate(MI->getOpcode()))
-    return 0;
+    return nullptr;
 
   const MachineFrameInfo *MFI = MF.getFrameInfo();
   unsigned Size = MFI->getObjectSize(FrameIndex);
   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
+  // If the function stack isn't realigned we don't want to fold instructions
+  // that need increased alignment.
+  if (!RI.needsStackRealignment(MF))
+    Alignment = std::min(Alignment, MF.getTarget()
+                                        .getSubtargetImpl()
+                                        ->getFrameLowering()
+                                        ->getStackAlignment());
   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
     unsigned NewOpc = 0;
     unsigned RCSize = 0;
     switch (MI->getOpcode()) {
-    default: return NULL;
+    default: return nullptr;
     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
@@ -3912,31 +4470,60 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
     // Check if it's safe to fold the load. If the size of the object is
     // narrower than the load width, then it's not.
     if (Size < RCSize)
-      return NULL;
+      return nullptr;
     // Change to CMPXXri r, 0 first.
     MI->setDesc(get(NewOpc));
     MI->getOperand(1).ChangeToImmediate(0);
   } else if (Ops.size() != 1)
-    return NULL;
+    return nullptr;
 
   SmallVector<MachineOperand,4> MOs;
   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
-  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
+  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
+                               Size, Alignment, /*AllowCommute=*/true);
+}
+
+static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
+                                  const MachineFunction &MF) {
+  unsigned Opc = LoadMI.getOpcode();
+  unsigned RegSize =
+      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
+
+  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
+    // These instructions only load 32 bits, we can't fold them if the
+    // destination register is wider than 32 bits (4 bytes).
+    return true;
+
+  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
+    // These instructions only load 64 bits, we can't fold them if the
+    // destination register is wider than 64 bits (8 bytes).
+    return true;
+
+  return false;
 }
 
 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
                                                   MachineInstr *MI,
                                            const SmallVectorImpl<unsigned> &Ops,
                                                   MachineInstr *LoadMI) const {
+  // If loading from a FrameIndex, fold directly from the FrameIndex.
+  unsigned NumOps = LoadMI->getDesc().getNumOperands();
+  int FrameIndex;
+  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
+    if (isPartialRegisterLoad(*LoadMI, MF))
+      return nullptr;
+    return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
+  }
+
   // Check switch flag
-  if (NoFusing) return NULL;
+  if (NoFusing) return nullptr;
 
   // Unless optimizing for size, don't fold to avoid partial
   // register update stalls
-  if (!MF.getFunction()->getFnAttributes().
-        hasAttribute(Attribute::OptimizeForSize) &&
+  if (!MF.getFunction()->getAttributes().
+        hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
       hasPartialRegUpdate(MI->getOpcode()))
-    return 0;
+    return nullptr;
 
   // Determine the alignment of the load.
   unsigned Alignment = 0;
@@ -3959,12 +4546,12 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
       Alignment = 4;
       break;
     default:
-      return 0;
+      return nullptr;
     }
   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
     unsigned NewOpc = 0;
     switch (MI->getOpcode()) {
-    default: return NULL;
+    default: return nullptr;
     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
@@ -3974,12 +4561,12 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
     MI->setDesc(get(NewOpc));
     MI->getOperand(1).ChangeToImmediate(0);
   } else if (Ops.size() != 1)
-    return NULL;
+    return nullptr;
 
   // Make sure the subregisters match.
   // Otherwise we risk changing the size of the load.
   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
-    return NULL;
+    return nullptr;
 
   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
   switch (LoadMI->getOpcode()) {
@@ -3993,21 +4580,21 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
     // Create a constant-pool entry and operands to load from it.
 
     // Medium and large mode can't fold loads this way.
-    if (TM.getCodeModel() != CodeModel::Small &&
-        TM.getCodeModel() != CodeModel::Kernel)
-      return NULL;
+    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
+        MF.getTarget().getCodeModel() != CodeModel::Kernel)
+      return nullptr;
 
     // x86-32 PIC requires a PIC base register for constant pools.
     unsigned PICBase = 0;
-    if (TM.getRelocationModel() == Reloc::PIC_) {
-      if (TM.getSubtarget<X86Subtarget>().is64Bit())
+    if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
+      if (Subtarget.is64Bit())
         PICBase = X86::RIP;
       else
         // FIXME: PICBase = getGlobalBaseReg(&MF);
         // This doesn't work for several reasons.
         // 1. GlobalBaseReg may have been spilled.
         // 2. It may not be live at MI.
-        return NULL;
+        return nullptr;
     }
 
     // Create a constant-pool entry.
@@ -4037,29 +4624,17 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
     break;
   }
   default: {
-    if ((LoadMI->getOpcode() == X86::MOVSSrm ||
-         LoadMI->getOpcode() == X86::VMOVSSrm) &&
-        MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
-          > 4)
-      // These instructions only load 32 bits, we can't fold them if the
-      // destination register is wider than 32 bits (4 bytes).
-      return NULL;
-    if ((LoadMI->getOpcode() == X86::MOVSDrm ||
-         LoadMI->getOpcode() == X86::VMOVSDrm) &&
-        MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
-          > 8)
-      // These instructions only load 64 bits, we can't fold them if the
-      // destination register is wider than 64 bits (8 bytes).
-      return NULL;
+    if (isPartialRegisterLoad(*LoadMI, MF))
+      return nullptr;
 
     // Folding a normal load. Just copy the load's address operands.
-    unsigned NumOps = LoadMI->getDesc().getNumOperands();
     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
       MOs.push_back(LoadMI->getOperand(i));
     break;
   }
   }
-  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
+  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
+                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
 }
 
 
@@ -4097,17 +4672,14 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
   // Folding a memory location into the two-address part of a two-address
   // instruction is different than folding it other places.  It requires
   // replacing the *two* registers with the memory location.
-  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
+  const DenseMap<unsigned,
+                 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   } else if (OpNum == 0) { // If operand 0
-    switch (Opc) {
-    case X86::MOV8r0:
-    case X86::MOV16r0:
-    case X86::MOV32r0:
-    case X86::MOV64r0: return true;
-    default: break;
-    }
+    if (Opc == X86::MOV32r0)
+      return true;
+
     OpcodeTablePtr = &RegOp2MemOpTable0;
   } else if (OpNum == 1) {
     OpcodeTablePtr = &RegOp2MemOpTable1;
@@ -4144,7 +4716,7 @@ bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   if (!MI->hasOneMemOperand() &&
       RC == &X86::VR128RegClass &&
-      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
+      !Subtarget.isUnalignedMemAccessFast())
     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
     // conservatively assume the address is unaligned. That's bad for
     // performance.
@@ -4268,7 +4840,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   std::vector<SDValue> AddrOps;
   std::vector<SDValue> BeforeOps;
   std::vector<SDValue> AfterOps;
-  DebugLoc dl = N->getDebugLoc();
+  SDLoc dl(N);
   unsigned NumOps = N->getNumOperands();
   for (unsigned i = 0; i != NumOps-1; ++i) {
     SDValue Op = N->getOperand(i);
@@ -4283,7 +4855,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   AddrOps.push_back(Chain);
 
   // Emit the load instruction.
-  SDNode *Load = 0;
+  SDNode *Load = nullptr;
   if (FoldedLoad) {
     EVT VT = *RC->vt_begin();
     std::pair<MachineInstr::mmo_iterator,
@@ -4292,14 +4864,14 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                             cast<MachineSDNode>(N)->memoperands_end());
     if (!(*MMOs.first) &&
         RC == &X86::VR128RegClass &&
-        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
+        !Subtarget.isUnalignedMemAccessFast())
       // Do not introduce a slow unaligned load.
       return false;
     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
     bool isAligned = (*MMOs.first) &&
                      (*MMOs.first)->getAlignment() >= Alignment;
-    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
-                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
+    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
+                              VT, MVT::Other, AddrOps);
     NewNodes.push_back(Load);
 
     // Preserve memory reference information.
@@ -4308,7 +4880,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
 
   // Emit the data processing instruction.
   std::vector<EVT> VTs;
-  const TargetRegisterClass *DstRC = 0;
+  const TargetRegisterClass *DstRC = nullptr;
   if (MCID.getNumDefs() > 0) {
     DstRC = getRegClass(MCID, 0, &RI, MF);
     VTs.push_back(*DstRC->vt_begin());
@@ -4321,8 +4893,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   if (Load)
     BeforeOps.push_back(SDValue(Load, 0));
   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
-  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
-                                      BeforeOps.size());
+  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
   NewNodes.push_back(NewNode);
 
   // Emit the store instruction.
@@ -4336,16 +4907,15 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                              cast<MachineSDNode>(N)->memoperands_end());
     if (!(*MMOs.first) &&
         RC == &X86::VR128RegClass &&
-        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
+        !Subtarget.isUnalignedMemAccessFast())
       // Do not introduce a slow unaligned store.
       return false;
     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
     bool isAligned = (*MMOs.first) &&
                      (*MMOs.first)->getAlignment() >= Alignment;
-    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
-                                                         isAligned, TM),
-                                       dl, MVT::Other,
-                                       &AddrOps[0], AddrOps.size());
+    SDNode *Store =
+        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
+                           dl, MVT::Other, AddrOps);
     NewNodes.push_back(Store);
 
     // Preserve memory reference information.
@@ -4506,7 +5076,7 @@ bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   default:
     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
     // have 16 of them to play with.
-    if (TM.getSubtargetImpl()->is64Bit()) {
+    if (Subtarget.is64Bit()) {
       if (NumLoads >= 3)
         return false;
     } else if (NumLoads) {
@@ -4527,6 +5097,168 @@ bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   return true;
 }
 
+bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
+                                          MachineInstr *Second) const {
+  // Check if this processor supports macro-fusion. Since this is a minor
+  // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
+  // proxy for SandyBridge+.
+  if (!Subtarget.hasAVX())
+    return false;
+
+  enum {
+    FuseTest,
+    FuseCmp,
+    FuseInc
+  } FuseKind;
+
+  switch(Second->getOpcode()) {
+  default:
+    return false;
+  case X86::JE_4:
+  case X86::JNE_4:
+  case X86::JL_4:
+  case X86::JLE_4:
+  case X86::JG_4:
+  case X86::JGE_4:
+    FuseKind = FuseInc;
+    break;
+  case X86::JB_4:
+  case X86::JBE_4:
+  case X86::JA_4:
+  case X86::JAE_4:
+    FuseKind = FuseCmp;
+    break;
+  case X86::JS_4:
+  case X86::JNS_4:
+  case X86::JP_4:
+  case X86::JNP_4:
+  case X86::JO_4:
+  case X86::JNO_4:
+    FuseKind = FuseTest;
+    break;
+  }
+  switch (First->getOpcode()) {
+  default:
+    return false;
+  case X86::TEST8rr:
+  case X86::TEST16rr:
+  case X86::TEST32rr:
+  case X86::TEST64rr:
+  case X86::TEST8ri:
+  case X86::TEST16ri:
+  case X86::TEST32ri:
+  case X86::TEST32i32:
+  case X86::TEST64i32:
+  case X86::TEST64ri32:
+  case X86::TEST8rm:
+  case X86::TEST16rm:
+  case X86::TEST32rm:
+  case X86::TEST64rm:
+  case X86::TEST8ri_NOREX:
+  case X86::AND16i16:
+  case X86::AND16ri:
+  case X86::AND16ri8:
+  case X86::AND16rm:
+  case X86::AND16rr:
+  case X86::AND32i32:
+  case X86::AND32ri:
+  case X86::AND32ri8:
+  case X86::AND32rm:
+  case X86::AND32rr:
+  case X86::AND64i32:
+  case X86::AND64ri32:
+  case X86::AND64ri8:
+  case X86::AND64rm:
+  case X86::AND64rr:
+  case X86::AND8i8:
+  case X86::AND8ri:
+  case X86::AND8rm:
+  case X86::AND8rr:
+    return true;
+  case X86::CMP16i16:
+  case X86::CMP16ri:
+  case X86::CMP16ri8:
+  case X86::CMP16rm:
+  case X86::CMP16rr:
+  case X86::CMP32i32:
+  case X86::CMP32ri:
+  case X86::CMP32ri8:
+  case X86::CMP32rm:
+  case X86::CMP32rr:
+  case X86::CMP64i32:
+  case X86::CMP64ri32:
+  case X86::CMP64ri8:
+  case X86::CMP64rm:
+  case X86::CMP64rr:
+  case X86::CMP8i8:
+  case X86::CMP8ri:
+  case X86::CMP8rm:
+  case X86::CMP8rr:
+  case X86::ADD16i16:
+  case X86::ADD16ri:
+  case X86::ADD16ri8:
+  case X86::ADD16ri8_DB:
+  case X86::ADD16ri_DB:
+  case X86::ADD16rm:
+  case X86::ADD16rr:
+  case X86::ADD16rr_DB:
+  case X86::ADD32i32:
+  case X86::ADD32ri:
+  case X86::ADD32ri8:
+  case X86::ADD32ri8_DB:
+  case X86::ADD32ri_DB:
+  case X86::ADD32rm:
+  case X86::ADD32rr:
+  case X86::ADD32rr_DB:
+  case X86::ADD64i32:
+  case X86::ADD64ri32:
+  case X86::ADD64ri32_DB:
+  case X86::ADD64ri8:
+  case X86::ADD64ri8_DB:
+  case X86::ADD64rm:
+  case X86::ADD64rr:
+  case X86::ADD64rr_DB:
+  case X86::ADD8i8:
+  case X86::ADD8mi:
+  case X86::ADD8mr:
+  case X86::ADD8ri:
+  case X86::ADD8rm:
+  case X86::ADD8rr:
+  case X86::SUB16i16:
+  case X86::SUB16ri:
+  case X86::SUB16ri8:
+  case X86::SUB16rm:
+  case X86::SUB16rr:
+  case X86::SUB32i32:
+  case X86::SUB32ri:
+  case X86::SUB32ri8:
+  case X86::SUB32rm:
+  case X86::SUB32rr:
+  case X86::SUB64i32:
+  case X86::SUB64ri32:
+  case X86::SUB64ri8:
+  case X86::SUB64rm:
+  case X86::SUB64rr:
+  case X86::SUB8i8:
+  case X86::SUB8ri:
+  case X86::SUB8rm:
+  case X86::SUB8rr:
+    return FuseKind == FuseCmp || FuseKind == FuseInc;
+  case X86::INC16r:
+  case X86::INC32r:
+  case X86::INC64_16r:
+  case X86::INC64_32r:
+  case X86::INC64r:
+  case X86::INC8r:
+  case X86::DEC16r:
+  case X86::DEC32r:
+  case X86::DEC64_16r:
+  case X86::DEC64_32r:
+  case X86::DEC64r:
+  case X86::DEC8r:
+    return FuseKind == FuseInc;
+  }
+}
 
 bool X86InstrInfo::
 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
@@ -4553,7 +5285,7 @@ isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
 ///
 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
-  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
+  assert(!Subtarget.is64Bit() &&
          "X86-64 PIC uses RIP relative addressing");
 
   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
@@ -4627,7 +5359,13 @@ static const uint16_t ReplaceableInstrsAVX2[][3] = {
   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
-  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
+  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
+  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
+  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
+  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
+  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
+  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
+  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
 };
 
 // FIXME: Some shuffle and unpack instructions have equivalents in different
@@ -4637,20 +5375,20 @@ static const uint16_t *lookup(unsigned opcode, unsigned domain) {
   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
     if (ReplaceableInstrs[i][domain-1] == opcode)
       return ReplaceableInstrs[i];
-  return 0;
+  return nullptr;
 }
 
 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
       return ReplaceableInstrsAVX2[i];
-  return 0;
+  return nullptr;
 }
 
 std::pair<uint16_t, uint16_t>
 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
-  bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
+  bool hasAVX2 = Subtarget.hasAVX2();
   uint16_t validDomains = 0;
   if (domain && lookup(MI->getOpcode(), domain))
     validDomains = 0xe;
@@ -4665,7 +5403,7 @@ void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   assert(dom && "Not an SSE instruction");
   const uint16_t *table = lookup(MI->getOpcode(), dom);
   if (!table) { // try the other table
-    assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
+    assert((Subtarget.hasAVX2() || Domain < 3) &&
            "256-bit vector operations only available in AVX2");
     table = lookupAVX2(MI->getOpcode(), dom);
   }
@@ -4678,6 +5416,16 @@ void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   NopInst.setOpcode(X86::NOOP);
 }
 
+void X86InstrInfo::getUnconditionalBranch(
+    MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
+  Branch.setOpcode(X86::JMP_4);
+  Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
+}
+
+void X86InstrInfo::getTrap(MCInst &MI) const {
+  MI.setOpcode(X86::TRAP);
+}
+
 bool X86InstrInfo::isHighLatencyDef(int opc) const {
   switch (opc) {
   default: return false;
@@ -4690,13 +5438,9 @@ bool X86InstrInfo::isHighLatencyDef(int opc) const {
   case X86::DIVSSrr:
   case X86::DIVSSrr_Int:
   case X86::SQRTPDm:
-  case X86::SQRTPDm_Int:
   case X86::SQRTPDr:
-  case X86::SQRTPDr_Int:
   case X86::SQRTPSm:
-  case X86::SQRTPSm_Int:
   case X86::SQRTPSr:
-  case X86::SQRTPSr_Int:
   case X86::SQRTSDm:
   case X86::SQRTSDm_Int:
   case X86::SQRTSDr:
@@ -4715,19 +5459,46 @@ bool X86InstrInfo::isHighLatencyDef(int opc) const {
   case X86::VDIVSSrr:
   case X86::VDIVSSrr_Int:
   case X86::VSQRTPDm:
-  case X86::VSQRTPDm_Int:
   case X86::VSQRTPDr:
-  case X86::VSQRTPDr_Int:
   case X86::VSQRTPSm:
-  case X86::VSQRTPSm_Int:
   case X86::VSQRTPSr:
-  case X86::VSQRTPSr_Int:
   case X86::VSQRTSDm:
   case X86::VSQRTSDm_Int:
   case X86::VSQRTSDr:
   case X86::VSQRTSSm:
   case X86::VSQRTSSm_Int:
   case X86::VSQRTSSr:
+  case X86::VSQRTPDZm:
+  case X86::VSQRTPDZr:
+  case X86::VSQRTPSZm:
+  case X86::VSQRTPSZr:
+  case X86::VSQRTSDZm:
+  case X86::VSQRTSDZm_Int:
+  case X86::VSQRTSDZr:
+  case X86::VSQRTSSZm_Int:
+  case X86::VSQRTSSZr:
+  case X86::VSQRTSSZm:
+  case X86::VDIVSDZrm:
+  case X86::VDIVSDZrr:
+  case X86::VDIVSSZrm:
+  case X86::VDIVSSZrr:
+
+  case X86::VGATHERQPSZrm:
+  case X86::VGATHERQPDZrm:
+  case X86::VGATHERDPDZrm:
+  case X86::VGATHERDPSZrm:
+  case X86::VPGATHERQDZrm:
+  case X86::VPGATHERQQZrm:
+  case X86::VPGATHERDDZrm:
+  case X86::VPGATHERDQZrm:
+  case X86::VSCATTERQPDZmr:
+  case X86::VSCATTERQPSZmr:
+  case X86::VSCATTERDPDZmr:
+  case X86::VSCATTERDPSZmr:
+  case X86::VPSCATTERQDZmr:
+  case X86::VPSCATTERQQZmr:
+  case X86::VPSCATTERDDZmr:
+  case X86::VPSCATTERDQZmr:
     return true;
   }
 }
@@ -4747,12 +5518,14 @@ namespace {
     static char ID;
     CGBR() : MachineFunctionPass(ID) {}
 
-    virtual bool runOnMachineFunction(MachineFunction &MF) {
+    bool runOnMachineFunction(MachineFunction &MF) override {
       const X86TargetMachine *TM =
         static_cast<const X86TargetMachine *>(&MF.getTarget());
 
-      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
-             "X86-64 PIC uses RIP relative addressing");
+      // Don't do anything if this is 64-bit as 64-bit PIC
+      // uses RIP relative addressing.
+      if (TM->getSubtarget<X86Subtarget>().is64Bit())
+        return false;
 
       // Only emit a global base reg in PIC mode.
       if (TM->getRelocationModel() != Reloc::PIC_)
@@ -4770,7 +5543,7 @@ namespace {
       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
       MachineRegisterInfo &RegInfo = MF.getRegInfo();
-      const X86InstrInfo *TII = TM->getInstrInfo();
+      const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
 
       unsigned PC;
       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
@@ -4794,11 +5567,11 @@ namespace {
       return true;
     }
 
-    virtual const char *getPassName() const {
+    const char *getPassName() const override {
       return "X86 PIC Global Base Reg Initialization";
     }
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.setPreservesCFG();
       MachineFunctionPass::getAnalysisUsage(AU);
     }
@@ -4807,14 +5580,14 @@ namespace {
 
 char CGBR::ID = 0;
 FunctionPass*
-llvm::createGlobalBaseRegPass() { return new CGBR(); }
+llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
 
 namespace {
   struct LDTLSCleanup : public MachineFunctionPass {
     static char ID;
     LDTLSCleanup() : MachineFunctionPass(ID) {}
 
-    virtual bool runOnMachineFunction(MachineFunction &MF) {
+    bool runOnMachineFunction(MachineFunction &MF) override {
       X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
         // No point folding accesses if there isn't at least two.
@@ -4868,7 +5641,7 @@ namespace {
       const X86TargetMachine *TM =
           static_cast<const X86TargetMachine *>(&MF->getTarget());
       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
-      const X86InstrInfo *TII = TM->getInstrInfo();
+      const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
 
       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
       MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
@@ -4889,7 +5662,7 @@ namespace {
       const X86TargetMachine *TM =
           static_cast<const X86TargetMachine *>(&MF->getTarget());
       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
-      const X86InstrInfo *TII = TM->getInstrInfo();
+      const X86InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
 
       // Create a virtual register for the TLS base address.
       MachineRegisterInfo &RegInfo = MF->getRegInfo();
@@ -4907,11 +5680,11 @@ namespace {
       return Copy;
     }
 
-    virtual const char *getPassName() const {
+    const char *getPassName() const override {
       return "Local Dynamic TLS Access Clean-up";
     }
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.setPreservesCFG();
       AU.addRequired<MachineDominatorTree>();
       MachineFunctionPass::getAnalysisUsage(AU);