[CodeGen] Fix FREM on 32-bit MSVC on x86
[oota-llvm.git] / lib / Target / X86 / X86ISelLowering.cpp
index dc73cb2392fe56eab365ef30eaadb8efadb9d789..de8d3e93b497b812b56546b82fdb222880d9b8a1 100644 (file)
@@ -67,16 +67,12 @@ static cl::opt<bool> ExperimentalVectorWideningLegalization(
              "rather than promotion."),
     cl::Hidden);
 
-// Forward declarations.
-static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
-                       SDValue V2);
-
 X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
                                      const X86Subtarget &STI)
     : TargetLowering(TM), Subtarget(&STI) {
   X86ScalarSSEf64 = Subtarget->hasSSE2();
   X86ScalarSSEf32 = Subtarget->hasSSE1();
-  TD = TM.getDataLayout();
+  MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
 
   // Set up the TargetLowering object.
   static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
@@ -118,13 +114,6 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
-
-    // The _ftol2 runtime function has an unusual calling conv, which
-    // is modeled by a special pseudo-instruction.
-    setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
-    setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
-    setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
-    setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
   }
 
   if (Subtarget->isTargetDarwin()) {
@@ -232,8 +221,14 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
 
   if (Subtarget->is64Bit()) {
-    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
-    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
+    if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) {
+      // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80.
+      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
+      setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Custom);
+    } else {
+      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
+      setOperationAction(ISD::FP_TO_UINT   , MVT::i64  , Expand);
+    }
   } else if (!Subtarget->useSoftFloat()) {
     // Since AVX is a superset of SSE3, only check for SSE here.
     if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
@@ -242,14 +237,11 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       // the optimal thing for SSE vs. the default expansion in the legalizer.
       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
     else
+      // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom.
       // With SSE3 we can use fisttpll to convert to a signed i64; without
       // SSE, we're stuck with a fistpll.
       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
-  }
 
-  if (isTargetFTOL()) {
-    // Use the _ftol2 runtime function, which has a pseudo-instruction
-    // to handle its weird calling convention.
     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
   }
 
@@ -312,7 +304,17 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
-  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
+
+  if (Subtarget->is32Bit() && Subtarget->isTargetKnownWindowsMSVC()) {
+    // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
+    // is. We should promote the value to 64-bits to solve this.
+    // This is what the CRT headers do - `fmodf` is an inline header
+    // function casting to f64 and calling `fmod`.
+    setOperationAction(ISD::FREM           , MVT::f32  , Promote);
+  } else {
+    setOperationAction(ISD::FREM           , MVT::f32  , Expand);
+  }
+
   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
@@ -415,6 +417,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
   }
   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
+  setOperationAction(ISD::CATCHRET        , MVT::Other, Custom);
   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
   // support continuation, user-level threading, and etc.. As a result, no
@@ -473,7 +476,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
   }
 
-  if (Subtarget->is64Bit()) {
+  if (Subtarget->isTarget64BitLP64()) {
     setExceptionPointerRegister(X86::RAX);
     setExceptionSelectorRegister(X86::RDX);
   } else {
@@ -492,8 +495,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
-  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
-    // TargetInfo::X86_64ABIBuiltinVaList
+  if (Subtarget->is64Bit()) {
     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
   } else {
@@ -505,7 +507,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 
-  setOperationAction(ISD::DYNAMIC_STACKALLOC, getPointerTy(*TD), Custom);
+  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
 
   // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
   setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
@@ -1202,6 +1204,19 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
       setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
       setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
       setOperationAction(ISD::MUL,             MVT::v32i8, Custom);
+
+      setOperationAction(ISD::SMAX,            MVT::v32i8,  Custom);
+      setOperationAction(ISD::SMAX,            MVT::v16i16, Custom);
+      setOperationAction(ISD::SMAX,            MVT::v8i32,  Custom);
+      setOperationAction(ISD::UMAX,            MVT::v32i8,  Custom);
+      setOperationAction(ISD::UMAX,            MVT::v16i16, Custom);
+      setOperationAction(ISD::UMAX,            MVT::v8i32,  Custom);
+      setOperationAction(ISD::SMIN,            MVT::v32i8,  Custom);
+      setOperationAction(ISD::SMIN,            MVT::v16i16, Custom);
+      setOperationAction(ISD::SMIN,            MVT::v8i32,  Custom);
+      setOperationAction(ISD::UMIN,            MVT::v32i8,  Custom);
+      setOperationAction(ISD::UMIN,            MVT::v16i16, Custom);
+      setOperationAction(ISD::UMIN,            MVT::v8i32,  Custom);
     }
 
     // In the customized shift lowering, the legal cases in AVX2 will be
@@ -1321,13 +1336,10 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
     setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
 
-    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
-    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
+    // FIXME:  [US]INT_TO_FP are not legal for f80.
     setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
     setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
     if (Subtarget->is64Bit()) {
-      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
-      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
       setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
       setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
     }
@@ -1348,6 +1360,24 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
     setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
 
+    setTruncStoreAction(MVT::v8i64,   MVT::v8i8,   Legal);
+    setTruncStoreAction(MVT::v8i64,   MVT::v8i16,  Legal);
+    setTruncStoreAction(MVT::v8i64,   MVT::v8i32,  Legal);
+    setTruncStoreAction(MVT::v16i32,  MVT::v16i8,  Legal);
+    setTruncStoreAction(MVT::v16i32,  MVT::v16i16, Legal);
+    if (Subtarget->hasVLX()){
+      setTruncStoreAction(MVT::v4i64, MVT::v4i8,  Legal);
+      setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
+      setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
+      setTruncStoreAction(MVT::v8i32, MVT::v8i8,  Legal);
+      setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
+
+      setTruncStoreAction(MVT::v2i64, MVT::v2i8,  Legal);
+      setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
+      setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
+      setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
+      setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
+    }
     setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
     setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
     setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
@@ -1556,6 +1586,7 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::VSELECT,            MVT::v64i8, Legal);
     setOperationAction(ISD::TRUNCATE,           MVT::v32i1, Custom);
     setOperationAction(ISD::TRUNCATE,           MVT::v64i1, Custom);
+    setOperationAction(ISD::TRUNCATE,           MVT::v32i8, Custom);
 
     setOperationAction(ISD::SMAX,               MVT::v64i8, Legal);
     setOperationAction(ISD::SMAX,               MVT::v32i16, Legal);
@@ -1566,6 +1597,11 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
     setOperationAction(ISD::UMIN,               MVT::v64i8, Legal);
     setOperationAction(ISD::UMIN,               MVT::v32i16, Legal);
 
+    setTruncStoreAction(MVT::v32i16,  MVT::v32i8, Legal);
+    setTruncStoreAction(MVT::v16i16,  MVT::v16i8, Legal);
+    if (Subtarget->hasVLX())
+      setTruncStoreAction(MVT::v8i16,   MVT::v8i8,  Legal);
+
     for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
       const MVT VT = (MVT::SimpleValueType)i;
 
@@ -1696,21 +1732,18 @@ X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
   setTargetDAGCombine(ISD::SINT_TO_FP);
   setTargetDAGCombine(ISD::UINT_TO_FP);
   setTargetDAGCombine(ISD::SETCC);
-  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
   setTargetDAGCombine(ISD::BUILD_VECTOR);
   setTargetDAGCombine(ISD::MUL);
   setTargetDAGCombine(ISD::XOR);
 
   computeRegisterProperties(Subtarget->getRegisterInfo());
 
-  // On Darwin, -Os means optimize for size without hurting performance,
-  // do not reduce the limit.
   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
-  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
+  MaxStoresPerMemsetOptSize = 8;
   MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
-  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
+  MaxStoresPerMemcpyOptSize = 4;
   MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
-  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
+  MaxStoresPerMemmoveOptSize = 4;
   setPrefLoopAlignment(4); // 2^4 bytes.
 
   // Predictable cmov don't hurt on atom because it's in-order.
@@ -1794,9 +1827,9 @@ static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
     if (EltAlign > MaxAlign)
       MaxAlign = EltAlign;
   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
-    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+    for (auto *EltTy : STy->elements()) {
       unsigned EltAlign = 0;
-      getMaxByValAlign(STy->getElementType(i), EltAlign);
+      getMaxByValAlign(EltTy, EltAlign);
       if (EltAlign > MaxAlign)
         MaxAlign = EltAlign;
       if (MaxAlign == 16)
@@ -1846,10 +1879,11 @@ X86TargetLowering::getOptimalMemOpType(uint64_t Size,
   if ((!IsMemset || ZeroMemset) &&
       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
     if (Size >= 16 &&
-        (Subtarget->isUnalignedMemAccessFast() ||
+        (!Subtarget->isUnalignedMem16Slow() ||
          ((DstAlign == 0 || DstAlign >= 16) &&
           (SrcAlign == 0 || SrcAlign >= 16)))) {
       if (Size >= 32) {
+        // FIXME: Check if unaligned 32-byte accesses are slow.
         if (Subtarget->hasInt256())
           return MVT::v8i32;
         if (Subtarget->hasFp256())
@@ -1867,6 +1901,9 @@ X86TargetLowering::getOptimalMemOpType(uint64_t Size,
       return MVT::f64;
     }
   }
+  // This is a compromise. If we reach here, unaligned accesses may be slow on
+  // this target. However, creating smaller, aligned accesses could be even
+  // slower and would certainly be a lot more code.
   if (Subtarget->is64Bit() && Size >= 8)
     return MVT::i64;
   return MVT::i32;
@@ -1885,8 +1922,14 @@ X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
                                                   unsigned,
                                                   unsigned,
                                                   bool *Fast) const {
-  if (Fast)
-    *Fast = Subtarget->isUnalignedMemAccessFast();
+  if (Fast) {
+    if (VT.getSizeInBits() == 256)
+      *Fast = !Subtarget->isUnalignedMem32Slow();
+    else
+      // FIXME: We should always return that 8-byte and under accesses are fast.
+      // That is what other x86 lowering code assumes.
+      *Fast = !Subtarget->isUnalignedMem16Slow();
+  }
   return true;
 }
 
@@ -2382,9 +2425,10 @@ X86TargetLowering::LowerMemArgument(SDValue Chain,
     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
                                     VA.getLocMemOffset(), isImmutable);
     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
-    SDValue Val =  DAG.getLoad(ValVT, dl, Chain, FIN,
-                               MachinePointerInfo::getFixedStack(FI),
-                               false, false, false, 0);
+    SDValue Val = DAG.getLoad(
+        ValVT, dl, Chain, FIN,
+        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
+        false, false, 0);
     return ExtendedInMem ?
       DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val;
   }
@@ -2656,10 +2700,11 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
       SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
                                 RSFIN, DAG.getIntPtrConstant(Offset, dl));
       SDValue Store =
-        DAG.getStore(Val.getValue(1), dl, Val, FIN,
-                     MachinePointerInfo::getFixedStack(
-                       FuncInfo->getRegSaveFrameIndex(), Offset),
-                     false, false, 0);
+          DAG.getStore(Val.getValue(1), dl, Val, FIN,
+                       MachinePointerInfo::getFixedStack(
+                           DAG.getMachineFunction(),
+                           FuncInfo->getRegSaveFrameIndex(), Offset),
+                       false, false, 0);
       MemOps.push_back(Store);
       Offset += 8;
     }
@@ -2700,7 +2745,8 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
     SDValue Val = DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64);
     Chain = DAG.getStore(
         Val.getValue(1), dl, Val, RSFIN,
-        MachinePointerInfo::getFixedStack(FuncInfo->getRegSaveFrameIndex()),
+        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
+                                          FuncInfo->getRegSaveFrameIndex()),
         /*isVolatile=*/true, /*isNonTemporal=*/false, /*Alignment=*/0);
   }
 
@@ -2775,7 +2821,8 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
       MMI.getWinEHFuncInfo(MF.getFunction()).UnwindHelpFrameIdx = UnwindHelpFI;
       SDValue Neg2 = DAG.getConstant(-2, dl, MVT::i64);
       Chain = DAG.getStore(Chain, dl, Neg2, StackSlot,
-                           MachinePointerInfo::getFixedStack(UnwindHelpFI),
+                           MachinePointerInfo::getFixedStack(
+                               DAG.getMachineFunction(), UnwindHelpFI),
                            /*isVolatile=*/true,
                            /*isNonTemporal=*/false, /*Alignment=*/0);
     } else {
@@ -2802,9 +2849,10 @@ X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
   if (Flags.isByVal())
     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
 
-  return DAG.getStore(Chain, dl, Arg, PtrOff,
-                      MachinePointerInfo::getStack(LocMemOffset),
-                      false, false, 0);
+  return DAG.getStore(
+      Chain, dl, Arg, PtrOff,
+      MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
+      false, false, 0);
 }
 
 /// Emit a load of return address if tail call
@@ -2838,11 +2886,24 @@ static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
                                          false);
   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
-                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
+                       MachinePointerInfo::getFixedStack(
+                           DAG.getMachineFunction(), NewReturnAddrFI),
                        false, false, 0);
   return Chain;
 }
 
+/// Returns a vector_shuffle mask for an movs{s|d}, movd
+/// operation of specified width.
+static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
+                       SDValue V2) {
+  unsigned NumElems = VT.getVectorNumElements();
+  SmallVector<int, 8> Mask;
+  Mask.push_back(NumElems);
+  for (unsigned i = 1; i != NumElems; ++i)
+    Mask.push_back(i);
+  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
 SDValue
 X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                              SmallVectorImpl<SDValue> &InVals) const {
@@ -3012,9 +3073,10 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
       // Store the argument.
       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
-      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
-                           MachinePointerInfo::getFixedStack(FI),
-                           false, false, 0);
+      Chain = DAG.getStore(
+          Chain, dl, Arg, SpillSlot,
+          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
+          false, false, 0);
       Arg = SpillSlot;
       break;
     }
@@ -3150,10 +3212,10 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                                          Flags, DAG, dl));
       } else {
         // Store relative to framepointer.
-        MemOpChains2.push_back(
-          DAG.getStore(ArgChain, dl, Arg, FIN,
-                       MachinePointerInfo::getFixedStack(FI),
-                       false, false, 0));
+        MemOpChains2.push_back(DAG.getStore(
+            ArgChain, dl, Arg, FIN,
+            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
+            false, false, 0));
       }
     }
 
@@ -3232,7 +3294,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
       if (ExtraLoad)
         Callee = DAG.getLoad(
             getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
-            MachinePointerInfo::getGOT(), false, false, false, 0);
+            MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false,
+            false, 0);
     }
   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
     unsigned char OpFlags = 0;
@@ -3383,8 +3446,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 //    EDI
 //    local1 ..
 
-/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
-/// for a 16 byte align requirement.
+/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
+/// requirement.
 unsigned
 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
                                                SelectionDAG& DAG) const {
@@ -3405,9 +3468,8 @@ X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
   return Offset;
 }
 
-/// MatchingStackOffset - Return true if the given stack call argument is
-/// already available in the same position (relatively) of the caller's
-/// incoming argument stack.
+/// Return true if the given stack call argument is already available in the
+/// same position (relatively) of the caller's incoming argument stack.
 static
 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
@@ -3460,9 +3522,8 @@ bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
 }
 
-/// IsEligibleForTailCallOptimization - Check whether the call is eligible
-/// for tail call optimization. Targets which want to do tail call
-/// optimization should implement this function.
+/// Check whether the call is eligible for tail call optimization. Targets
+/// that want to do tail call optimization should implement this function.
 bool
 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
                                                      CallingConv::ID CalleeCC,
@@ -3797,8 +3858,8 @@ bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
   return false;
 }
 
-/// isCalleePop - Determines whether the callee is required to pop its
-/// own arguments. Callee pop is necessary to support tail calls.
+/// Determines whether the callee is required to pop its own arguments.
+/// Callee pop is necessary to support tail calls.
 bool X86::isCalleePop(CallingConv::ID CallingConv,
                       bool is64Bit, bool IsVarArg, bool TailCallOpt) {
   switch (CallingConv) {
@@ -3835,8 +3896,8 @@ static bool isX86CCUnsigned(unsigned X86CC) {
   llvm_unreachable("covered switch fell through?!");
 }
 
-/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
-/// specific condition code, returning the condition code and the LHS/RHS of the
+/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
+/// condition code, returning the condition code and the LHS/RHS of the
 /// comparison to make.
 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP,
                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
@@ -3923,8 +3984,8 @@ static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP,
   }
 }
 
-/// hasFPCMov - is there a floating point cmov for the specific X86 condition
-/// code. Current x86 isa includes the following FP cmov instructions:
+/// Is there a floating point cmov for the specific X86 condition code?
+/// Current x86 isa includes the following FP cmov instructions:
 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
 static bool hasFPCMov(unsigned X86CC) {
   switch (X86CC) {
@@ -3942,7 +4003,7 @@ static bool hasFPCMov(unsigned X86CC) {
   }
 }
 
-/// isFPImmLegal - Returns true if the target can instruction select the
+/// Returns true if the target can instruction select the
 /// specified FP immediate natively. If false, the legalizer will
 /// materialize the FP immediate as a load from a constant pool.
 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
@@ -3995,7 +4056,7 @@ bool X86TargetLowering::isCheapToSpeculateCtlz() const {
   return Subtarget->hasLZCNT();
 }
 
-/// isUndefInRange - Return true if every element in Mask, beginning
+/// Return true if every element in Mask, beginning
 /// from position Pos and ending in Pos+Size is undef.
 static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
   for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
@@ -4004,19 +4065,18 @@ static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
   return true;
 }
 
-/// isUndefOrInRange - Return true if Val is undef or if its value falls within
-/// the specified range (L, H].
+/// Return true if Val is undef or if its value falls within the
+/// specified range (L, H].
 static bool isUndefOrInRange(int Val, int Low, int Hi) {
   return (Val < 0) || (Val >= Low && Val < Hi);
 }
 
-/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
-/// specified value.
+/// Val is either less than zero (undef) or equal to the specified value.
 static bool isUndefOrEqual(int Val, int CmpVal) {
   return (Val < 0 || Val == CmpVal);
 }
 
-/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
+/// Return true if every element in Mask, beginning
 /// from position Pos and ending in Pos+Size, falls within the specified
 /// sequential range (Low, Low+Size]. or is undef.
 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
@@ -4027,9 +4087,8 @@ static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
   return true;
 }
 
-/// isVEXTRACTIndex - Return true if the specified
-/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
-/// suitable for instruction that extract 128 or 256 bit vectors
+/// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector
+/// extract that is suitable for instruction that extract 128 or 256 bit vectors
 static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
   assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
@@ -4046,7 +4105,7 @@ static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
   return Result;
 }
 
-/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
+/// Return true if the specified INSERT_SUBVECTOR
 /// operand specifies a subvector insert that is suitable for input to
 /// insertion of 128 or 256-bit subvectors
 static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
@@ -4110,42 +4169,37 @@ static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
   return Index / NumElemsPerChunk;
 }
 
-/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
-/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
-/// and VINSERTI128 instructions.
+/// Return the appropriate immediate to extract the specified
+/// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions.
 unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
   return getExtractVEXTRACTImmediate(N, 128);
 }
 
-/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
-/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
-/// and VINSERTI64x4 instructions.
+/// Return the appropriate immediate to extract the specified
+/// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions.
 unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
   return getExtractVEXTRACTImmediate(N, 256);
 }
 
-/// getInsertVINSERT128Immediate - Return the appropriate immediate
-/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
-/// and VINSERTI128 instructions.
+/// Return the appropriate immediate to insert at the specified
+/// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions.
 unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
   return getInsertVINSERTImmediate(N, 128);
 }
 
-/// getInsertVINSERT256Immediate - Return the appropriate immediate
-/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
-/// and VINSERTI64x4 instructions.
+/// Return the appropriate immediate to insert at the specified
+/// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions.
 unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
   return getInsertVINSERTImmediate(N, 256);
 }
 
-/// isZero - Returns true if Elt is a constant integer zero
+/// Returns true if Elt is a constant integer zero
 static bool isZero(SDValue V) {
   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   return C && C->isNullValue();
 }
 
-/// isZeroNode - Returns true if Elt is a constant zero or a floating point
-/// constant +0.0.
+/// Returns true if Elt is a constant zero or a floating point constant +0.0.
 bool X86::isZeroNode(SDValue Elt) {
   if (isZero(Elt))
     return true;
@@ -4154,8 +4208,7 @@ bool X86::isZeroNode(SDValue Elt) {
   return false;
 }
 
-/// getZeroVector - Returns a vector of specified type with all zero elements.
-///
+/// Returns a vector of specified type with all zero elements.
 static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
                              SelectionDAG &DAG, SDLoc dl) {
   assert(VT.isVector() && "Expected a vector type");
@@ -4359,7 +4412,7 @@ static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
   return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
 }
 
-/// getOnesVector - Returns a vector of specified type with all bits set.
+/// Returns a vector of specified type with all bits set.
 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
 /// Then bitcast to their original type, ensuring they get CSE'd.
@@ -4385,19 +4438,7 @@ static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
   return DAG.getBitcast(VT, Vec);
 }
 
-/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
-/// operation of specified width.
-static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
-                       SDValue V2) {
-  unsigned NumElems = VT.getVectorNumElements();
-  SmallVector<int, 8> Mask;
-  Mask.push_back(NumElems);
-  for (unsigned i = 1; i != NumElems; ++i)
-    Mask.push_back(i);
-  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
-}
-
-/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
+/// Returns a vector_shuffle node for an unpackl operation.
 static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
                           SDValue V2) {
   unsigned NumElems = VT.getVectorNumElements();
@@ -4409,7 +4450,7 @@ static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 }
 
-/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
+/// Returns a vector_shuffle node for an unpackh operation.
 static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
                           SDValue V2) {
   unsigned NumElems = VT.getVectorNumElements();
@@ -4421,10 +4462,10 @@ static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 }
 
-/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
-/// vector of zero or undef vector.  This produces a shuffle where the low
-/// element of V2 is swizzled into the zero/undef vector, landing at element
-/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
+/// Return a vector_shuffle of the specified vector of zero or undef vector.
+/// This produces a shuffle where the low element of V2 is swizzled into the
+/// zero/undef vector, landing at element Idx.
+/// This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
                                            bool IsZero,
                                            const X86Subtarget *Subtarget,
@@ -4440,10 +4481,10 @@ static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
   return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
 }
 
-/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
-/// target specific opcode. Returns true if the Mask could be calculated. Sets
-/// IsUnary to true if only uses one source. Note that this will set IsUnary for
-/// shuffles which use a single input multiple times, and in those cases it will
+/// Calculates the shuffle mask corresponding to the target-specific opcode.
+/// Returns true if the Mask could be calculated. Sets IsUnary to true if only
+/// uses one source. Note that this will set IsUnary for shuffles which use a
+/// single input multiple times, and in those cases it will
 /// adjust the mask to only have indices within that single input.
 /// FIXME: Add support for Decode*Mask functions that return SM_SentinelZero.
 static bool getTargetShuffleMask(SDNode *N, MVT VT,
@@ -4611,7 +4652,7 @@ static bool getTargetShuffleMask(SDNode *N, MVT VT,
   return true;
 }
 
-/// getShuffleScalarElt - Returns the scalar element that will make up the ith
+/// Returns the scalar element that will make up the ith
 /// element of the result of the vector shuffle.
 static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
                                    unsigned Depth) {
@@ -4675,8 +4716,7 @@ static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
   return SDValue();
 }
 
-/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
-///
+/// Custom lower build_vector of v16i8.
 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
                                        unsigned NumNonZero, unsigned NumZero,
                                        SelectionDAG &DAG,
@@ -4746,8 +4786,7 @@ static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
   return DAG.getBitcast(MVT::v16i8, V);
 }
 
-/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
-///
+/// Custom lower build_vector of v8i16.
 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
                                      unsigned NumNonZero, unsigned NumZero,
                                      SelectionDAG &DAG,
@@ -4778,7 +4817,7 @@ static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
   return V;
 }
 
-/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
+/// Custom lower build_vector of v4i32 or v4f32.
 static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
                                      const X86Subtarget *Subtarget,
                                      const TargetLowering &TLI) {
@@ -4949,7 +4988,7 @@ LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
       return SDValue();
     if ((Offset % RequiredAlign) & 3)
       return SDValue();
-    int64_t StartOffset = Offset & ~(RequiredAlign-1);
+    int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
     if (StartOffset) {
       SDLoc DL(Ptr);
       Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
@@ -5182,8 +5221,7 @@ static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
   // TODO: If multiple splats are generated to load the same constant,
   // it may be detrimental to overall size. There needs to be a way to detect
   // that condition to know if this is truly a size win.
-  const Function *F = DAG.getMachineFunction().getFunction();
-  bool OptForSize = F->hasFnAttribute(Attribute::OptimizeForSize);
+  bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
 
   // Handle broadcasting a single constant scalar from the constant pool
   // into a vector.
@@ -5213,9 +5251,10 @@ static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
       SDValue CP =
           DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
       unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
-      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
-                       MachinePointerInfo::getConstantPool(),
-                       false, false, false, Alignment);
+      Ld = DAG.getLoad(
+          CVT, dl, DAG.getEntryNode(), CP,
+          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+          false, false, Alignment);
 
       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
     }
@@ -6202,7 +6241,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   return SDValue();
 }
 
-// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
+// 256-bit AVX can use the vinsertf128 instruction
 // to create 256-bit vectors from two other 128-bit ones.
 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   SDLoc dl(Op);
@@ -6447,6 +6486,92 @@ static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
   return DAG.getConstant(Imm, DL, MVT::i8);
 }
 
+/// \brief Compute whether each element of a shuffle is zeroable.
+///
+/// A "zeroable" vector shuffle element is one which can be lowered to zero.
+/// Either it is an undef element in the shuffle mask, the element of the input
+/// referenced is undef, or the element of the input referenced is known to be
+/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
+/// as many lanes with this technique as possible to simplify the remaining
+/// shuffle.
+static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
+                                                     SDValue V1, SDValue V2) {
+  SmallBitVector Zeroable(Mask.size(), false);
+
+  while (V1.getOpcode() == ISD::BITCAST)
+    V1 = V1->getOperand(0);
+  while (V2.getOpcode() == ISD::BITCAST)
+    V2 = V2->getOperand(0);
+
+  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
+  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+    int M = Mask[i];
+    // Handle the easy cases.
+    if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
+      Zeroable[i] = true;
+      continue;
+    }
+
+    // If this is an index into a build_vector node (which has the same number
+    // of elements), dig out the input value and use it.
+    SDValue V = M < Size ? V1 : V2;
+    if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands())
+      continue;
+
+    SDValue Input = V.getOperand(M % Size);
+    // The UNDEF opcode check really should be dead code here, but not quite
+    // worth asserting on (it isn't invalid, just unexpected).
+    if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
+      Zeroable[i] = true;
+  }
+
+  return Zeroable;
+}
+
+/// \brief Try to emit a bitmask instruction for a shuffle.
+///
+/// This handles cases where we can model a blend exactly as a bitmask due to
+/// one of the inputs being zeroable.
+static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
+                                           SDValue V2, ArrayRef<int> Mask,
+                                           SelectionDAG &DAG) {
+  MVT EltVT = VT.getScalarType();
+  int NumEltBits = EltVT.getSizeInBits();
+  MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
+  SDValue Zero = DAG.getConstant(0, DL, IntEltVT);
+  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
+                                    IntEltVT);
+  if (EltVT.isFloatingPoint()) {
+    Zero = DAG.getBitcast(EltVT, Zero);
+    AllOnes = DAG.getBitcast(EltVT, AllOnes);
+  }
+  SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
+  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+  SDValue V;
+  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+    if (Zeroable[i])
+      continue;
+    if (Mask[i] % Size != i)
+      return SDValue(); // Not a blend.
+    if (!V)
+      V = Mask[i] < Size ? V1 : V2;
+    else if (V != (Mask[i] < Size ? V1 : V2))
+      return SDValue(); // Can only let one input through the mask.
+
+    VMaskOps[i] = AllOnes;
+  }
+  if (!V)
+    return SDValue(); // No non-zeroable elements!
+
+  SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps);
+  V = DAG.getNode(VT.isFloatingPoint()
+                  ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND,
+                  DL, VT, V, VMask);
+  return V;
+}
+
 /// \brief Try to emit a blend instruction for a shuffle using bit math.
 ///
 /// This is used as a fallback approach when first class blend instructions are
@@ -6569,6 +6694,10 @@ static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
     assert((VT.getSizeInBits() == 128 || Subtarget->hasAVX2()) &&
            "256-bit byte-blends require AVX2 support!");
 
+    // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
+    if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG))
+      return Masked;
+
     // Scale the blend by the number of bytes per element.
     int Scale = VT.getScalarSizeInBits() / 8;
 
@@ -6785,7 +6914,7 @@ static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
     Hi = DAG.getBitcast(AlignVT, Hi);
 
     return DAG.getBitcast(
-        VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Hi, Lo,
+        VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Lo, Hi,
                         DAG.getConstant(Rotation * Scale, DL, MVT::i8)));
   }
 
@@ -6810,92 +6939,6 @@ static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
                         DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
 }
 
-/// \brief Compute whether each element of a shuffle is zeroable.
-///
-/// A "zeroable" vector shuffle element is one which can be lowered to zero.
-/// Either it is an undef element in the shuffle mask, the element of the input
-/// referenced is undef, or the element of the input referenced is known to be
-/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
-/// as many lanes with this technique as possible to simplify the remaining
-/// shuffle.
-static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
-                                                     SDValue V1, SDValue V2) {
-  SmallBitVector Zeroable(Mask.size(), false);
-
-  while (V1.getOpcode() == ISD::BITCAST)
-    V1 = V1->getOperand(0);
-  while (V2.getOpcode() == ISD::BITCAST)
-    V2 = V2->getOperand(0);
-
-  bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
-  bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
-
-  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
-    int M = Mask[i];
-    // Handle the easy cases.
-    if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
-      Zeroable[i] = true;
-      continue;
-    }
-
-    // If this is an index into a build_vector node (which has the same number
-    // of elements), dig out the input value and use it.
-    SDValue V = M < Size ? V1 : V2;
-    if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands())
-      continue;
-
-    SDValue Input = V.getOperand(M % Size);
-    // The UNDEF opcode check really should be dead code here, but not quite
-    // worth asserting on (it isn't invalid, just unexpected).
-    if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
-      Zeroable[i] = true;
-  }
-
-  return Zeroable;
-}
-
-/// \brief Try to emit a bitmask instruction for a shuffle.
-///
-/// This handles cases where we can model a blend exactly as a bitmask due to
-/// one of the inputs being zeroable.
-static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
-                                           SDValue V2, ArrayRef<int> Mask,
-                                           SelectionDAG &DAG) {
-  MVT EltVT = VT.getScalarType();
-  int NumEltBits = EltVT.getSizeInBits();
-  MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
-  SDValue Zero = DAG.getConstant(0, DL, IntEltVT);
-  SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
-                                    IntEltVT);
-  if (EltVT.isFloatingPoint()) {
-    Zero = DAG.getBitcast(EltVT, Zero);
-    AllOnes = DAG.getBitcast(EltVT, AllOnes);
-  }
-  SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
-  SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
-  SDValue V;
-  for (int i = 0, Size = Mask.size(); i < Size; ++i) {
-    if (Zeroable[i])
-      continue;
-    if (Mask[i] % Size != i)
-      return SDValue(); // Not a blend.
-    if (!V)
-      V = Mask[i] < Size ? V1 : V2;
-    else if (V != (Mask[i] < Size ? V1 : V2))
-      return SDValue(); // Can only let one input through the mask.
-
-    VMaskOps[i] = AllOnes;
-  }
-  if (!V)
-    return SDValue(); // No non-zeroable elements!
-
-  SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps);
-  V = DAG.getNode(VT.isFloatingPoint()
-                  ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND,
-                  DL, VT, V, VMask);
-  return V;
-}
-
 /// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
 ///
 /// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
@@ -7380,8 +7423,9 @@ static SDValue lowerVectorShuffleAsElementInsertion(
   // all the smarts here sunk into that routine. However, the current
   // lowering of BUILD_VECTOR makes that nearly impossible until the old
   // vector shuffle lowering is dead.
-  if (SDValue V2S = getScalarValueForVectorElement(
-          V2, Mask[V2Index] - Mask.size(), DAG)) {
+  SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
+                                               DAG);
+  if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
     // We need to zext the scalar if it is smaller than an i32.
     V2S = DAG.getBitcast(EltVT, V2S);
     if (EltVT == MVT::i8 || EltVT == MVT::i16) {
@@ -7516,6 +7560,23 @@ static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V,
 
   // Check if this is a broadcast of a scalar. We special case lowering
   // for scalars so that we can more effectively fold with loads.
+  // First, look through bitcast: if the original value has a larger element
+  // type than the shuffle, the broadcast element is in essence truncated.
+  // Make that explicit to ease folding.
+  if (V.getOpcode() == ISD::BITCAST && VT.isInteger()) {
+    EVT EltVT = VT.getVectorElementType();
+    SDValue V0 = V.getOperand(0);
+    EVT V0VT = V0.getValueType();
+
+    if (V0VT.isInteger() && V0VT.getVectorElementType().bitsGT(EltVT) &&
+        ((V0.getOpcode() == ISD::BUILD_VECTOR ||
+         (V0.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)))) {
+      V = DAG.getNode(ISD::TRUNCATE, DL, EltVT, V0.getOperand(BroadcastIdx));
+      BroadcastIdx = 0;
+    }
+  }
+
+  // Also check the simpler case, where we can directly reuse the scalar.
   if (V.getOpcode() == ISD::BUILD_VECTOR ||
       (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
     V = V.getOperand(BroadcastIdx);
@@ -8311,16 +8372,18 @@ static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
     assert(AToAInputs.size() + BToAInputs.size() == 4 &&
            "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
 
+    bool ThreeAInputs = AToAInputs.size() == 3;
+
     // Compute the index of dword with only one word among the three inputs in
     // a half by taking the sum of the half with three inputs and subtracting
     // the sum of the actual three inputs. The difference is the remaining
     // slot.
     int ADWord, BDWord;
-    int &TripleDWord = AToAInputs.size() == 3 ? ADWord : BDWord;
-    int &OneInputDWord = AToAInputs.size() == 3 ? BDWord : ADWord;
-    int TripleInputOffset = AToAInputs.size() == 3 ? AOffset : BOffset;
-    ArrayRef<int> TripleInputs = AToAInputs.size() == 3 ? AToAInputs : BToAInputs;
-    int OneInput = AToAInputs.size() == 3 ? BToAInputs[0] : AToAInputs[0];
+    int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
+    int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
+    int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
+    ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
+    int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
     int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
     int TripleNonInputIdx =
         TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
@@ -8389,8 +8452,7 @@ static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
           FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
         } else {
           assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
-          int APinnedIdx =
-              AToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
+          int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
           FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
         }
       }
@@ -9062,6 +9124,10 @@ static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
       return V;
   }
 
+  if (SDValue Masked =
+          lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, DAG))
+    return Masked;
+
   // Use dedicated unpack instructions for masks that match their pattern.
   if (isShuffleEquivalent(V1, V2, Mask, {// Low half.
                                          0, 16, 1, 17, 2, 18, 3, 19,
@@ -10690,7 +10756,7 @@ static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
   unsigned NumLanes = (NumElems - 1) / 8 + 1;
   unsigned NumElemsInLane = NumElems / NumLanes;
 
-  // Blend for v16i16 should be symetric for the both lanes.
+  // Blend for v16i16 should be symmetric for the both lanes.
   for (unsigned i = 0; i < NumElemsInLane; ++i) {
     SDValue EltCond = BuildVector->getOperand(i);
     SDValue SndLaneEltCond =
@@ -11103,8 +11169,7 @@ SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
       // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
       //   combine either bitwise AND or insert of float 0.0 to set these bits.
 
-      const Function *F = DAG.getMachineFunction().getFunction();
-      bool MinSize = F->hasFnAttribute(Attribute::MinSize);
+      bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
       if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
         // If this is an insertion of 32-bits into the low 32-bits of
         // a vector, we prefer to generate a blend with immediate rather
@@ -11224,14 +11289,25 @@ static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
   // --> load32 addr
   if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
       Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
-      OpVT.is256BitVector() && SubVecVT.is128BitVector() &&
-      !Subtarget->isUnalignedMem32Slow()) {
-    SDValue SubVec2 = Vec.getOperand(1);
-    if (auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2))) {
-      if (Idx2->getZExtValue() == 0) {
-        SDValue Ops[] = { SubVec2, SubVec };
-        if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false))
-          return Ld;
+      OpVT.is256BitVector() && SubVecVT.is128BitVector()) {
+    auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2));
+    if (Idx2 && Idx2->getZExtValue() == 0) {
+      SDValue SubVec2 = Vec.getOperand(1);
+      // If needed, look through a bitcast to get to the load.
+      if (SubVec2.getNode() && SubVec2.getOpcode() == ISD::BITCAST)
+        SubVec2 = SubVec2.getOperand(0);
+      
+      if (auto *FirstLd = dyn_cast<LoadSDNode>(SubVec2)) {
+        bool Fast;
+        unsigned Alignment = FirstLd->getAlignment();
+        unsigned AS = FirstLd->getAddressSpace();
+        const X86TargetLowering *TLI = Subtarget->getTargetLowering();
+        if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
+                                    OpVT, AS, Alignment, &Fast) && Fast) {
+          SDValue Ops[] = { SubVec2, SubVec };
+          if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false))
+            return Ld;
+        }
       }
     }
   }
@@ -11388,7 +11464,8 @@ X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
   // load.
   if (isGlobalStubReference(OpFlag))
     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
-                         MachinePointerInfo::getGOT(), false, false, false, 0);
+                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+                         false, false, false, 0);
 
   return Result;
 }
@@ -11455,7 +11532,8 @@ X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
   // load.
   if (isGlobalStubReference(OpFlags))
     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
-                         MachinePointerInfo::getGOT(), false, false, false, 0);
+                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+                         false, false, false, 0);
 
   // If there was a non-zero offset that we didn't fold, create an explicit
   // addition for it.
@@ -11612,7 +11690,8 @@ static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
     }
 
     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
-                         MachinePointerInfo::getGOT(), false, false, false, 0);
+                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+                         false, false, false, 0);
   }
 
   // The address of the thread local variable is the add of the thread
@@ -11628,6 +11707,8 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   auto PtrVT = getPointerTy(DAG.getDataLayout());
 
   if (Subtarget->isTargetELF()) {
+    if (DAG.getTarget().Options.EmulatedTLS)
+      return LowerToTLSEmulatedModel(GA, DAG);
     TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
     switch (model) {
       case TLSModel::GeneralDynamic:
@@ -11855,10 +11936,10 @@ SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
   auto PtrVT = getPointerTy(MF.getDataLayout());
   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
-  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
-                               StackSlot,
-                               MachinePointerInfo::getFixedStack(SSFI),
-                               false, false, 0);
+  SDValue Chain = DAG.getStore(
+      DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot,
+      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false,
+      false, 0);
   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
 }
 
@@ -11880,10 +11961,9 @@ SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
   MachineMemOperand *MMO;
   if (FI) {
     int SSFI = FI->getIndex();
-    MMO =
-      DAG.getMachineFunction()
-      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
-                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
+    MMO = DAG.getMachineFunction().getMachineMemOperand(
+        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+        MachineMemOperand::MOLoad, ByteSize, ByteSize);
   } else {
     MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
     StackSlot = StackSlot.getOperand(1);
@@ -11909,16 +11989,16 @@ SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
     SDValue Ops[] = {
       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
     };
-    MachineMemOperand *MMO =
-      DAG.getMachineFunction()
-      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
-                            MachineMemOperand::MOStore, SSFISize, SSFISize);
+    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
+        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+        MachineMemOperand::MOStore, SSFISize, SSFISize);
 
     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
                                     Ops, Op.getValueType(), MMO);
-    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
-                         MachinePointerInfo::getFixedStack(SSFI),
-                         false, false, false, 0);
+    Result = DAG.getLoad(
+        Op.getValueType(), DL, Chain, StackSlot,
+        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+        false, false, false, 0);
   }
 
   return Result;
@@ -11962,15 +12042,17 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
   // Load the 64-bit value into an XMM register.
   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
                             Op.getOperand(0));
-  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
-                              MachinePointerInfo::getConstantPool(),
-                              false, false, false, 16);
+  SDValue CLod0 =
+      DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
+                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+                  false, false, false, 16);
   SDValue Unpck1 =
       getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
 
-  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
-                              MachinePointerInfo::getConstantPool(),
-                              false, false, false, 16);
+  SDValue CLod1 =
+      DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
+                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+                  false, false, false, 16);
   SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
   SDValue Result;
@@ -12218,10 +12300,9 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   // we must be careful to do the computation in x87 extended precision, not
   // in SSE. (The generic code can't know it's OK to do this, or how to.)
   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
-  MachineMemOperand *MMO =
-    DAG.getMachineFunction()
-    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
-                          MachineMemOperand::MOLoad, 8, 8);
+  MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
+      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+      MachineMemOperand::MOLoad, 8, 8);
 
   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
@@ -12248,24 +12329,55 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
 
   // Load the value out, extending it from f32 to f80.
   // FIXME: Avoid the extend by constructing the right constant pool?
-  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
-                                 FudgePtr, MachinePointerInfo::getConstantPool(),
-                                 MVT::f32, false, false, false, 4);
+  SDValue Fudge = DAG.getExtLoad(
+      ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr,
+      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
+      false, false, false, 4);
   // Extend everything to 80 bits to force it to be done on x87.
   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
                      DAG.getIntPtrConstant(0, dl));
 }
 
+// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
+// is legal, or has an f16 source (which needs to be promoted to f32),
+// just return an <SDValue(), SDValue()> pair.
+// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
+// to i16, i32 or i64, and we lower it to a legal sequence.
+// If lowered to the final integer result we return a <result, SDValue()> pair.
+// Otherwise we lower it to a sequence ending with a FIST, return a
+// <FIST, StackSlot> pair, and the caller is responsible for loading
+// the final integer result from StackSlot.
 std::pair<SDValue,SDValue>
-X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
-                                    bool IsSigned, bool IsReplace) const {
+X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
+                                   bool IsSigned, bool IsReplace) const {
   SDLoc DL(Op);
 
   EVT DstTy = Op.getValueType();
+  EVT TheVT = Op.getOperand(0).getValueType();
   auto PtrVT = getPointerTy(DAG.getDataLayout());
 
-  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
+  if (TheVT == MVT::f16)
+    // We need to promote the f16 to f32 before using the lowering
+    // in this routine.
+    return std::make_pair(SDValue(), SDValue());
+
+  assert((TheVT == MVT::f32 ||
+          TheVT == MVT::f64 ||
+          TheVT == MVT::f80) &&
+         "Unexpected FP operand type in FP_TO_INTHelper");
+
+  // If using FIST to compute an unsigned i64, we'll need some fixup
+  // to handle values above the maximum signed i64.  A FIST is always
+  // used for the 32-bit subtarget, but also for f80 on a 64-bit target.
+  bool UnsignedFixup = !IsSigned &&
+                       DstTy == MVT::i64 &&
+                       (!Subtarget->is64Bit() ||
+                        !isScalarFPTypeInSSEReg(TheVT));
+
+  if (!IsSigned && DstTy != MVT::i64 && !Subtarget->hasAVX512()) {
+    // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
+    // The low 32 bits of the fist result will have the correct uint32 result.
     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
     DstTy = MVT::i64;
   }
@@ -12283,42 +12395,87 @@ X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
     return std::make_pair(SDValue(), SDValue());
 
-  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
-  // stack slot, or into the FTOL runtime function.
+  // We lower FP->int64 into FISTP64 followed by a load from a temporary
+  // stack slot.
   MachineFunction &MF = DAG.getMachineFunction();
   unsigned MemSize = DstTy.getSizeInBits()/8;
   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 
   unsigned Opc;
-  if (!IsSigned && isIntegerTypeFTOL(DstTy))
-    Opc = X86ISD::WIN_FTOL;
-  else
-    switch (DstTy.getSimpleVT().SimpleTy) {
-    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
-    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
-    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
-    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
-    }
+  switch (DstTy.getSimpleVT().SimpleTy) {
+  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
+  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
+  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
+  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
+  }
 
   SDValue Chain = DAG.getEntryNode();
   SDValue Value = Op.getOperand(0);
-  EVT TheVT = Op.getOperand(0).getValueType();
+  SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
+
+  if (UnsignedFixup) {
+    //
+    // Conversion to unsigned i64 is implemented with a select,
+    // depending on whether the source value fits in the range
+    // of a signed i64.  Let Thresh be the FP equivalent of
+    // 0x8000000000000000ULL.
+    //
+    //  Adjust i32 = (Value < Thresh) ? 0 : 0x80000000;
+    //  FistSrc    = (Value < Thresh) ? Value : (Value - Thresh);
+    //  Fist-to-mem64 FistSrc
+    //  Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
+    //  to XOR'ing the high 32 bits with Adjust.
+    //
+    // Being a power of 2, Thresh is exactly representable in all FP formats.
+    // For X87 we'd like to use the smallest FP type for this constant, but
+    // for DAG type consistency we have to match the FP operand type.
+
+    APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000));
+    APFloat::opStatus Status = APFloat::opOK;
+    bool LosesInfo = false;
+    if (TheVT == MVT::f64)
+      // The rounding mode is irrelevant as the conversion should be exact.
+      Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+                              &LosesInfo);
+    else if (TheVT == MVT::f80)
+      Status = Thresh.convert(APFloat::x87DoubleExtended,
+                              APFloat::rmNearestTiesToEven, &LosesInfo);
+
+    assert(Status == APFloat::opOK && !LosesInfo &&
+           "FP conversion should have been exact");
+
+    SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
+
+    SDValue Cmp = DAG.getSetCC(DL,
+                               getSetCCResultType(DAG.getDataLayout(),
+                                                  *DAG.getContext(), TheVT),
+                               Value, ThreshVal, ISD::SETLT);
+    Adjust = DAG.getSelect(DL, MVT::i32, Cmp,
+                           DAG.getConstant(0, DL, MVT::i32),
+                           DAG.getConstant(0x80000000, DL, MVT::i32));
+    SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal);
+    Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(),
+                                              *DAG.getContext(), TheVT),
+                       Value, ThreshVal, ISD::SETLT);
+    Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub);
+  }
+
   // FIXME This causes a redundant load/store if the SSE-class value is already
   // in memory, such as if it is on the callstack.
   if (isScalarFPTypeInSSEReg(TheVT)) {
     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
-                         MachinePointerInfo::getFixedStack(SSFI),
-                         false, false, 0);
+                         MachinePointerInfo::getFixedStack(MF, SSFI), false,
+                         false, 0);
     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
     SDValue Ops[] = {
       Chain, StackSlot, DAG.getValueType(TheVT)
     };
 
     MachineMemOperand *MMO =
-      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
-                              MachineMemOperand::MOLoad, MemSize, MemSize);
+        MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+                                MachineMemOperand::MOLoad, MemSize, MemSize);
     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
     Chain = Value.getValue(1);
     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
@@ -12326,28 +12483,52 @@ X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
   }
 
   MachineMemOperand *MMO =
-    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
-                            MachineMemOperand::MOStore, MemSize, MemSize);
+      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+                              MachineMemOperand::MOStore, MemSize, MemSize);
 
-  if (Opc != X86ISD::WIN_FTOL) {
-    // Build the FP_TO_INT*_IN_MEM
-    SDValue Ops[] = { Chain, Value, StackSlot };
+  if (UnsignedFixup) {
+
+    // Insert the FIST, load its result as two i32's,
+    // and XOR the high i32 with Adjust.
+
+    SDValue FistOps[] = { Chain, Value, StackSlot };
     SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
-                                           Ops, DstTy, MMO);
-    return std::make_pair(FIST, StackSlot);
-  } else {
-    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
-      DAG.getVTList(MVT::Other, MVT::Glue),
-      Chain, Value);
-    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
-      MVT::i32, ftol.getValue(1));
-    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
-      MVT::i32, eax.getValue(2));
-    SDValue Ops[] = { eax, edx };
+                                           FistOps, DstTy, MMO);
+
+    SDValue Low32 = DAG.getLoad(MVT::i32, DL, FIST, StackSlot,
+                                MachinePointerInfo(),
+                                false, false, false, 0);
+    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackSlot,
+                                   DAG.getConstant(4, DL, PtrVT));
+
+    SDValue High32 = DAG.getLoad(MVT::i32, DL, FIST, HighAddr,
+                                 MachinePointerInfo(),
+                                 false, false, false, 0);
+    High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust);
+
+    if (Subtarget->is64Bit()) {
+      // Join High32 and Low32 into a 64-bit result.
+      // (High32 << 32) | Low32
+      Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32);
+      High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32);
+      High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32,
+                           DAG.getConstant(32, DL, MVT::i8));
+      SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32);
+      return std::make_pair(Result, SDValue());
+    }
+
+    SDValue ResultOps[] = { Low32, High32 };
+
     SDValue pair = IsReplace
-      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
-      : DAG.getMergeValues(Ops, DL);
+      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps)
+      : DAG.getMergeValues(ResultOps, DL);
     return std::make_pair(pair, SDValue());
+  } else {
+    // Build the FP_TO_INT*_IN_MEM
+    SDValue Ops[] = { Chain, Value, StackSlot };
+    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
+                                           Ops, DstTy, MMO);
+    return std::make_pair(FIST, StackSlot);
   }
 }
 
@@ -12485,10 +12666,8 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
         Subtarget->hasDQI() && Subtarget->hasVLX())
       return Op; // legal, will go to VPMOVB2M, VPMOVQ2M
   }
-  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
-    if (VT.getVectorElementType().getSizeInBits() >=8)
-      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
 
+  if (VT.getVectorElementType() == MVT::i1) {
     assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
     unsigned NumElts = InVT.getVectorNumElements();
     assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
@@ -12504,6 +12683,11 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
     return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
   }
 
+  // vpmovqb/w/d, vpmovdb/w, vpmovwb
+  if (((!InVT.is512BitVector() && Subtarget->hasVLX()) || InVT.is512BitVector()) &&
+      (InVT.getVectorElementType() != MVT::i16 || Subtarget->hasBWI()))
+    return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
+
   if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
     // On AVX2, v4i64 -> v4i32 becomes VPERMD.
     if (Subtarget->hasInt256()) {
@@ -12608,7 +12792,8 @@ SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
     /*IsSigned=*/ true, /*IsReplace=*/ false);
   SDValue FIST = Vals.first, StackSlot = Vals.second;
   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
-  if (!FIST.getNode()) return Op;
+  if (!FIST.getNode())
+    return Op;
 
   if (StackSlot.getNode())
     // Load the result.
@@ -12625,7 +12810,9 @@ SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
     /*IsSigned=*/ false, /*IsReplace=*/ false);
   SDValue FIST = Vals.first, StackSlot = Vals.second;
-  assert(FIST.getNode() && "Unexpected failure");
+  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
+  if (!FIST.getNode())
+    return Op;
 
   if (StackSlot.getNode())
     // Load the result.
@@ -12665,24 +12852,29 @@ static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
       if (User->getOpcode() == ISD::FNEG)
         return Op;
 
-  SDValue Op0 = Op.getOperand(0);
-  bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
-
   SDLoc dl(Op);
   MVT VT = Op.getSimpleValueType();
-  // Assume scalar op for initialization; update for vector if needed.
-  // Note that there are no scalar bitwise logical SSE/AVX instructions, so we
-  // generate a 16-byte vector constant and logic op even for the scalar case.
-  // Using a 16-byte mask allows folding the load of the mask with
-  // the logic op, so it can save (~4 bytes) on code size.
-  MVT EltVT = VT;
-  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
+
   // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
   // decide if we should generate a 16-byte constant mask when we only need 4 or
   // 8 bytes for the scalar case.
+
+  MVT LogicVT;
+  MVT EltVT;
+  unsigned NumElts;
+
   if (VT.isVector()) {
+    LogicVT = VT;
     EltVT = VT.getVectorElementType();
     NumElts = VT.getVectorNumElements();
+  } else {
+    // There are no scalar bitwise logical SSE/AVX instructions, so we
+    // generate a 16-byte vector constant and logic op even for the scalar case.
+    // Using a 16-byte mask allows folding the load of the mask with
+    // the logic op, so it can save (~4 bytes) on code size.
+    LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
+    EltVT = VT;
+    NumElts = (VT == MVT::f64) ? 2 : 4;
   }
 
   unsigned EltBits = EltVT.getSizeInBits();
@@ -12695,26 +12887,26 @@ static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
-  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
-                             MachinePointerInfo::getConstantPool(),
-                             false, false, false, Alignment);
+  SDValue Mask =
+      DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
+                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+                  false, false, false, Alignment);
 
-  if (VT.isVector()) {
-    // For a vector, cast operands to a vector type, perform the logic op,
-    // and cast the result back to the original value type.
-    MVT VecVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
-    SDValue MaskCasted = DAG.getBitcast(VecVT, Mask);
-    SDValue Operand = IsFNABS ? DAG.getBitcast(VecVT, Op0.getOperand(0))
-                              : DAG.getBitcast(VecVT, Op0);
-    unsigned BitOp = IsFABS ? ISD::AND : IsFNABS ? ISD::OR : ISD::XOR;
-    return DAG.getBitcast(VT,
-                          DAG.getNode(BitOp, dl, VecVT, Operand, MaskCasted));
-  }
-
-  // If not vector, then scalar.
-  unsigned BitOp = IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
+  SDValue Op0 = Op.getOperand(0);
+  bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
+  unsigned LogicOp =
+    IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
   SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
-  return DAG.getNode(BitOp, dl, VT, Operand, Mask);
+
+  if (VT.isVector())
+    return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
+
+  // For the scalar case extend to a 128-bit vector, perform the logic op,
+  // and extract the scalar result back out.
+  Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
+  SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
+  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
+                     DAG.getIntPtrConstant(0, dl));
 }
 
 static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
@@ -12754,10 +12946,17 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
   Constant *C = ConstantVector::get(CV);
   auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
   SDValue CPIdx = DAG.getConstantPool(C, PtrVT, 16);
-  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
-                              MachinePointerInfo::getConstantPool(),
-                              false, false, false, 16);
-  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
+
+  // Perform all logic operations as 16-byte vectors because there are no
+  // scalar FP logic instructions in SSE. This allows load folding of the
+  // constants into the logic instructions.
+  MVT LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
+  SDValue Mask1 =
+      DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
+                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+                  false, false, false, 16);
+  Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op1);
+  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op1, Mask1);
 
   // Next, clear the sign bit from the first operand (magnitude).
   // If it's a constant, we can clear it here.
@@ -12765,7 +12964,8 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
     APFloat APF = Op0CN->getValueAPF();
     // If the magnitude is a positive zero, the sign bit alone is enough.
     if (APF.isPosZero())
-      return SignBit;
+      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, SignBit,
+                         DAG.getIntPtrConstant(0, dl));
     APF.clearSign();
     CV[0] = ConstantFP::get(*Context, APF);
   } else {
@@ -12775,15 +12975,19 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
   }
   C = ConstantVector::get(CV);
   CPIdx = DAG.getConstantPool(C, PtrVT, 16);
-  SDValue Val = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
-                            MachinePointerInfo::getConstantPool(),
-                            false, false, false, 16);
+  SDValue Val =
+      DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
+                  MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+                  false, false, false, 16);
   // If the magnitude operand wasn't a constant, we need to AND out the sign.
-  if (!isa<ConstantFPSDNode>(Op0))
-    Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Val);
-
+  if (!isa<ConstantFPSDNode>(Op0)) {
+    Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op0);
+    Val = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op0, Val);
+  }
   // OR the magnitude value with the sign bit.
-  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
+  Val = DAG.getNode(X86ISD::FOR, dl, LogicVT, Val, SignBit);
+  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, Val,
+                     DAG.getIntPtrConstant(0, dl));
 }
 
 static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
@@ -13161,8 +13365,7 @@ SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
     // if we're optimizing for size, however, as that'll allow better folding
     // of memory operations.
     if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
-        !DAG.getMachineFunction().getFunction()->hasFnAttribute(
-            Attribute::MinSize) &&
+        !DAG.getMachineFunction().getFunction()->optForMinSize() &&
         !Subtarget->isAtom()) {
       unsigned ExtendOp =
           isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
@@ -13272,8 +13475,8 @@ SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
 /// This is because we still need one division to calculate the reciprocal and
 /// then we need two multiplies by that reciprocal as replacements for the
 /// original divisions.
-bool X86TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
-  return NumUsers > 1;
+unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
+  return 2;
 }
 
 static bool isAllOnes(SDValue V) {
@@ -14118,9 +14321,9 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   }
 
   if (addTest) {
-    // Look pass the truncate if the high bits are known zero.
+    // Look past the truncate if the high bits are known zero.
     if (isTruncWithZeroHighBitsInput(Cond, DAG))
-        Cond = Cond.getOperand(0);
+      Cond = Cond.getOperand(0);
 
     // We know the result of AND is compared against zero. Try to match
     // it to BT.
@@ -14962,7 +15165,8 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   SDLoc DL(Op);
 
-  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
+  if (!Subtarget->is64Bit() ||
+      Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) {
     // vastart just stores the address of the VarArgsFrameIndex slot into the
     // memory location argument.
     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
@@ -15012,10 +15216,13 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   assert(Subtarget->is64Bit() &&
          "LowerVAARG only handles 64-bit va_arg!");
-  assert((Subtarget->isTargetLinux() ||
-          Subtarget->isTargetDarwin()) &&
-          "Unhandled target in LowerVAARG");
   assert(Op.getNode()->getNumOperands() == 4);
+
+  MachineFunction &MF = DAG.getMachineFunction();
+  if (Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv()))
+    // The Win64 ABI uses char* instead of a structure.
+    return DAG.expandVAArg(Op.getNode());
+
   SDValue Chain = Op.getOperand(0);
   SDValue SrcPtr = Op.getOperand(1);
   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
@@ -15043,8 +15250,7 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   if (ArgMode == 2) {
     // Sanity Check: Make sure using fp_offset makes sense.
     assert(!Subtarget->useSoftFloat() &&
-           !(DAG.getMachineFunction().getFunction()->hasFnAttribute(
-               Attribute::NoImplicitFloat)) &&
+           !(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) &&
            Subtarget->hasSSE1());
   }
 
@@ -15073,8 +15279,14 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 
 static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
                            SelectionDAG &DAG) {
-  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
+  // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
+  // where a va_list is still an i8*.
   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
+  if (Subtarget->isCallingConvWin64(
+        DAG.getMachineFunction().getFunction()->getCallingConv()))
+    // Probably a Win64 va_copy.
+    return DAG.expandVACopy(Op.getNode());
+
   SDValue Chain = Op.getOperand(0);
   SDValue DstPtr = Op.getOperand(1);
   SDValue SrcPtr = Op.getOperand(2);
@@ -15220,7 +15432,7 @@ static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
 
 /// \brief Return (and \p Op, \p Mask) for compare instructions or
 /// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
-/// necessary casting for \p Mask when lowering masking intrinsics.
+/// necessary casting or extending for \p Mask when lowering masking intrinsics
 static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
                                     SDValue PreservedSrc,
                                     const X86Subtarget *Subtarget,
@@ -15228,8 +15440,8 @@ static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
     EVT VT = Op.getValueType();
     EVT MaskVT = EVT::getVectorVT(*DAG.getContext(),
                                   MVT::i1, VT.getVectorNumElements());
-    EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
-                                     Mask.getValueType().getSizeInBits());
+    SDValue VMask = SDValue();
+    unsigned OpcodeSelect = ISD::VSELECT;
     SDLoc dl(Op);
 
     assert(MaskVT.isSimple() && "invalid mask type");
@@ -15237,11 +15449,20 @@ static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
     if (isAllOnes(Mask))
       return Op;
 
-    // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
-    // are extracted by EXTRACT_SUBVECTOR.
-    SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
-                                DAG.getBitcast(BitcastVT, Mask),
-                                DAG.getIntPtrConstant(0, dl));
+    if (MaskVT.bitsGT(Mask.getValueType())) {
+      EVT newMaskVT =  EVT::getIntegerVT(*DAG.getContext(),
+                                         MaskVT.getSizeInBits());
+      VMask = DAG.getBitcast(MaskVT,
+                             DAG.getNode(ISD::ANY_EXTEND, dl, newMaskVT, Mask));
+    } else {
+      EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+                                       Mask.getValueType().getSizeInBits());
+      // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+      // are extracted by EXTRACT_SUBVECTOR.
+      VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+                          DAG.getBitcast(BitcastVT, Mask),
+                          DAG.getIntPtrConstant(0, dl));
+    }
 
     switch (Op.getOpcode()) {
       default: break;
@@ -15250,19 +15471,27 @@ static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
       case X86ISD::CMPM:
       case X86ISD::CMPMU:
         return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
+      case X86ISD::VTRUNC:
+      case X86ISD::VTRUNCS:
+      case X86ISD::VTRUNCUS:
+        // We can't use ISD::VSELECT here because it is not always "Legal"
+        // for the destination type. For example vpmovqb require only AVX512
+        // and vselect that can operate on byte element type require BWI
+        OpcodeSelect = X86ISD::SELECT;
+        break;
     }
     if (PreservedSrc.getOpcode() == ISD::UNDEF)
       PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
-    return DAG.getNode(ISD::VSELECT, dl, VT, VMask, Op, PreservedSrc);
+    return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
 }
 
 /// \brief Creates an SDNode for a predicated scalar operation.
 /// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
-/// The mask is comming as MVT::i8 and it should be truncated
+/// The mask is coming as MVT::i8 and it should be truncated
 /// to MVT::i1 while lowering masking intrinsics.
 /// The main difference between ScalarMaskingNode and VectorMaskingNode is using
-/// "X86select" instead of "vselect". We just can't create the "vselect" node for
-/// a scalar instruction.
+/// "X86select" instead of "vselect". We just can't create the "vselect" node
+/// for a scalar instruction.
 static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
                                     SDValue PreservedSrc,
                                     const X86Subtarget *Subtarget,
@@ -15359,7 +15588,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
       SDValue Mask = Op.getOperand(3);
       SDValue RoundingMode;
       // We allways add rounding mode to the Node.
-      // If the rounding mode is not specified, we add the 
+      // If the rounding mode is not specified, we add the
       // "current direction" mode.
       if (Op.getNumOperands() == 4)
         RoundingMode =
@@ -15404,7 +15633,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
       SDValue Src0 = Op.getOperand(3);
       SDValue Mask = Op.getOperand(4);
       // There are 2 kinds of intrinsics in this group:
-      // (1) With supress-all-exceptions (sae) or rounding mode- 6 operands
+      // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
       // (2) With rounding mode and sae - 7 operands.
       if (Op.getNumOperands() == 6) {
         SDValue Sae  = Op.getOperand(5);
@@ -15478,12 +15707,16 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget
         Src1, Src2, Imm, Rnd),
         Mask, PassThru, Subtarget, DAG);
     }
+    case INTR_TYPE_3OP_IMM8_MASK:
     case INTR_TYPE_3OP_MASK: {
       SDValue Src1 = Op.getOperand(1);
       SDValue Src2 = Op.getOperand(2);
       SDValue Src3 = Op.getOperand(3);
       SDValue PassThru = Op.getOperand(4);
       SDValue Mask = Op.getOperand(5);
+
+      if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK)
+        Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3);
       // We specify 2 possible opcodes for intrinsics with rounding modes.
       // First, we check if the intrinsic may have non-default rounding mode,
       // (IntrData->Opc1 != 0), then we check the rounding mode operand.
@@ -16111,6 +16344,45 @@ static SDValue LowerSEHRESTOREFRAME(SDValue Op, const X86Subtarget *Subtarget,
   return Chain;
 }
 
+/// \brief Lower intrinsics for TRUNCATE_TO_MEM case
+/// return truncate Store/MaskedStore Node
+static SDValue LowerINTRINSIC_TRUNCATE_TO_MEM(const SDValue & Op,
+                                               SelectionDAG &DAG,
+                                               MVT ElementType) {
+  SDLoc dl(Op);
+  SDValue Mask = Op.getOperand(4);
+  SDValue DataToTruncate = Op.getOperand(3);
+  SDValue Addr = Op.getOperand(2);
+  SDValue Chain = Op.getOperand(0);
+
+  EVT VT  = DataToTruncate.getValueType();
+  EVT SVT = EVT::getVectorVT(*DAG.getContext(),
+                             ElementType, VT.getVectorNumElements());
+
+  if (isAllOnes(Mask)) // return just a truncate store
+    return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr,
+                             MachinePointerInfo(), SVT, false, false,
+                             SVT.getScalarSizeInBits()/8);
+
+  EVT MaskVT = EVT::getVectorVT(*DAG.getContext(),
+                                MVT::i1, VT.getVectorNumElements());
+  EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+                                   Mask.getValueType().getSizeInBits());
+  // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+  // are extracted by EXTRACT_SUBVECTOR.
+  SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+                              DAG.getBitcast(BitcastVT, Mask),
+                              DAG.getIntPtrConstant(0, dl));
+
+  MachineMemOperand *MMO = DAG.getMachineFunction().
+    getMachineMemOperand(MachinePointerInfo(),
+                         MachineMemOperand::MOStore, SVT.getStoreSize(),
+                         SVT.getScalarSizeInBits()/8);
+
+  return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr,
+                            VMask, SVT, MMO, true);
+}
+
 static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
                                       SelectionDAG &DAG) {
   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
@@ -16244,6 +16516,12 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
                         MachinePointerInfo(), false, false,
                         VT.getScalarSizeInBits()/8);
   }
+  case TRUNCATE_TO_MEM_VI8:
+    return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i8);
+  case TRUNCATE_TO_MEM_VI16:
+    return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i16);
+  case TRUNCATE_TO_MEM_VI32:
+    return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i32);
   case EXPAND_FROM_MEM: {
     SDLoc dl(Op);
     SDValue Mask = Op.getOperand(4);
@@ -16403,6 +16681,25 @@ SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
                      DAG.getRegister(StoreAddrReg, PtrVT));
 }
 
+SDValue X86TargetLowering::LowerCATCHRET(SDValue Op, SelectionDAG &DAG) const {
+  SDValue Chain = Op.getOperand(0);
+  SDValue Dest = Op.getOperand(1);
+  SDLoc DL(Op);
+
+  MVT PtrVT = getPointerTy(DAG.getDataLayout());
+  unsigned ReturnReg = (PtrVT == MVT::i64 ? X86::RAX : X86::EAX);
+
+  // Load the address of the destination block.
+  MachineBasicBlock *DestMBB = cast<BasicBlockSDNode>(Dest)->getBasicBlock();
+  SDValue BlockPtr = DAG.getMCSymbol(DestMBB->getSymbol(), PtrVT);
+  unsigned WrapperKind =
+      Subtarget->isPICStyleRIPRel() ? X86ISD::WrapperRIP : X86ISD::Wrapper;
+  SDValue WrappedPtr = DAG.getNode(WrapperKind, DL, PtrVT, BlockPtr);
+  Chain = DAG.getCopyToReg(Chain, DL, ReturnReg, WrappedPtr);
+  return DAG.getNode(X86ISD::CATCHRET, DL, MVT::Other, Chain,
+                     DAG.getRegister(ReturnReg, PtrVT));
+}
+
 SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
                                                SelectionDAG &DAG) const {
   SDLoc DL(Op);
@@ -16514,9 +16811,11 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
 
         for (FunctionType::param_iterator I = FTy->param_begin(),
              E = FTy->param_end(); I != E; ++I, ++Idx)
-          if (Attrs.hasAttribute(Idx, Attribute::InReg))
+          if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
+            auto &DL = DAG.getDataLayout();
             // FIXME: should only count parameters that are lowered to integers.
-            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
+            InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
+          }
 
         if (InRegCount > 2) {
           report_fatal_error("Nest register in use - reduce number of inreg"
@@ -16605,8 +16904,8 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
       DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
 
   MachineMemOperand *MMO =
-   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
-                           MachineMemOperand::MOStore, 2, 2);
+      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+                              MachineMemOperand::MOStore, 2, 2);
 
   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
@@ -16770,6 +17069,13 @@ static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
   return Lower256IntArith(Op, DAG);
 }
 
+static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
+  assert(Op.getSimpleValueType().is256BitVector() &&
+         Op.getSimpleValueType().isInteger() &&
+         "Only handle AVX 256-bit vector integer operation");
+  return Lower256IntArith(Op, DAG);
+}
+
 static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
                         SelectionDAG &DAG) {
   SDLoc dl(Op);
@@ -17185,12 +17491,12 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
         }
         if (Op.getOpcode() == ISD::SRA) {
           if (ShiftAmt == 7) {
-            // R s>> 7  ===  R s< 0
+            // ashr(R, 7)  === cmp_slt(R, 0)
             SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
             return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
           }
 
-          // R s>> a === ((R u>> a) ^ m) - m
+          // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
           SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
           SmallVector<SDValue, 32> V(NumElts,
                                      DAG.getConstant(128 >> ShiftAmt, dl,
@@ -17207,34 +17513,50 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
 
   // Special case in 32-bit mode, where i64 is expanded into high and low parts.
   if (!Subtarget->is64Bit() &&
-      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
-      Amt.getOpcode() == ISD::BITCAST &&
-      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
+      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64))) {
+
+    // Peek through any splat that was introduced for i64 shift vectorization.
+    int SplatIndex = -1;
+    if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode()))
+      if (SVN->isSplat()) {
+        SplatIndex = SVN->getSplatIndex();
+        Amt = Amt.getOperand(0);
+        assert(SplatIndex < (int)VT.getVectorNumElements() &&
+               "Splat shuffle referencing second operand");
+      }
+
+    if (Amt.getOpcode() != ISD::BITCAST ||
+        Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR)
+      return SDValue();
+
     Amt = Amt.getOperand(0);
     unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
                      VT.getVectorNumElements();
     unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
     uint64_t ShiftAmt = 0;
+    unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio);
     for (unsigned i = 0; i != Ratio; ++i) {
-      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
+      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp));
       if (!C)
         return SDValue();
       // 6 == Log2(64)
       ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
     }
-    // Check remaining shift amounts.
-    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
-      uint64_t ShAmt = 0;
-      for (unsigned j = 0; j != Ratio; ++j) {
-        ConstantSDNode *C =
-          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
-        if (!C)
+
+    // Check remaining shift amounts (if not a splat).
+    if (SplatIndex < 0) {
+      for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
+        uint64_t ShAmt = 0;
+        for (unsigned j = 0; j != Ratio; ++j) {
+          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
+          if (!C)
+            return SDValue();
+          // 6 == Log2(64)
+          ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
+        }
+        if (ShAmt != ShiftAmt)
           return SDValue();
-        // 6 == Log2(64)
-        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
       }
-      if (ShAmt != ShiftAmt)
-        return SDValue();
     }
 
     if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
@@ -17360,6 +17682,19 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
     return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
   }
 
+  // i64 vector arithmetic shift can be emulated with the transform:
+  // M = lshr(SIGN_BIT, Amt)
+  // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
+  if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget->hasInt256())) &&
+      Op.getOpcode() == ISD::SRA) {
+    SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT);
+    SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
+    R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
+    R = DAG.getNode(ISD::XOR, dl, VT, R, M);
+    R = DAG.getNode(ISD::SUB, dl, VT, R, M);
+    return R;
+  }
+
   // If possible, lower this packed shift into a vector multiply instead of
   // expanding it into a sequence of scalar shifts.
   // Do this only if the vector shift count is a constant build_vector.
@@ -17844,7 +18179,7 @@ static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
 /// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
 /// Used to know whether to use cmpxchg8/16b when expanding atomic operations
 /// (otherwise we leave them alone to become __sync_fetch_and_... calls).
-bool X86TargetLowering::needsCmpXchgNb(const Type *MemType) const {
+bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
   unsigned OpWidth = MemType->getPrimitiveSizeInBits();
 
   if (OpWidth == 64)
@@ -17869,7 +18204,7 @@ bool X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
 TargetLoweringBase::AtomicRMWExpansionKind
 X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
-  const Type *MemType = AI->getType();
+  Type *MemType = AI->getType();
 
   // If the operand is too big, we must see if cmpxchg8/16b is available
   // and default to library calls otherwise.
@@ -17915,7 +18250,7 @@ static bool hasMFENCE(const X86Subtarget& Subtarget) {
 LoadInst *
 X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
   unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
-  const Type *MemType = AI->getType();
+  Type *MemType = AI->getType();
   // Accesses larger than the native width are turned into cmpxchg/libcalls, so
   // there is no benefit in turning such RMWs into loads, and it is actually
   // harmful as it introduces a mfence.
@@ -17943,7 +18278,7 @@ X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
   // lowered to just a load without a fence. A mfence flushes the store buffer,
   // making the optimization clearly correct.
   // FIXME: it is required if isAtLeastRelease(Order) but it is not clear
-  // otherwise, we might be able to be more agressive on relaxed idempotent
+  // otherwise, we might be able to be more aggressive on relaxed idempotent
   // rmw. In practice, they do not look useful, so we don't try to be
   // especially clever.
   if (SynchScope == SingleThread)
@@ -18604,6 +18939,7 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
+  case ISD::CATCHRET:           return LowerCATCHRET(Op, DAG);
   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
@@ -18632,6 +18968,10 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   case ISD::ADD:                return LowerADD(Op, DAG);
   case ISD::SUB:                return LowerSUB(Op, DAG);
+  case ISD::SMAX:
+  case ISD::SMIN:
+  case ISD::UMAX:
+  case ISD::UMIN:               return LowerMINMAX(Op, DAG);
   case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
   case ISD::MGATHER:            return LowerMGATHER(Op, Subtarget, DAG);
   case ISD::MSCATTER:           return LowerMSCATTER(Op, Subtarget, DAG);
@@ -18685,17 +19025,9 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
     return;
   }
   case ISD::FP_TO_SINT:
-    // FP_TO_INT*_IN_MEM is not legal for f16 inputs.  Do not convert
-    // (FP_TO_SINT (load f16)) to FP_TO_INT*.
-    if (N->getOperand(0).getValueType() == MVT::f16)
-      break;
-    // fallthrough
   case ISD::FP_TO_UINT: {
     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
 
-    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
-      return;
-
     std::pair<SDValue,SDValue> Vals =
         FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
     SDValue FIST = Vals.first, StackSlot = Vals.second;
@@ -18943,6 +19275,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
   case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
+  case X86ISD::CATCHRET:           return "X86ISD::CATCHRET";
   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
   case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
@@ -18954,7 +19287,8 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::VZEXT:              return "X86ISD::VZEXT";
   case X86ISD::VSEXT:              return "X86ISD::VSEXT";
   case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
-  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
+  case X86ISD::VTRUNCS:            return "X86ISD::VTRUNCS";
+  case X86ISD::VTRUNCUS:           return "X86ISD::VTRUNCUS";
   case X86ISD::VINSERT:            return "X86ISD::VINSERT";
   case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
   case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
@@ -18995,6 +19329,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::TESTM:              return "X86ISD::TESTM";
   case X86ISD::TESTNM:             return "X86ISD::TESTNM";
   case X86ISD::KORTEST:            return "X86ISD::KORTEST";
+  case X86ISD::KTEST:              return "X86ISD::KTEST";
   case X86ISD::PACKSS:             return "X86ISD::PACKSS";
   case X86ISD::PACKUS:             return "X86ISD::PACKUS";
   case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
@@ -19031,6 +19366,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
   case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
   case X86ISD::PSADBW:             return "X86ISD::PSADBW";
+  case X86ISD::DBPSADBW:           return "X86ISD::DBPSADBW";
   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
@@ -19039,7 +19375,6 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::SFENCE:             return "X86ISD::SFENCE";
   case X86ISD::LFENCE:             return "X86ISD::LFENCE";
   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
-  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
   case X86ISD::SAHF:               return "X86ISD::SAHF";
   case X86ISD::RDRAND:             return "X86ISD::RDRAND";
   case X86ISD::RDSEED:             return "X86ISD::RDSEED";
@@ -19747,7 +20082,7 @@ X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
 
-  if (!Subtarget->isTargetWin64()) {
+  if (!Subtarget->isCallingConvWin64(F->getFunction()->getCallingConv())) {
     // If %al is 0, branch around the XMM save block.
     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
     BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
@@ -19764,9 +20099,8 @@ X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
   // In the XMM save block, save all the XMM argument registers.
   for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
-    MachineMemOperand *MMO =
-      F->getMachineMemOperand(
-          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
+    MachineMemOperand *MMO = F->getMachineMemOperand(
+        MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
         MachineMemOperand::MOStore,
         /*Size=*/16, /*Align=*/16);
     BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
@@ -19820,6 +20154,39 @@ static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
   return true;
 }
 
+// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
+// together with other CMOV pseudo-opcodes into a single basic-block with
+// conditional jump around it.
+static bool isCMOVPseudo(MachineInstr *MI) {
+  switch (MI->getOpcode()) {
+  case X86::CMOV_FR32:
+  case X86::CMOV_FR64:
+  case X86::CMOV_GR8:
+  case X86::CMOV_GR16:
+  case X86::CMOV_GR32:
+  case X86::CMOV_RFP32:
+  case X86::CMOV_RFP64:
+  case X86::CMOV_RFP80:
+  case X86::CMOV_V2F64:
+  case X86::CMOV_V2I64:
+  case X86::CMOV_V4F32:
+  case X86::CMOV_V4F64:
+  case X86::CMOV_V4I64:
+  case X86::CMOV_V16F32:
+  case X86::CMOV_V8F32:
+  case X86::CMOV_V8F64:
+  case X86::CMOV_V8I64:
+  case X86::CMOV_V8I1:
+  case X86::CMOV_V16I1:
+  case X86::CMOV_V32I1:
+  case X86::CMOV_V64I1:
+    return true;
+
+  default:
+    return false;
+  }
+}
+
 MachineBasicBlock *
 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
                                      MachineBasicBlock *BB) const {
@@ -19843,8 +20210,41 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   MachineBasicBlock *thisMBB = BB;
   MachineFunction *F = BB->getParent();
 
-  // We also lower double CMOVs:
+  // This code lowers all pseudo-CMOV instructions. Generally it lowers these
+  // as described above, by inserting a BB, and then making a PHI at the join
+  // point to select the true and false operands of the CMOV in the PHI.
+  //
+  // The code also handles two different cases of multiple CMOV opcodes
+  // in a row.
+  //
+  // Case 1:
+  // In this case, there are multiple CMOVs in a row, all which are based on
+  // the same condition setting (or the exact opposite condition setting).
+  // In this case we can lower all the CMOVs using a single inserted BB, and
+  // then make a number of PHIs at the join point to model the CMOVs. The only
+  // trickiness here, is that in a case like:
+  //
+  // t2 = CMOV cond1 t1, f1
+  // t3 = CMOV cond1 t2, f2
+  //
+  // when rewriting this into PHIs, we have to perform some renaming on the
+  // temps since you cannot have a PHI operand refer to a PHI result earlier
+  // in the same block.  The "simple" but wrong lowering would be:
+  //
+  // t2 = PHI t1(BB1), f1(BB2)
+  // t3 = PHI t2(BB1), f2(BB2)
+  //
+  // but clearly t2 is not defined in BB1, so that is incorrect. The proper
+  // renaming is to note that on the path through BB1, t2 is really just a
+  // copy of t1, and do that renaming, properly generating:
+  //
+  // t2 = PHI t1(BB1), f1(BB2)
+  // t3 = PHI t1(BB1), f2(BB2)
+  //
+  // Case 2, we lower cascaded CMOVs such as
+  //
   //   (CMOV (CMOV F, T, cc1), T, cc2)
+  //
   // to two successives branches.  For that, we look for another CMOV as the
   // following instruction.
   //
@@ -19910,19 +20310,42 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   // .LBB5_4:
   //         retq
   //
-  MachineInstr *NextCMOV = nullptr;
+  MachineInstr *CascadedCMOV = nullptr;
+  MachineInstr *LastCMOV = MI;
+  X86::CondCode CC = X86::CondCode(MI->getOperand(3).getImm());
+  X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
   MachineBasicBlock::iterator NextMIIt =
       std::next(MachineBasicBlock::iterator(MI));
-  if (NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
+
+  // Check for case 1, where there are multiple CMOVs with the same condition
+  // first.  Of the two cases of multiple CMOV lowerings, case 1 reduces the
+  // number of jumps the most.
+
+  if (isCMOVPseudo(MI)) {
+    // See if we have a string of CMOVS with the same condition.
+    while (NextMIIt != BB->end() &&
+           isCMOVPseudo(NextMIIt) &&
+           (NextMIIt->getOperand(3).getImm() == CC ||
+            NextMIIt->getOperand(3).getImm() == OppCC)) {
+      LastCMOV = &*NextMIIt;
+      ++NextMIIt;
+    }
+  }
+
+  // This checks for case 2, but only do this if we didn't already find
+  // case 1, as indicated by LastCMOV == MI.
+  if (LastCMOV == MI &&
+      NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
       NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() &&
-      NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg())
-    NextCMOV = &*NextMIIt;
+      NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg()) {
+    CascadedCMOV = &*NextMIIt;
+  }
 
   MachineBasicBlock *jcc1MBB = nullptr;
 
-  // If we have a double CMOV, we lower it to two successive branches to
+  // If we have a cascaded CMOV, we lower it to two successive branches to
   // the same block.  EFLAGS is used by both, so mark it as live in the second.
-  if (NextCMOV) {
+  if (CascadedCMOV) {
     jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
     F->insert(It, jcc1MBB);
     jcc1MBB->addLiveIn(X86::EFLAGS);
@@ -19937,7 +20360,7 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   // live into the sink and copy blocks.
   const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
 
-  MachineInstr *LastEFLAGSUser = NextCMOV ? NextCMOV : MI;
+  MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
   if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
       !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
     copy0MBB->addLiveIn(X86::EFLAGS);
@@ -19946,12 +20369,12 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
 
   // Transfer the remainder of BB and its successor edges to sinkMBB.
   sinkMBB->splice(sinkMBB->begin(), BB,
-                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
+                  std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end());
   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 
   // Add the true and fallthrough blocks as its successors.
-  if (NextCMOV) {
-    // The fallthrough block may be jcc1MBB, if we have a double CMOV.
+  if (CascadedCMOV) {
+    // The fallthrough block may be jcc1MBB, if we have a cascaded CMOV.
     BB->addSuccessor(jcc1MBB);
 
     // In that case, jcc1MBB will itself fallthrough the copy0MBB, and
@@ -19966,13 +20389,12 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   BB->addSuccessor(sinkMBB);
 
   // Create the conditional branch instruction.
-  unsigned Opc =
-    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
+  unsigned Opc = X86::GetCondBranchFromCond(CC);
   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
 
-  if (NextCMOV) {
+  if (CascadedCMOV) {
     unsigned Opc2 = X86::GetCondBranchFromCond(
-        (X86::CondCode)NextCMOV->getOperand(3).getImm());
+        (X86::CondCode)CascadedCMOV->getOperand(3).getImm());
     BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
   }
 
@@ -19984,27 +20406,104 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   //  sinkMBB:
   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   //  ...
-  MachineInstrBuilder MIB =
-      BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI),
-              MI->getOperand(0).getReg())
-          .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
-          .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+  MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
+  MachineBasicBlock::iterator MIItEnd =
+    std::next(MachineBasicBlock::iterator(LastCMOV));
+  MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin();
+  DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
+  MachineInstrBuilder MIB;
+
+  // As we are creating the PHIs, we have to be careful if there is more than
+  // one.  Later CMOVs may reference the results of earlier CMOVs, but later
+  // PHIs have to reference the individual true/false inputs from earlier PHIs.
+  // That also means that PHI construction must work forward from earlier to
+  // later, and that the code must maintain a mapping from earlier PHI's
+  // destination registers, and the registers that went into the PHI.
+
+  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
+    unsigned DestReg = MIIt->getOperand(0).getReg();
+    unsigned Op1Reg = MIIt->getOperand(1).getReg();
+    unsigned Op2Reg = MIIt->getOperand(2).getReg();
+
+    // If this CMOV we are generating is the opposite condition from
+    // the jump we generated, then we have to swap the operands for the
+    // PHI that is going to be generated.
+    if (MIIt->getOperand(3).getImm() == OppCC)
+        std::swap(Op1Reg, Op2Reg);
 
-  // If we have a double CMOV, the second Jcc provides the same incoming
+    if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
+      Op1Reg = RegRewriteTable[Op1Reg].first;
+
+    if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
+      Op2Reg = RegRewriteTable[Op2Reg].second;
+
+    MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL,
+                  TII->get(X86::PHI), DestReg)
+          .addReg(Op1Reg).addMBB(copy0MBB)
+          .addReg(Op2Reg).addMBB(thisMBB);
+
+    // Add this PHI to the rewrite table.
+    RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
+  }
+
+  // If we have a cascaded CMOV, the second Jcc provides the same incoming
   // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
-  if (NextCMOV) {
+  if (CascadedCMOV) {
     MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB);
     // Copy the PHI result to the register defined by the second CMOV.
     BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
-            DL, TII->get(TargetOpcode::COPY), NextCMOV->getOperand(0).getReg())
+            DL, TII->get(TargetOpcode::COPY),
+            CascadedCMOV->getOperand(0).getReg())
         .addReg(MI->getOperand(0).getReg());
-    NextCMOV->eraseFromParent();
+    CascadedCMOV->eraseFromParent();
   }
 
-  MI->eraseFromParent();   // The pseudo instruction is gone now.
+  // Now remove the CMOV(s).
+  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; )
+    (MIIt++)->eraseFromParent();
+
   return sinkMBB;
 }
 
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredAtomicFP(MachineInstr *MI,
+                                       MachineBasicBlock *BB) const {
+  // Combine the following atomic floating-point modification pattern:
+  //   a.store(reg OP a.load(acquire), release)
+  // Transform them into:
+  //   OPss (%gpr), %xmm
+  //   movss %xmm, (%gpr)
+  // Or sd equivalent for 64-bit operations.
+  unsigned MOp, FOp;
+  switch (MI->getOpcode()) {
+  default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP");
+  case X86::RELEASE_FADD32mr: MOp = X86::MOVSSmr; FOp = X86::ADDSSrm; break;
+  case X86::RELEASE_FADD64mr: MOp = X86::MOVSDmr; FOp = X86::ADDSDrm; break;
+  }
+  const X86InstrInfo *TII = Subtarget->getInstrInfo();
+  DebugLoc DL = MI->getDebugLoc();
+  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+  unsigned MSrc = MI->getOperand(0).getReg();
+  unsigned VSrc = MI->getOperand(5).getReg();
+  MachineInstrBuilder MIM = BuildMI(*BB, MI, DL, TII->get(MOp))
+                                .addReg(/*Base=*/MSrc)
+                                .addImm(/*Scale=*/1)
+                                .addReg(/*Index=*/0)
+                                .addImm(0)
+                                .addReg(0);
+  MachineInstr *MIO = BuildMI(*BB, (MachineInstr *)MIM, DL, TII->get(FOp),
+                              MRI.createVirtualRegister(MRI.getRegClass(VSrc)))
+                          .addReg(VSrc)
+                          .addReg(/*Base=*/MSrc)
+                          .addImm(/*Scale=*/1)
+                          .addReg(/*Index=*/0)
+                          .addImm(/*Disp=*/0)
+                          .addReg(/*Segment=*/0);
+  MIM.addReg(MIO->getOperand(0).getReg(), RegState::Kill);
+  MI->eraseFromParent(); // The pseudo instruction is gone now.
+  return BB;
+}
+
 MachineBasicBlock *
 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
                                         MachineBasicBlock *BB) const {
@@ -20537,29 +21036,33 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   case X86::TLSCall_32:
   case X86::TLSCall_64:
     return EmitLoweredTLSCall(MI, BB);
-  case X86::CMOV_GR8:
   case X86::CMOV_FR32:
   case X86::CMOV_FR64:
-  case X86::CMOV_V4F32:
+  case X86::CMOV_GR8:
+  case X86::CMOV_GR16:
+  case X86::CMOV_GR32:
+  case X86::CMOV_RFP32:
+  case X86::CMOV_RFP64:
+  case X86::CMOV_RFP80:
   case X86::CMOV_V2F64:
   case X86::CMOV_V2I64:
-  case X86::CMOV_V8F32:
+  case X86::CMOV_V4F32:
   case X86::CMOV_V4F64:
   case X86::CMOV_V4I64:
   case X86::CMOV_V16F32:
+  case X86::CMOV_V8F32:
   case X86::CMOV_V8F64:
   case X86::CMOV_V8I64:
-  case X86::CMOV_GR16:
-  case X86::CMOV_GR32:
-  case X86::CMOV_RFP32:
-  case X86::CMOV_RFP64:
-  case X86::CMOV_RFP80:
   case X86::CMOV_V8I1:
   case X86::CMOV_V16I1:
   case X86::CMOV_V32I1:
   case X86::CMOV_V64I1:
     return EmitLoweredSelect(MI, BB);
 
+  case X86::RELEASE_FADD32mr:
+  case X86::RELEASE_FADD64mr:
+    return EmitLoweredAtomicFP(MI, BB);
+
   case X86::FP32_TO_INT16_IN_MEM:
   case X86::FP32_TO_INT32_IN_MEM:
   case X86::FP32_TO_INT64_IN_MEM:
@@ -22056,96 +22559,6 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
   return SDValue();
 }
 
-/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
-static std::pair<unsigned, bool>
-matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
-                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
-  if (!VT.isVector())
-    return std::make_pair(0, false);
-
-  bool NeedSplit = false;
-  switch (VT.getSimpleVT().SimpleTy) {
-  default: return std::make_pair(0, false);
-  case MVT::v4i64:
-  case MVT::v2i64:
-    if (!Subtarget->hasVLX())
-      return std::make_pair(0, false);
-    break;
-  case MVT::v64i8:
-  case MVT::v32i16:
-    if (!Subtarget->hasBWI())
-      return std::make_pair(0, false);
-    break;
-  case MVT::v16i32:
-  case MVT::v8i64:
-    if (!Subtarget->hasAVX512())
-      return std::make_pair(0, false);
-    break;
-  case MVT::v32i8:
-  case MVT::v16i16:
-  case MVT::v8i32:
-    if (!Subtarget->hasAVX2())
-      NeedSplit = true;
-    if (!Subtarget->hasAVX())
-      return std::make_pair(0, false);
-    break;
-  case MVT::v16i8:
-  case MVT::v8i16:
-  case MVT::v4i32:
-    if (!Subtarget->hasSSE2())
-      return std::make_pair(0, false);
-  }
-
-  // SSE2 has only a small subset of the operations.
-  bool hasUnsigned = Subtarget->hasSSE41() ||
-                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
-  bool hasSigned = Subtarget->hasSSE41() ||
-                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
-
-  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
-
-  unsigned Opc = 0;
-  // Check for x CC y ? x : y.
-  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
-      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
-    switch (CC) {
-    default: break;
-    case ISD::SETULT:
-    case ISD::SETULE:
-      Opc = hasUnsigned ? ISD::UMIN : 0; break;
-    case ISD::SETUGT:
-    case ISD::SETUGE:
-      Opc = hasUnsigned ? ISD::UMAX : 0; break;
-    case ISD::SETLT:
-    case ISD::SETLE:
-      Opc = hasSigned ? ISD::SMIN : 0; break;
-    case ISD::SETGT:
-    case ISD::SETGE:
-      Opc = hasSigned ? ISD::SMAX : 0; break;
-    }
-  // Check for x CC y ? y : x -- a min/max with reversed arms.
-  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
-             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
-    switch (CC) {
-    default: break;
-    case ISD::SETULT:
-    case ISD::SETULE:
-      Opc = hasUnsigned ? ISD::UMAX : 0; break;
-    case ISD::SETUGT:
-    case ISD::SETUGE:
-      Opc = hasUnsigned ? ISD::UMIN : 0; break;
-    case ISD::SETLT:
-    case ISD::SETLE:
-      Opc = hasSigned ? ISD::SMAX : 0; break;
-    case ISD::SETGT:
-    case ISD::SETGE:
-      Opc = hasSigned ? ISD::SMIN : 0; break;
-    }
-  }
-
-  return std::make_pair(Opc, NeedSplit);
-}
-
 static SDValue
 transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
                                       const X86Subtarget *Subtarget) {
@@ -22555,32 +22968,6 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
     }
   }
 
-  // Try to match a min/max vector operation.
-  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
-    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
-    unsigned Opc = ret.first;
-    bool NeedSplit = ret.second;
-
-    if (Opc && NeedSplit) {
-      unsigned NumElems = VT.getVectorNumElements();
-      // Extract the LHS vectors
-      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
-      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
-
-      // Extract the RHS vectors
-      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
-      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
-
-      // Create min/max for each subvector
-      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
-      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
-
-      // Merge the result
-      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
-    } else if (Opc)
-      return DAG.getNode(Opc, DL, VT, LHS, RHS);
-  }
-
   // Simplify vector selection if condition value type matches vselect
   // operand type
   if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
@@ -23122,106 +23509,15 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
   return SDValue();
 }
 
-static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
-                                                const X86Subtarget *Subtarget) {
-  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
-  switch (IntNo) {
-  default: return SDValue();
-  // SSE/AVX/AVX2 blend intrinsics.
-  case Intrinsic::x86_avx2_pblendvb:
-    // Don't try to simplify this intrinsic if we don't have AVX2.
-    if (!Subtarget->hasAVX2())
-      return SDValue();
-    // FALL-THROUGH
-  case Intrinsic::x86_avx_blendv_pd_256:
-  case Intrinsic::x86_avx_blendv_ps_256:
-    // Don't try to simplify this intrinsic if we don't have AVX.
-    if (!Subtarget->hasAVX())
-      return SDValue();
-    // FALL-THROUGH
-  case Intrinsic::x86_sse41_blendvps:
-  case Intrinsic::x86_sse41_blendvpd:
-  case Intrinsic::x86_sse41_pblendvb: {
-    SDValue Op0 = N->getOperand(1);
-    SDValue Op1 = N->getOperand(2);
-    SDValue Mask = N->getOperand(3);
-
-    // Don't try to simplify this intrinsic if we don't have SSE4.1.
-    if (!Subtarget->hasSSE41())
-      return SDValue();
-
-    // fold (blend A, A, Mask) -> A
-    if (Op0 == Op1)
-      return Op0;
-    // fold (blend A, B, allZeros) -> A
-    if (ISD::isBuildVectorAllZeros(Mask.getNode()))
-      return Op0;
-    // fold (blend A, B, allOnes) -> B
-    if (ISD::isBuildVectorAllOnes(Mask.getNode()))
-      return Op1;
-
-    // Simplify the case where the mask is a constant i32 value.
-    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
-      if (C->isNullValue())
-        return Op0;
-      if (C->isAllOnesValue())
-        return Op1;
-    }
-
-    return SDValue();
-  }
-
-  // Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
-  case Intrinsic::x86_sse2_psrai_w:
-  case Intrinsic::x86_sse2_psrai_d:
-  case Intrinsic::x86_avx2_psrai_w:
-  case Intrinsic::x86_avx2_psrai_d:
-  case Intrinsic::x86_sse2_psra_w:
-  case Intrinsic::x86_sse2_psra_d:
-  case Intrinsic::x86_avx2_psra_w:
-  case Intrinsic::x86_avx2_psra_d: {
-    SDValue Op0 = N->getOperand(1);
-    SDValue Op1 = N->getOperand(2);
-    EVT VT = Op0.getValueType();
-    assert(VT.isVector() && "Expected a vector type!");
-
-    if (isa<BuildVectorSDNode>(Op1))
-      Op1 = Op1.getOperand(0);
-
-    if (!isa<ConstantSDNode>(Op1))
-      return SDValue();
-
-    EVT SVT = VT.getVectorElementType();
-    unsigned SVTBits = SVT.getSizeInBits();
-
-    ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
-    const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
-    uint64_t ShAmt = C.getZExtValue();
-
-    // Don't try to convert this shift into a ISD::SRA if the shift
-    // count is bigger than or equal to the element size.
-    if (ShAmt >= SVTBits)
-      return SDValue();
-
-    // Trivial case: if the shift count is zero, then fold this
-    // into the first operand.
-    if (ShAmt == 0)
-      return Op0;
-
-    // Replace this packed shift intrinsic with a target independent
-    // shift dag node.
-    SDLoc DL(N);
-    SDValue Splat = DAG.getConstant(C, DL, VT);
-    return DAG.getNode(ISD::SRA, DL, VT, Op0, Splat);
-  }
-  }
-}
-
 /// PerformMulCombine - Optimize a single multiply with constant into two
 /// in order to implement it with two cheaper instructions, e.g.
 /// LEA + SHL, LEA + LEA.
 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
                                  TargetLowering::DAGCombinerInfo &DCI) {
+  // An imul is usually smaller than the alternative sequence.
+  if (DAG.getMachineFunction().getFunction()->optForMinSize())
+    return SDValue();
+
   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
     return SDValue();
 
@@ -23292,18 +23588,34 @@ static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
       N1C && N0.getOpcode() == ISD::AND &&
       N0.getOperand(1).getOpcode() == ISD::Constant) {
     SDValue N00 = N0.getOperand(0);
-    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
-        ((N00.getOpcode() == ISD::ANY_EXTEND ||
-          N00.getOpcode() == ISD::ZERO_EXTEND) &&
-         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
-      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
-      APInt ShAmt = N1C->getAPIntValue();
-      Mask = Mask.shl(ShAmt);
-      if (Mask != 0) {
-        SDLoc DL(N);
-        return DAG.getNode(ISD::AND, DL, VT,
-                           N00, DAG.getConstant(Mask, DL, VT));
-      }
+    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+    APInt ShAmt = N1C->getAPIntValue();
+    Mask = Mask.shl(ShAmt);
+    bool MaskOK = false;
+    // We can handle cases concerning bit-widening nodes containing setcc_c if
+    // we carefully interrogate the mask to make sure we are semantics
+    // preserving.
+    // The transform is not safe if the result of C1 << C2 exceeds the bitwidth
+    // of the underlying setcc_c operation if the setcc_c was zero extended.
+    // Consider the following example:
+    //   zext(setcc_c)                 -> i32 0x0000FFFF
+    //   c1                            -> i32 0x0000FFFF
+    //   c2                            -> i32 0x00000001
+    //   (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
+    //   (and setcc_c, (c1 << c2))     -> i32 0x0000FFFE
+    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+      MaskOK = true;
+    } else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
+               N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+      MaskOK = true;
+    } else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
+                N00.getOpcode() == ISD::ANY_EXTEND) &&
+               N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+      MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
+    }
+    if (MaskOK && Mask != 0) {
+      SDLoc DL(N);
+      return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
     }
   }
 
@@ -23833,9 +24145,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
     return SDValue();
 
   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
-  MachineFunction &MF = DAG.getMachineFunction();
-  bool OptForSize =
-      MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
+  bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
 
   // SHLD/SHRD instructions have lower register pressure, but on some
   // platforms they have higher latency than the equivalent
@@ -23933,13 +24243,61 @@ static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
   return SDValue();
 }
 
-// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
+// Try to turn tests against the signbit in the form of:
+//   XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
+// into:
+//   SETGT(X, -1)
+static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
+  // This is only worth doing if the output type is i8.
+  if (N->getValueType(0) != MVT::i8)
+    return SDValue();
+
+  SDValue N0 = N->getOperand(0);
+  SDValue N1 = N->getOperand(1);
+
+  // We should be performing an xor against a truncated shift.
+  if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
+    return SDValue();
+
+  // Make sure we are performing an xor against one.
+  if (!isa<ConstantSDNode>(N1) || !cast<ConstantSDNode>(N1)->isOne())
+    return SDValue();
+
+  // SetCC on x86 zero extends so only act on this if it's a logical shift.
+  SDValue Shift = N0.getOperand(0);
+  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
+    return SDValue();
+
+  // Make sure we are truncating from one of i16, i32 or i64.
+  EVT ShiftTy = Shift.getValueType();
+  if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
+    return SDValue();
+
+  // Make sure the shift amount extracts the sign bit.
+  if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
+      Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1)
+    return SDValue();
+
+  // Create a greater-than comparison against -1.
+  // N.B. Using SETGE against 0 works but we want a canonical looking
+  // comparison, using SETGT matches up with what TranslateX86CC.
+  SDLoc DL(N);
+  SDValue ShiftOp = Shift.getOperand(0);
+  EVT ShiftOpTy = ShiftOp.getValueType();
+  SDValue Cond = DAG.getSetCC(DL, MVT::i8, ShiftOp,
+                              DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
+  return Cond;
+}
+
 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const X86Subtarget *Subtarget) {
   if (DCI.isBeforeLegalizeOps())
     return SDValue();
 
+  if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
+    return RV;
+
   if (Subtarget->hasCMov())
     if (SDValue RV = performIntegerAbsCombine(N, DAG))
       return RV;
@@ -23960,10 +24318,13 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
   // For chips with slow 32-byte unaligned loads, break the 32-byte operation
   // into two 16-byte operations.
   ISD::LoadExtType Ext = Ld->getExtensionType();
+  bool Fast;
+  unsigned AddressSpace = Ld->getAddressSpace();
   unsigned Alignment = Ld->getAlignment();
-  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
-  if (RegVT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
-      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
+  if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
+      Ext == ISD::NON_EXTLOAD &&
+      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
+                             AddressSpace, Alignment, &Fast) && !Fast) {
     unsigned NumElems = RegVT.getVectorNumElements();
     if (NumElems < 2)
       return SDValue();
@@ -24093,6 +24454,15 @@ static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
   unsigned FromSz = VT.getVectorElementType().getSizeInBits();
   unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
 
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+  // The truncating store is legal in some cases. For example
+  // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
+  // are designated for truncate store.
+  // In this case we don't need any further transformations.
+  if (TLI.isTruncStoreLegal(VT, StVT))
+    return SDValue();
+
   // From, To sizes and ElemCount must be pow of two
   assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
     "Unexpected size for truncating masked store");
@@ -24168,10 +24538,12 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
 
   // If we are saving a concatenation of two XMM registers and 32-byte stores
   // are slow, such as on Sandy Bridge, perform two 16-byte stores.
+  bool Fast;
+  unsigned AddressSpace = St->getAddressSpace();
   unsigned Alignment = St->getAlignment();
-  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
-  if (VT.is256BitVector() && Subtarget->isUnalignedMem32Slow() &&
-      StVT == VT && !IsAligned) {
+  if (VT.is256BitVector() && StVT == VT &&
+      TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
+                             AddressSpace, Alignment, &Fast) && !Fast) {
     unsigned NumElems = VT.getVectorNumElements();
     if (NumElems < 2)
       return SDValue();
@@ -24204,6 +24576,13 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
     unsigned FromSz = VT.getVectorElementType().getSizeInBits();
     unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
 
+    // The truncating store is legal in some cases. For example
+    // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
+    // are designated for truncate store.
+    // In this case we don't need any further transformations.
+    if (TLI.isTruncStoreLegal(VT, StVT))
+      return SDValue();
+
     // From, To sizes and ElemCount must be pow of two
     if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
     // We are going to use the original vector elt for storing.
@@ -25377,7 +25756,7 @@ static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
   }
 
   // Check if we can bypass extracting and re-inserting an element of an input
-  // vector. Essentialy:
+  // vector. Essentially:
   // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
       V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
@@ -25467,8 +25846,6 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
   case X86ISD::VPERM2X128:
   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
   case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
-  case ISD::INTRINSIC_WO_CHAIN:
-    return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
   case X86ISD::INSERTPS: {
     if (getTargetMachine().getOptLevel() > CodeGenOpt::None)
       return PerformINSERTPSCombine(N, DAG, Subtarget);
@@ -26264,6 +26641,15 @@ int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
   return -1;
 }
 
-bool X86TargetLowering::isTargetFTOL() const {
-  return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();
+bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
+  // Integer division on x86 is expensive. However, when aggressively optimizing
+  // for code size, we prefer to use a div instruction, as it is usually smaller
+  // than the alternative sequence.
+  // The exception to this is vector division. Since x86 doesn't have vector
+  // integer division, leaving the division as-is is a loss even in terms of
+  // size, because it will have to be scalarized, while the alternative code
+  // sequence can be performed in vector form.
+  bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex,
+                                   Attribute::MinSize);
+  return OptSize && !VT.isVector();
 }