Reapply part of r237975, "Fix Clang -Wmissing-override warning", except for DIContext...
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
index 004f4f299676a9c27478377cc3f2037013efab32..95421b35db5cf4c319340384a5a4bea35a0d2101 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "dyld"
 #include "RuntimeDyldELF.h"
-#include "JITRegistrar.h"
-#include "ObjectImageCommon.h"
+#include "RuntimeDyldCheckerImpl.h"
 #include "llvm/ADT/IntervalMap.h"
-#include "llvm/ADT/OwningPtr.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/StringRef.h"
 #include "llvm/ADT/Triple.h"
-#include "llvm/ExecutionEngine/ObjectBuffer.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
-#include "llvm/Object/ELF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Object/ELFObjectFile.h"
 #include "llvm/Object/ObjectFile.h"
 #include "llvm/Support/ELF.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/TargetRegistry.h"
+
 using namespace llvm;
 using namespace llvm::object;
 
-namespace {
+#define DEBUG_TYPE "dyld"
 
-static inline
-error_code check(error_code Err) {
+static inline std::error_code check(std::error_code Err) {
   if (Err) {
     report_fatal_error(Err.message());
   }
   return Err;
 }
 
-template<class ELFT>
-class DyldELFObject
-  : public ELFObjectFile<ELFT> {
+namespace {
+
+template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 
   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
-  typedef
-    Elf_Rel_Impl<ELFT, false> Elf_Rel;
-  typedef
-    Elf_Rel_Impl<ELFT, true> Elf_Rela;
+  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
+  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
 
   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
 
-  typedef typename ELFDataTypeTypedefHelper<
-          ELFT>::value_type addr_type;
+  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
 
 public:
-  DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
+  DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
 
   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
-  void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
+
+  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
 
   // Methods for type inquiry through isa, cast and dyn_cast
   static inline bool classof(const Binary *v) {
-    return (isa<ELFObjectFile<ELFT> >(v)
-            && classof(cast<ELFObjectFile
-                <ELFT> >(v)));
+    return (isa<ELFObjectFile<ELFT>>(v) &&
+            classof(cast<ELFObjectFile<ELFT>>(v)));
   }
-  static inline bool classof(
-      const ELFObjectFile<ELFT> *v) {
+  static inline bool classof(const ELFObjectFile<ELFT> *v) {
     return v->isDyldType();
   }
-};
 
-template<class ELFT>
-class ELFObjectImage : public ObjectImageCommon {
-  protected:
-    DyldELFObject<ELFT> *DyldObj;
-    bool Registered;
-
-  public:
-    ELFObjectImage(ObjectBuffer *Input,
-                 DyldELFObject<ELFT> *Obj)
-    : ObjectImageCommon(Input, Obj),
-      DyldObj(Obj),
-      Registered(false) {}
-
-    virtual ~ELFObjectImage() {
-      if (Registered)
-        deregisterWithDebugger();
-    }
-
-    // Subclasses can override these methods to update the image with loaded
-    // addresses for sections and common symbols
-    virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
-    {
-      DyldObj->updateSectionAddress(Sec, Addr);
-    }
+};
 
-    virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
-    {
-      DyldObj->updateSymbolAddress(Sym, Addr);
-    }
 
-    virtual void registerWithDebugger()
-    {
-      JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
-      Registered = true;
-    }
-    virtual void deregisterWithDebugger()
-    {
-      JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
-    }
-};
 
 // The MemoryBuffer passed into this constructor is just a wrapper around the
 // actual memory.  Ultimately, the Binary parent class will take ownership of
 // this MemoryBuffer object but not the underlying memory.
-template<class ELFT>
-DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
-  : ELFObjectFile<ELFT>(Wrapper, ec) {
+template <class ELFT>
+DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
+    : ELFObjectFile<ELFT>(Wrapper, EC) {
   this->isDyldELFObject = true;
 }
 
-template<class ELFT>
+template <class ELFT>
 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
                                                uint64_t Addr) {
   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
-  Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
-                          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+  Elf_Shdr *shdr =
+      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 
   // This assumes the address passed in matches the target address bitness
   // The template-based type cast handles everything else.
   shdr->sh_addr = static_cast<addr_type>(Addr);
 }
 
-template<class ELFT>
+template <class ELFT>
 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
                                               uint64_t Addr) {
 
-  Elf_Sym *sym = const_cast<Elf_Sym*>(
-    ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
+  Elf_Sym *sym = const_cast<Elf_Sym *>(
+      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
 
   // This assumes the address passed in matches the target address bitness
   // The template-based type cast handles everything else.
   sym->st_value = static_cast<addr_type>(Addr);
 }
 
+class LoadedELFObjectInfo
+    : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
+public:
+  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
+                      unsigned EndIdx)
+      : LoadedObjectInfoHelper(RTDyld, BeginIdx, EndIdx) {}
+
+  OwningBinary<ObjectFile>
+  getObjectForDebug(const ObjectFile &Obj) const override;
+};
+
+template <typename ELFT>
+std::unique_ptr<DyldELFObject<ELFT>>
+createRTDyldELFObject(MemoryBufferRef Buffer,
+                      const LoadedELFObjectInfo &L,
+                      std::error_code &ec) {
+  typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
+  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+  std::unique_ptr<DyldELFObject<ELFT>> Obj =
+    llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
+
+  // Iterate over all sections in the object.
+  for (const auto &Sec : Obj->sections()) {
+    StringRef SectionName;
+    Sec.getName(SectionName);
+    if (SectionName != "") {
+      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
+          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
+        // This assumes that the address passed in matches the target address
+        // bitness. The template-based type cast handles everything else.
+        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
+      }
+    }
+  }
+
+  return Obj;
+}
+
+OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
+                                              const LoadedELFObjectInfo &L) {
+  assert(Obj.isELF() && "Not an ELF object file.");
+
+  std::unique_ptr<MemoryBuffer> Buffer =
+    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
+
+  std::error_code ec;
+
+  std::unique_ptr<ObjectFile> DebugObj;
+  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
+    typedef ELFType<support::little, 2, false> ELF32LE;
+    DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
+  } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
+    typedef ELFType<support::big, 2, false> ELF32BE;
+    DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
+  } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
+    typedef ELFType<support::big, 2, true> ELF64BE;
+    DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
+  } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
+    typedef ELFType<support::little, 2, true> ELF64LE;
+    DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
+  } else
+    llvm_unreachable("Unexpected ELF format");
+
+  assert(!ec && "Could not construct copy ELF object file");
+
+  return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
+}
+
+OwningBinary<ObjectFile>
+LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
+  return createELFDebugObject(Obj, *this);
+}
+
 } // namespace
 
 namespace llvm {
 
-StringRef RuntimeDyldELF::getEHFrameSection() {
-  for (int i = 0, e = Sections.size(); i != e; ++i) {
-    if (Sections[i].Name == ".eh_frame")
-      return StringRef((const char*)Sections[i].Address, Sections[i].Size);
+RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
+                               RuntimeDyld::SymbolResolver &Resolver)
+    : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
+RuntimeDyldELF::~RuntimeDyldELF() {}
+
+void RuntimeDyldELF::registerEHFrames() {
+  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
+    SID EHFrameSID = UnregisteredEHFrameSections[i];
+    uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
+    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
+    size_t EHFrameSize = Sections[EHFrameSID].Size;
+    MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
+    RegisteredEHFrameSections.push_back(EHFrameSID);
   }
-  return StringRef();
+  UnregisteredEHFrameSections.clear();
 }
 
-ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
-  if (Buffer->getBufferSize() < ELF::EI_NIDENT)
-    llvm_unreachable("Unexpected ELF object size");
-  std::pair<unsigned char, unsigned char> Ident = std::make_pair(
-                         (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
-                         (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
-  error_code ec;
-
-  if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
-    DyldELFObject<ELFType<support::little, 4, false> > *Obj =
-      new DyldELFObject<ELFType<support::little, 4, false> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
-  }
-  else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
-    DyldELFObject<ELFType<support::big, 4, false> > *Obj =
-      new DyldELFObject<ELFType<support::big, 4, false> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
+void RuntimeDyldELF::deregisterEHFrames() {
+  for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
+    SID EHFrameSID = RegisteredEHFrameSections[i];
+    uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
+    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
+    size_t EHFrameSize = Sections[EHFrameSID].Size;
+    MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
   }
-  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
-    DyldELFObject<ELFType<support::big, 8, true> > *Obj =
-      new DyldELFObject<ELFType<support::big, 8, true> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
-  }
-  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
-    DyldELFObject<ELFType<support::little, 8, true> > *Obj =
-      new DyldELFObject<ELFType<support::little, 8, true> >(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
-  }
-  else
-    llvm_unreachable("Unexpected ELF format");
+  RegisteredEHFrameSections.clear();
 }
 
-RuntimeDyldELF::~RuntimeDyldELF() {
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
+  unsigned SectionStartIdx, SectionEndIdx;
+  std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
+  return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
+                                                SectionEndIdx);
 }
 
 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
-                                             uint64_t Offset,
-                                             uint64_t Value,
-                                             uint32_t Type,
-                                             int64_t Addend) {
+                                             uint64_t Offset, uint64_t Value,
+                                             uint32_t Type, int64_t Addend,
+                                             uint64_t SymOffset) {
   switch (Type) {
   default:
     llvm_unreachable("Relocation type not implemented yet!");
-  break;
+    break;
   case ELF::R_X86_64_64: {
-    uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
-    *Target = Value + Addend;
-    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
-                 << " at " << format("%p\n",Target));
+    support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
+    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
+                 << format("%p\n", Section.Address + Offset));
     break;
   }
   case ELF::R_X86_64_32:
@@ -219,78 +240,63 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
     Value += Addend;
     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
            (Type == ELF::R_X86_64_32S &&
-             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
+            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
-    *Target = TruncatedAddr;
-    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
-                 << " at " << format("%p\n",Target));
+    support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
+    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
+                 << format("%p\n", Section.Address + Offset));
     break;
   }
   case ELF::R_X86_64_PC32: {
-    // Get the placeholder value from the generated object since
-    // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
-                                                                   + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
-    uint64_t  FinalAddress = Section.LoadAddress + Offset;
-    int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
-    assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
+    uint64_t FinalAddress = Section.LoadAddress + Offset;
+    int64_t RealOffset = Value + Addend - FinalAddress;
+    assert(isInt<32>(RealOffset));
     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
-    *Target = TruncOffset;
+    support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
+    break;
+  }
+  case ELF::R_X86_64_PC64: {
+    uint64_t FinalAddress = Section.LoadAddress + Offset;
+    int64_t RealOffset = Value + Addend - FinalAddress;
+    support::ulittle64_t::ref(Section.Address + Offset) = RealOffset;
     break;
   }
   }
 }
 
 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
-                                          uint64_t Offset,
-                                          uint32_t Value,
-                                          uint32_t Type,
-                                          int32_t Addend) {
+                                          uint64_t Offset, uint32_t Value,
+                                          uint32_t Type, int32_t Addend) {
   switch (Type) {
   case ELF::R_386_32: {
-    // Get the placeholder value from the generated object since
-    // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
-                                                                   + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
-    *Target = *Placeholder + Value + Addend;
+    support::ulittle32_t::ref(Section.Address + Offset) = Value + Addend;
     break;
   }
   case ELF::R_386_PC32: {
-    // Get the placeholder value from the generated object since
-    // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
-                                                                   + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
-    uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
-    uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
-    *Target = RealOffset;
+    uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+    uint32_t RealOffset = Value + Addend - FinalAddress;
+    support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
+    break;
+  }
+  default:
+    // There are other relocation types, but it appears these are the
+    // only ones currently used by the LLVM ELF object writer
+    llvm_unreachable("Relocation type not implemented yet!");
     break;
-    }
-    default:
-      // There are other relocation types, but it appears these are the
-      // only ones currently used by the LLVM ELF object writer
-      llvm_unreachable("Relocation type not implemented yet!");
-      break;
   }
 }
 
 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
-                                              uint64_t Offset,
-                                              uint64_t Value,
-                                              uint32_t Type,
-                                              int64_t Addend) {
-  uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+                                              uint64_t Offset, uint64_t Value,
+                                              uint32_t Type, int64_t Addend) {
+  uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
   uint64_t FinalAddress = Section.LoadAddress + Offset;
 
   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
                << format("%llx", Section.Address + Offset)
-               << " FinalAddress: 0x" << format("%llx",FinalAddress)
-               << " Value: 0x" << format("%llx",Value)
-               << " Type: 0x" << format("%x",Type)
-               << " Addend: 0x" << format("%llx",Addend)
+               << " FinalAddress: 0x" << format("%llx", FinalAddress)
+               << " Value: 0x" << format("%llx", Value) << " Type: 0x"
+               << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
                << "\n");
 
   switch (Type) {
@@ -298,13 +304,14 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
     llvm_unreachable("Relocation type not implemented yet!");
     break;
   case ELF::R_AARCH64_ABS64: {
-    uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+    uint64_t *TargetPtr =
+        reinterpret_cast<uint64_t *>(Section.Address + Offset);
     *TargetPtr = Value + Addend;
     break;
   }
-  case ELF::R_AARCH64_PREL32: { // test-shift.ll (.eh_frame)
+  case ELF::R_AARCH64_PREL32: {
     uint64_t Result = Value + Addend - FinalAddress;
-    assert(static_cast<int64_t>(Result) >= INT32_MIN && 
+    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
            static_cast<int64_t>(Result) <= UINT32_MAX);
     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
     break;
@@ -316,104 +323,151 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
     uint64_t BranchImm = Value + Addend - FinalAddress;
 
     // "Check that -2^27 <= result < 2^27".
-    assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) && 
-           static_cast<int64_t>(BranchImm) < (1LL << 27));
+    assert(isInt<28>(BranchImm));
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0xfc000000U;
     // Immediate goes in bits 25:0 of B and BL.
     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
     break;
   }
   case ELF::R_AARCH64_MOVW_UABS_G3: {
     uint64_t Result = Value + Addend;
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0xffe0001fU;
     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
     *TargetPtr |= Result >> (48 - 5);
-    // Shift is "lsl #48", in bits 22:21
-    *TargetPtr |= 3 << 21;
+    // Shift must be "lsl #48", in bits 22:21
+    assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
     break;
   }
   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
     uint64_t Result = Value + Addend;
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0xffe0001fU;
     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
-    // Shift is "lsl #32", in bits 22:21
-    *TargetPtr |= 2 << 21;
+    // Shift must be "lsl #32", in bits 22:21
+    assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
     break;
   }
   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
     uint64_t Result = Value + Addend;
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0xffe0001fU;
     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
-    // Shift is "lsl #16", in bits 22:21
-    *TargetPtr |= 1 << 21;
+    // Shift must be "lsl #16", in bits 22:2
+    assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
     break;
   }
   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
     uint64_t Result = Value + Addend;
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0xffe0001fU;
     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
     *TargetPtr |= ((Result & 0xffffU) << 5);
-    // Shift is "lsl #0", in bits 22:21. No action needed.
+    // Shift must be "lsl #0", in bits 22:21.
+    assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
+    break;
+  }
+  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
+    // Operation: Page(S+A) - Page(P)
+    uint64_t Result =
+        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
+
+    // Check that -2^32 <= X < 2^32
+    assert(isInt<33>(Result) && "overflow check failed for relocation");
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0x9f00001fU;
+    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
+    // from bits 32:12 of X.
+    *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
+    *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
+    break;
+  }
+  case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
+    // Operation: S + A
+    uint64_t Result = Value + Addend;
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0xffc003ffU;
+    // Immediate goes in bits 21:10 of LD/ST instruction, taken
+    // from bits 11:2 of X
+    *TargetPtr |= ((Result & 0xffc) << (10 - 2));
+    break;
+  }
+  case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
+    // Operation: S + A
+    uint64_t Result = Value + Addend;
+
+    // AArch64 code is emitted with .rela relocations. The data already in any
+    // bits affected by the relocation on entry is garbage.
+    *TargetPtr &= 0xffc003ffU;
+    // Immediate goes in bits 21:10 of LD/ST instruction, taken
+    // from bits 11:3 of X
+    *TargetPtr |= ((Result & 0xff8) << (10 - 3));
     break;
   }
   }
 }
 
 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
-                                          uint64_t Offset,
-                                          uint32_t Value,
-                                          uint32_t Type,
-                                          int32_t Addend) {
+                                          uint64_t Offset, uint32_t Value,
+                                          uint32_t Type, int32_t Addend) {
   // TODO: Add Thumb relocations.
-  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
   Value += Addend;
 
   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
                << Section.Address + Offset
-               << " FinalAddress: " << format("%p",FinalAddress)
-               << " Value: " << format("%x",Value)
-               << " Type: " << format("%x",Type)
-               << " Addend: " << format("%x",Addend)
-               << "\n");
+               << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
+               << format("%x", Value) << " Type: " << format("%x", Type)
+               << " Addend: " << format("%x", Addend) << "\n");
 
-  switch(Type) {
+  switch (Type) {
   default:
     llvm_unreachable("Not implemented relocation type!");
 
-  // Write a 32bit value to relocation address, taking into account the
-  // implicit addend encoded in the target.
-  case ELF::R_ARM_TARGET1 :
-  case ELF::R_ARM_ABS32 :
-    *TargetPtr += Value;
+  case ELF::R_ARM_NONE:
     break;
-
-  // Write first 16 bit of 32 bit value to the mov instruction.
-  // Last 4 bit should be shifted.
-  case ELF::R_ARM_MOVW_ABS_NC :
-    // We are not expecting any other addend in the relocation address.
-    // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
-    // non-contiguous fields.
-    assert((*TargetPtr & 0x000F0FFF) == 0);
-    Value = Value & 0xFFFF;
-    *TargetPtr |= Value & 0xFFF;
-    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
+  case ELF::R_ARM_PREL31:
+  case ELF::R_ARM_TARGET1:
+  case ELF::R_ARM_ABS32:
+    *TargetPtr = Value;
     break;
-
-  // Write last 16 bit of 32 bit value to the mov instruction.
-  // Last 4 bit should be shifted.
-  case ELF::R_ARM_MOVT_ABS :
-    // We are not expecting any other addend in the relocation address.
-    // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
-    assert((*TargetPtr & 0x000F0FFF) == 0);
-    Value = (Value >> 16) & 0xFFFF;
+    // Write first 16 bit of 32 bit value to the mov instruction.
+    // Last 4 bit should be shifted.
+  case ELF::R_ARM_MOVW_ABS_NC:
+  case ELF::R_ARM_MOVT_ABS:
+    if (Type == ELF::R_ARM_MOVW_ABS_NC)
+      Value = Value & 0xFFFF;
+    else if (Type == ELF::R_ARM_MOVT_ABS)
+      Value = (Value >> 16) & 0xFFFF;
+    *TargetPtr &= ~0x000F0FFF;
     *TargetPtr |= Value & 0xFFF;
     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
     break;
-
-  // Write 24 bit relative value to the branch instruction.
-  case ELF::R_ARM_PC24 :    // Fall through.
-  case ELF::R_ARM_CALL :    // Fall through.
-  case ELF::R_ARM_JUMP24 :
+    // Write 24 bit relative value to the branch instruction.
+  case ELF::R_ARM_PC24: // Fall through.
+  case ELF::R_ARM_CALL: // Fall through.
+  case ELF::R_ARM_JUMP24:
     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
     RelValue = (RelValue & 0x03FFFFFC) >> 2;
+    assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
     *TargetPtr &= 0xFF000000;
     *TargetPtr |= RelValue;
     break;
@@ -421,113 +475,111 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
 }
 
 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
-                                           uint64_t Offset,
-                                           uint32_t Value,
-                                           uint32_t Type,
-                                           int32_t Addend) {
-  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+                                           uint64_t Offset, uint32_t Value,
+                                           uint32_t Type, int32_t Addend) {
+  uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
   Value += Addend;
 
   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
-               << Section.Address + Offset
-               << " FinalAddress: "
-               << format("%p",Section.LoadAddress + Offset)
-               << " Value: " << format("%x",Value)
-               << " Type: " << format("%x",Type)
-               << " Addend: " << format("%x",Addend)
-               << "\n");
+               << Section.Address + Offset << " FinalAddress: "
+               << format("%p", Section.LoadAddress + Offset) << " Value: "
+               << format("%x", Value) << " Type: " << format("%x", Type)
+               << " Addend: " << format("%x", Addend) << "\n");
 
-  switch(Type) {
+  switch (Type) {
   default:
     llvm_unreachable("Not implemented relocation type!");
     break;
   case ELF::R_MIPS_32:
-    *TargetPtr = Value + (*TargetPtr);
+    *TargetPtr = Value;
     break;
   case ELF::R_MIPS_26:
-    *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
+    *TargetPtr = ((*TargetPtr) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
     break;
   case ELF::R_MIPS_HI16:
     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
-    Value += ((*TargetPtr) & 0x0000ffff) << 16;
-    *TargetPtr = ((*TargetPtr) & 0xffff0000) |
-                 (((Value + 0x8000) >> 16) & 0xffff);
+    *TargetPtr =
+      ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
     break;
-   case ELF::R_MIPS_LO16:
-    Value += ((*TargetPtr) & 0x0000ffff);
+  case ELF::R_MIPS_LO16:
     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
     break;
-   }
+  }
 }
 
-// Return the .TOC. section address to R_PPC64_TOC relocations.
-uint64_t RuntimeDyldELF::findPPC64TOC() const {
+// Return the .TOC. section and offset.
+void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
+                                         ObjSectionToIDMap &LocalSections,
+                                         RelocationValueRef &Rel) {
+  // Set a default SectionID in case we do not find a TOC section below.
+  // This may happen for references to TOC base base (sym@toc, .odp
+  // relocation) without a .toc directive.  In this case just use the
+  // first section (which is usually the .odp) since the code won't
+  // reference the .toc base directly.
+  Rel.SymbolName = NULL;
+  Rel.SectionID = 0;
+
   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
   // order. The TOC starts where the first of these sections starts.
-  SectionList::const_iterator it = Sections.begin();
-  SectionList::const_iterator ite = Sections.end();
-  for (; it != ite; ++it) {
-    if (it->Name == ".got" ||
-        it->Name == ".toc" ||
-        it->Name == ".tocbss" ||
-        it->Name == ".plt")
+  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
+       si != se; ++si) {
+
+    StringRef SectionName;
+    check(si->getName(SectionName));
+
+    if (SectionName == ".got"
+        || SectionName == ".toc"
+        || SectionName == ".tocbss"
+        || SectionName == ".plt") {
+      Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
       break;
+    }
   }
-  if (it == ite) {
-    // This may happen for
-    // * references to TOC base base (sym@toc, .odp relocation) without
-    // a .toc directive.
-    // In this case just use the first section (which is usually
-    // the .odp) since the code won't reference the .toc base
-    // directly.
-    it = Sections.begin();
-  }
-  assert (it != ite);
+
   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
   // thus permitting a full 64 Kbytes segment.
-  return it->LoadAddress + 0x8000;
+  Rel.Addend = 0x8000;
 }
 
 // Returns the sections and offset associated with the ODP entry referenced
 // by Symbol.
-void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
+void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
                                          ObjSectionToIDMap &LocalSections,
                                          RelocationValueRef &Rel) {
   // Get the ELF symbol value (st_value) to compare with Relocation offset in
   // .opd entries
-
-  error_code err;
-  for (section_iterator si = Obj.begin_sections(),
-     se = Obj.end_sections(); si != se; si.increment(err)) {
-    StringRef SectionName;
-    check(si->getName(SectionName));
-    if (SectionName != ".opd")
+  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
+       si != se; ++si) {
+    section_iterator RelSecI = si->getRelocatedSection();
+    if (RelSecI == Obj.section_end())
       continue;
 
-    for (relocation_iterator i = si->begin_relocations(),
-         e = si->end_relocations(); i != e;) {
-      check(err);
+    StringRef RelSectionName;
+    check(RelSecI->getName(RelSectionName));
+    if (RelSectionName != ".opd")
+      continue;
 
+    for (relocation_iterator i = si->relocation_begin(),
+                             e = si->relocation_end();
+         i != e;) {
       // The R_PPC64_ADDR64 relocation indicates the first field
       // of a .opd entry
       uint64_t TypeFunc;
       check(i->getType(TypeFunc));
       if (TypeFunc != ELF::R_PPC64_ADDR64) {
-        i.increment(err);
+        ++i;
         continue;
       }
 
-      SymbolRef TargetSymbol;
       uint64_t TargetSymbolOffset;
-      int64_t TargetAdditionalInfo;
-      check(i->getSymbol(TargetSymbol));
+      symbol_iterator TargetSymbol = i->getSymbol();
       check(i->getOffset(TargetSymbolOffset));
-      check(i->getAdditionalInfo(TargetAdditionalInfo));
+      int64_t Addend;
+      check(getELFRelocationAddend(*i, Addend));
 
-      i = i.increment(err);
+      ++i;
       if (i == e)
         break;
-      check(err);
 
       // Just check if following relocation is a R_PPC64_TOC
       uint64_t TypeTOC;
@@ -538,82 +590,117 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
       // Finally compares the Symbol value and the target symbol offset
       // to check if this .opd entry refers to the symbol the relocation
       // points to.
-      if (Rel.Addend != (intptr_t)TargetSymbolOffset)
+      if (Rel.Addend != (int64_t)TargetSymbolOffset)
         continue;
 
-      section_iterator tsi(Obj.end_sections());
-      check(TargetSymbol.getSection(tsi));
-      Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
-      Rel.Addend = (intptr_t)TargetAdditionalInfo;
+      section_iterator tsi(Obj.section_end());
+      check(TargetSymbol->getSection(tsi));
+      bool IsCode = tsi->isText();
+      Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
+      Rel.Addend = (intptr_t)Addend;
       return;
     }
   }
   llvm_unreachable("Attempting to get address of ODP entry!");
 }
 
-// Relocation masks following the #lo(value), #hi(value), #higher(value),
-// and #highest(value) macros defined in section 4.5.1. Relocation Types
-// in PPC-elf64abi document.
-//
-static inline
-uint16_t applyPPClo (uint64_t value)
-{
-  return value & 0xffff;
-}
+// Relocation masks following the #lo(value), #hi(value), #ha(value),
+// #higher(value), #highera(value), #highest(value), and #highesta(value)
+// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
+// document.
 
-static inline
-uint16_t applyPPChi (uint64_t value)
-{
+static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
+
+static inline uint16_t applyPPChi(uint64_t value) {
   return (value >> 16) & 0xffff;
 }
 
-static inline
-uint16_t applyPPChigher (uint64_t value)
-{
+static inline uint16_t applyPPCha (uint64_t value) {
+  return ((value + 0x8000) >> 16) & 0xffff;
+}
+
+static inline uint16_t applyPPChigher(uint64_t value) {
   return (value >> 32) & 0xffff;
 }
 
-static inline
-uint16_t applyPPChighest (uint64_t value)
-{
+static inline uint16_t applyPPChighera (uint64_t value) {
+  return ((value + 0x8000) >> 32) & 0xffff;
+}
+
+static inline uint16_t applyPPChighest(uint64_t value) {
   return (value >> 48) & 0xffff;
 }
 
+static inline uint16_t applyPPChighesta (uint64_t value) {
+  return ((value + 0x8000) >> 48) & 0xffff;
+}
+
 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
-                                            uint64_t Offset,
-                                            uint64_t Value,
-                                            uint32_t Type,
-                                            int64_t Addend) {
-  uint8_t* LocalAddress = Section.Address + Offset;
+                                            uint64_t Offset, uint64_t Value,
+                                            uint32_t Type, int64_t Addend) {
+  uint8_t *LocalAddress = Section.Address + Offset;
   switch (Type) {
   default:
     llvm_unreachable("Relocation type not implemented yet!");
-  break;
-  case ELF::R_PPC64_ADDR16_LO :
-    writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
     break;
-  case ELF::R_PPC64_ADDR16_HI :
-    writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
+  case ELF::R_PPC64_ADDR16:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     break;
-  case ELF::R_PPC64_ADDR16_HIGHER :
-    writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
+  case ELF::R_PPC64_ADDR16_DS:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
     break;
-  case ELF::R_PPC64_ADDR16_HIGHEST :
-    writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
+  case ELF::R_PPC64_ADDR16_LO:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     break;
-  case ELF::R_PPC64_ADDR14 : {
+  case ELF::R_PPC64_ADDR16_LO_DS:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+    break;
+  case ELF::R_PPC64_ADDR16_HI:
+    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR16_HA:
+    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR16_HIGHER:
+    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR16_HIGHERA:
+    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR16_HIGHEST:
+    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR16_HIGHESTA:
+    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR14: {
     assert(((Value + Addend) & 3) == 0);
     // Preserve the AA/LK bits in the branch instruction
-    uint8_t aalk = *(LocalAddress+3);
+    uint8_t aalk = *(LocalAddress + 3);
     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
   } break;
-  case ELF::R_PPC64_ADDR32 : {
+  case ELF::R_PPC64_REL16_LO: {
+    uint64_t FinalAddress = (Section.LoadAddress + Offset);
+    uint64_t Delta = Value - FinalAddress + Addend;
+    writeInt16BE(LocalAddress, applyPPClo(Delta));
+  } break;
+  case ELF::R_PPC64_REL16_HI: {
+    uint64_t FinalAddress = (Section.LoadAddress + Offset);
+    uint64_t Delta = Value - FinalAddress + Addend;
+    writeInt16BE(LocalAddress, applyPPChi(Delta));
+  } break;
+  case ELF::R_PPC64_REL16_HA: {
+    uint64_t FinalAddress = (Section.LoadAddress + Offset);
+    uint64_t Delta = Value - FinalAddress + Addend;
+    writeInt16BE(LocalAddress, applyPPCha(Delta));
+  } break;
+  case ELF::R_PPC64_ADDR32: {
     int32_t Result = static_cast<int32_t>(Value + Addend);
     if (SignExtend32<32>(Result) != Result)
       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
     writeInt32BE(LocalAddress, Result);
   } break;
-  case ELF::R_PPC64_REL24 : {
+  case ELF::R_PPC64_REL24: {
     uint64_t FinalAddress = (Section.LoadAddress + Offset);
     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
     if (SignExtend32<24>(delta) != delta)
@@ -621,37 +708,27 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
     // Generates a 'bl <address>' instruction
     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
   } break;
-  case ELF::R_PPC64_REL32 : {
+  case ELF::R_PPC64_REL32: {
     uint64_t FinalAddress = (Section.LoadAddress + Offset);
     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
     if (SignExtend32<32>(delta) != delta)
       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
     writeInt32BE(LocalAddress, delta);
   } break;
-  case ELF::R_PPC64_ADDR64 :
+  case ELF::R_PPC64_REL64: {
+    uint64_t FinalAddress = (Section.LoadAddress + Offset);
+    uint64_t Delta = Value - FinalAddress + Addend;
+    writeInt64BE(LocalAddress, Delta);
+  } break;
+  case ELF::R_PPC64_ADDR64:
     writeInt64BE(LocalAddress, Value + Addend);
     break;
-  case ELF::R_PPC64_TOC :
-    writeInt64BE(LocalAddress, findPPC64TOC());
-    break;
-  case ELF::R_PPC64_TOC16 : {
-    uint64_t TOCStart = findPPC64TOC();
-    Value = applyPPClo((Value + Addend) - TOCStart);
-    writeInt16BE(LocalAddress, applyPPClo(Value));
-  } break;
-  case ELF::R_PPC64_TOC16_DS : {
-    uint64_t TOCStart = findPPC64TOC();
-    Value = ((Value + Addend) - TOCStart);
-    writeInt16BE(LocalAddress, applyPPClo(Value));
-  } break;
   }
 }
 
 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
-                                              uint64_t Offset,
-                                              uint64_t Value,
-                                              uint32_t Type,
-                                              int64_t Addend) {
+                                              uint64_t Offset, uint64_t Value,
+                                              uint32_t Type, int64_t Addend) {
   uint8_t *LocalAddress = Section.Address + Offset;
   switch (Type) {
   default:
@@ -683,127 +760,159 @@ void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
   }
 }
 
+// The target location for the relocation is described by RE.SectionID and
+// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
+// SectionEntry has three members describing its location.
+// SectionEntry::Address is the address at which the section has been loaded
+// into memory in the current (host) process.  SectionEntry::LoadAddress is the
+// address that the section will have in the target process.
+// SectionEntry::ObjAddress is the address of the bits for this section in the
+// original emitted object image (also in the current address space).
+//
+// Relocations will be applied as if the section were loaded at
+// SectionEntry::LoadAddress, but they will be applied at an address based
+// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
+// Target memory contents if they are required for value calculations.
+//
+// The Value parameter here is the load address of the symbol for the
+// relocation to be applied.  For relocations which refer to symbols in the
+// current object Value will be the LoadAddress of the section in which
+// the symbol resides (RE.Addend provides additional information about the
+// symbol location).  For external symbols, Value will be the address of the
+// symbol in the target address space.
 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
-                                      uint64_t Value) {
+                                       uint64_t Value) {
   const SectionEntry &Section = Sections[RE.SectionID];
-  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend);
+  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
+                           RE.SymOffset);
 }
 
 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
-                                       uint64_t Offset,
-                                       uint64_t Value,
-                                       uint32_t Type,
-                                       int64_t Addend) {
+                                       uint64_t Offset, uint64_t Value,
+                                       uint32_t Type, int64_t Addend,
+                                       uint64_t SymOffset) {
   switch (Arch) {
   case Triple::x86_64:
-    resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
+    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
     break;
   case Triple::x86:
-    resolveX86Relocation(Section, Offset,
-                         (uint32_t)(Value & 0xffffffffL), Type,
+    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                          (uint32_t)(Addend & 0xffffffffL));
     break;
   case Triple::aarch64:
+  case Triple::aarch64_be:
     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
     break;
-  case Triple::arm:    // Fall through.
+  case Triple::arm: // Fall through.
+  case Triple::armeb:
   case Triple::thumb:
-    resolveARMRelocation(Section, Offset,
-                         (uint32_t)(Value & 0xffffffffL), Type,
+  case Triple::thumbeb:
+    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
                          (uint32_t)(Addend & 0xffffffffL));
     break;
-  case Triple::mips:    // Fall through.
+  case Triple::mips: // Fall through.
   case Triple::mipsel:
-    resolveMIPSRelocation(Section, Offset,
-                          (uint32_t)(Value & 0xffffffffL), Type,
-                          (uint32_t)(Addend & 0xffffffffL));
+    resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
+                          Type, (uint32_t)(Addend & 0xffffffffL));
     break;
-  case Triple::ppc64:
+  case Triple::ppc64: // Fall through.
+  case Triple::ppc64le:
     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
     break;
   case Triple::systemz:
     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
     break;
-  default: llvm_unreachable("Unsupported CPU type!");
+  default:
+    llvm_unreachable("Unsupported CPU type!");
   }
 }
 
-void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
-                                          RelocationRef RelI,
-                                          ObjectImage &Obj,
-                                          ObjSectionToIDMap &ObjSectionToID,
-                                          const SymbolTableMap &Symbols,
-                                          StubMap &Stubs) {
+void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
+  return (void*)(Sections[SectionID].ObjAddress + Offset);
+}
+
+void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
+  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
+  if (Value.SymbolName)
+    addRelocationForSymbol(RE, Value.SymbolName);
+  else
+    addRelocationForSection(RE, Value.SectionID);
+}
+
+relocation_iterator RuntimeDyldELF::processRelocationRef(
+    unsigned SectionID, relocation_iterator RelI,
+    const ObjectFile &Obj,
+    ObjSectionToIDMap &ObjSectionToID,
+    StubMap &Stubs) {
   uint64_t RelType;
-  Check(RelI.getType(RelType));
+  Check(RelI->getType(RelType));
   int64_t Addend;
-  Check(RelI.getAdditionalInfo(Addend));
-  SymbolRef Symbol;
-  Check(RelI.getSymbol(Symbol));
+  Check(getELFRelocationAddend(*RelI, Addend));
+  symbol_iterator Symbol = RelI->getSymbol();
 
   // Obtain the symbol name which is referenced in the relocation
   StringRef TargetName;
-  Symbol.getName(TargetName);
-  DEBUG(dbgs() << "\t\tRelType: " << RelType
-               << " Addend: " << Addend
-               << " TargetName: " << TargetName
-               << "\n");
+  if (Symbol != Obj.symbol_end())
+    Symbol->getName(TargetName);
+  DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
+               << " TargetName: " << TargetName << "\n");
   RelocationValueRef Value;
   // First search for the symbol in the local symbol table
-  SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
-  SymbolRef::Type SymType;
-  Symbol.getType(SymType);
-  if (lsi != Symbols.end()) {
-    Value.SectionID = lsi->second.first;
-    Value.Addend = lsi->second.second + Addend;
+  SymbolRef::Type SymType = SymbolRef::ST_Unknown;
+
+  // Search for the symbol in the global symbol table
+  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
+  if (Symbol != Obj.symbol_end()) {
+    gsi = GlobalSymbolTable.find(TargetName.data());
+    Symbol->getType(SymType);
+  }
+  if (gsi != GlobalSymbolTable.end()) {
+    const auto &SymInfo = gsi->second;
+    Value.SectionID = SymInfo.getSectionID();
+    Value.Offset = SymInfo.getOffset();
+    Value.Addend = SymInfo.getOffset() + Addend;
   } else {
-    // Search for the symbol in the global symbol table
-    SymbolTableMap::const_iterator gsi =
-        GlobalSymbolTable.find(TargetName.data());
-    if (gsi != GlobalSymbolTable.end()) {
-      Value.SectionID = gsi->second.first;
-      Value.Addend = gsi->second.second + Addend;
-    } else {
-      switch (SymType) {
-        case SymbolRef::ST_Debug: {
-          // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
-          // and can be changed by another developers. Maybe best way is add
-          // a new symbol type ST_Section to SymbolRef and use it.
-          section_iterator si(Obj.end_sections());
-          Symbol.getSection(si);
-          if (si == Obj.end_sections())
-            llvm_unreachable("Symbol section not found, bad object file format!");
-          DEBUG(dbgs() << "\t\tThis is section symbol\n");
-          // Default to 'true' in case isText fails (though it never does).
-          bool isCode = true;
-          si->isText(isCode);
-          Value.SectionID = findOrEmitSection(Obj,
-                                              (*si),
-                                              isCode,
-                                              ObjSectionToID);
-          Value.Addend = Addend;
-          break;
-        }
-        case SymbolRef::ST_Unknown: {
-          Value.SymbolName = TargetName.data();
-          Value.Addend = Addend;
-          break;
-        }
-        default:
-          llvm_unreachable("Unresolved symbol type!");
-          break;
-      }
+    switch (SymType) {
+    case SymbolRef::ST_Debug: {
+      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+      // and can be changed by another developers. Maybe best way is add
+      // a new symbol type ST_Section to SymbolRef and use it.
+      section_iterator si(Obj.section_end());
+      Symbol->getSection(si);
+      if (si == Obj.section_end())
+        llvm_unreachable("Symbol section not found, bad object file format!");
+      DEBUG(dbgs() << "\t\tThis is section symbol\n");
+      bool isCode = si->isText();
+      Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
+      Value.Addend = Addend;
+      break;
+    }
+    case SymbolRef::ST_Data:
+    case SymbolRef::ST_Unknown: {
+      Value.SymbolName = TargetName.data();
+      Value.Addend = Addend;
+
+      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
+      // will manifest here as a NULL symbol name.
+      // We can set this as a valid (but empty) symbol name, and rely
+      // on addRelocationForSymbol to handle this.
+      if (!Value.SymbolName)
+        Value.SymbolName = "";
+      break;
+    }
+    default:
+      llvm_unreachable("Unresolved symbol type!");
+      break;
     }
   }
+
   uint64_t Offset;
-  Check(RelI.getOffset(Offset));
+  Check(RelI->getOffset(Offset));
 
-  DEBUG(dbgs() << "\t\tSectionID: " << SectionID
-               << " Offset: " << Offset
+  DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
                << "\n");
-  if (Arch == Triple::aarch64 &&
-      (RelType == ELF::R_AARCH64_CALL26 ||
-       RelType == ELF::R_AARCH64_JUMP26)) {
+  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
+      (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
     // This is an AArch64 branch relocation, need to use a stub function.
     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
     SectionEntry &Section = Sections[SectionID];
@@ -811,24 +920,21 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
     // Look for an existing stub.
     StubMap::const_iterator i = Stubs.find(Value);
     if (i != Stubs.end()) {
-        resolveRelocation(Section, Offset,
-                          (uint64_t)Section.Address + i->second, RelType, 0);
+      resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+                        RelType, 0);
       DEBUG(dbgs() << " Stub function found\n");
     } else {
       // Create a new stub function.
       DEBUG(dbgs() << " Create a new stub function\n");
       Stubs[Value] = Section.StubOffset;
-      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                   Section.StubOffset);
+      uint8_t *StubTargetAddr =
+          createStubFunction(Section.Address + Section.StubOffset);
 
-      RelocationEntry REmovz_g3(SectionID,
-                                StubTargetAddr - Section.Address,
+      RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
-      RelocationEntry REmovk_g2(SectionID,
-                                StubTargetAddr - Section.Address + 4,
+      RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
-      RelocationEntry REmovk_g1(SectionID,
-                                StubTargetAddr - Section.Address + 8,
+      RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
       RelocationEntry REmovk_g0(SectionID,
                                 StubTargetAddr - Section.Address + 12,
@@ -846,91 +952,114 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
         addRelocationForSection(REmovk_g0, Value.SectionID);
       }
       resolveRelocation(Section, Offset,
-                        (uint64_t)Section.Address + Section.StubOffset,
-                        RelType, 0);
+                        (uint64_t)Section.Address + Section.StubOffset, RelType,
+                        0);
       Section.StubOffset += getMaxStubSize();
     }
-  } else if (Arch == Triple::arm &&
-      (RelType == ELF::R_ARM_PC24 ||
-       RelType == ELF::R_ARM_CALL ||
-       RelType == ELF::R_ARM_JUMP24)) {
-    // This is an ARM branch relocation, need to use a stub function.
-    DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
-    SectionEntry &Section = Sections[SectionID];
+  } else if (Arch == Triple::arm) {
+    if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
+      RelType == ELF::R_ARM_JUMP24) {
+      // This is an ARM branch relocation, need to use a stub function.
+      DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
+      SectionEntry &Section = Sections[SectionID];
+
+      // Look for an existing stub.
+      StubMap::const_iterator i = Stubs.find(Value);
+      if (i != Stubs.end()) {
+        resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+          RelType, 0);
+        DEBUG(dbgs() << " Stub function found\n");
+      } else {
+        // Create a new stub function.
+        DEBUG(dbgs() << " Create a new stub function\n");
+        Stubs[Value] = Section.StubOffset;
+        uint8_t *StubTargetAddr =
+          createStubFunction(Section.Address + Section.StubOffset);
+        RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
+          ELF::R_ARM_ABS32, Value.Addend);
+        if (Value.SymbolName)
+          addRelocationForSymbol(RE, Value.SymbolName);
+        else
+          addRelocationForSection(RE, Value.SectionID);
 
-    // Look for an existing stub.
-    StubMap::const_iterator i = Stubs.find(Value);
-    if (i != Stubs.end()) {
         resolveRelocation(Section, Offset,
-                          (uint64_t)Section.Address + i->second, RelType, 0);
-      DEBUG(dbgs() << " Stub function found\n");
+          (uint64_t)Section.Address + Section.StubOffset, RelType,
+          0);
+        Section.StubOffset += getMaxStubSize();
+      }
     } else {
-      // Create a new stub function.
-      DEBUG(dbgs() << " Create a new stub function\n");
-      Stubs[Value] = Section.StubOffset;
-      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                   Section.StubOffset);
-      RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
-                         ELF::R_ARM_ABS32, Value.Addend);
-      if (Value.SymbolName)
-        addRelocationForSymbol(RE, Value.SymbolName);
-      else
-        addRelocationForSection(RE, Value.SectionID);
-
-      resolveRelocation(Section, Offset,
-                        (uint64_t)Section.Address + Section.StubOffset,
-                        RelType, 0);
-      Section.StubOffset += getMaxStubSize();
+      uint32_t *Placeholder =
+        reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
+      if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
+          RelType == ELF::R_ARM_ABS32) {
+        Value.Addend += *Placeholder;
+      } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
+        // See ELF for ARM documentation
+        Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
+      }
+      processSimpleRelocation(SectionID, Offset, RelType, Value);
     }
-  } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
-             RelType == ELF::R_MIPS_26) {
-    // This is an Mips branch relocation, need to use a stub function.
-    DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
-    SectionEntry &Section = Sections[SectionID];
-    uint8_t *Target = Section.Address + Offset;
-    uint32_t *TargetAddress = (uint32_t *)Target;
-
-    // Extract the addend from the instruction.
-    uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
-
-    Value.Addend += Addend;
+  } else if ((Arch == Triple::mipsel || Arch == Triple::mips)) {
+    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
+    if (RelType == ELF::R_MIPS_26) {
+      // This is an Mips branch relocation, need to use a stub function.
+      DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
+      SectionEntry &Section = Sections[SectionID];
 
-    //  Look up for existing stub.
-    StubMap::const_iterator i = Stubs.find(Value);
-    if (i != Stubs.end()) {
-      resolveRelocation(Section, Offset,
-                        (uint64_t)Section.Address + i->second, RelType, 0);
-      DEBUG(dbgs() << " Stub function found\n");
-    } else {
-      // Create a new stub function.
-      DEBUG(dbgs() << " Create a new stub function\n");
-      Stubs[Value] = Section.StubOffset;
-      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                   Section.StubOffset);
+      // Extract the addend from the instruction.
+      // We shift up by two since the Value will be down shifted again
+      // when applying the relocation.
+      uint32_t Addend = ((*Placeholder) & 0x03ffffff) << 2;
 
-      // Creating Hi and Lo relocations for the filled stub instructions.
-      RelocationEntry REHi(SectionID,
-                           StubTargetAddr - Section.Address,
-                           ELF::R_MIPS_HI16, Value.Addend);
-      RelocationEntry RELo(SectionID,
-                           StubTargetAddr - Section.Address + 4,
-                           ELF::R_MIPS_LO16, Value.Addend);
+      Value.Addend += Addend;
 
-      if (Value.SymbolName) {
-        addRelocationForSymbol(REHi, Value.SymbolName);
-        addRelocationForSymbol(RELo, Value.SymbolName);
+      //  Look up for existing stub.
+      StubMap::const_iterator i = Stubs.find(Value);
+      if (i != Stubs.end()) {
+        RelocationEntry RE(SectionID, Offset, RelType, i->second);
+        addRelocationForSection(RE, SectionID);
+        DEBUG(dbgs() << " Stub function found\n");
       } else {
-        addRelocationForSection(REHi, Value.SectionID);
-        addRelocationForSection(RELo, Value.SectionID);
-      }
+        // Create a new stub function.
+        DEBUG(dbgs() << " Create a new stub function\n");
+        Stubs[Value] = Section.StubOffset;
+        uint8_t *StubTargetAddr =
+          createStubFunction(Section.Address + Section.StubOffset);
+
+        // Creating Hi and Lo relocations for the filled stub instructions.
+        RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
+          ELF::R_MIPS_HI16, Value.Addend);
+        RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
+          ELF::R_MIPS_LO16, Value.Addend);
+
+        if (Value.SymbolName) {
+          addRelocationForSymbol(REHi, Value.SymbolName);
+          addRelocationForSymbol(RELo, Value.SymbolName);
+        }
+        else {
+          addRelocationForSection(REHi, Value.SectionID);
+          addRelocationForSection(RELo, Value.SectionID);
+        }
 
-      resolveRelocation(Section, Offset,
-                        (uint64_t)Section.Address + Section.StubOffset,
-                        RelType, 0);
-      Section.StubOffset += getMaxStubSize();
+        RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
+        addRelocationForSection(RE, SectionID);
+        Section.StubOffset += getMaxStubSize();
+      }
+    } else {
+      if (RelType == ELF::R_MIPS_HI16)
+        Value.Addend += ((*Placeholder) & 0x0000ffff) << 16;
+      else if (RelType == ELF::R_MIPS_LO16)
+        Value.Addend += ((*Placeholder) & 0x0000ffff);
+      else if (RelType == ELF::R_MIPS_32)
+        Value.Addend += *Placeholder;
+      processSimpleRelocation(SectionID, Offset, RelType, Value);
     }
-  } else if (Arch == Triple::ppc64) {
+  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
     if (RelType == ELF::R_PPC64_REL24) {
+      // Determine ABI variant in use for this object.
+      unsigned AbiVariant;
+      Obj.getPlatformFlags(AbiVariant);
+      AbiVariant &= ELF::EF_PPC64_ABI;
       // A PPC branch relocation will need a stub function if the target is
       // an external symbol (Symbol::ST_Unknown) or if the target address
       // is not within the signed 24-bits branch address.
@@ -938,9 +1067,18 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
       uint8_t *Target = Section.Address + Offset;
       bool RangeOverflow = false;
       if (SymType != SymbolRef::ST_Unknown) {
-        // A function call may points to the .opd entry, so the final symbol value
-        // in calculated based in the relocation values in .opd section.
-        findOPDEntrySection(Obj, ObjSectionToID, Value);
+        if (AbiVariant != 2) {
+          // In the ELFv1 ABI, a function call may point to the .opd entry,
+          // so the final symbol value is calculated based on the relocation
+          // values in the .opd section.
+          findOPDEntrySection(Obj, ObjSectionToID, Value);
+        } else {
+          // In the ELFv2 ABI, a function symbol may provide a local entry
+          // point, which must be used for direct calls.
+          uint8_t SymOther;
+          Symbol->getOther(SymOther);
+          Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
+        }
         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
         // If it is within 24-bits branch range, just set the branch target
@@ -954,7 +1092,7 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
           RangeOverflow = true;
         }
       }
-      if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
+      if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
         // larger than 24-bits.
         StubMap::const_iterator i = Stubs.find(Value);
@@ -967,59 +1105,108 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
           // Create a new stub function.
           DEBUG(dbgs() << " Create a new stub function\n");
           Stubs[Value] = Section.StubOffset;
-          uint8_t *StubTargetAddr = createStubFunction(Section.Address +
-                                                       Section.StubOffset);
+          uint8_t *StubTargetAddr =
+              createStubFunction(Section.Address + Section.StubOffset,
+                                 AbiVariant);
           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
                              ELF::R_PPC64_ADDR64, Value.Addend);
 
           // Generates the 64-bits address loads as exemplified in section
-          // 4.5.1 in PPC64 ELF ABI.
-          RelocationEntry REhst(SectionID,
-                                StubTargetAddr - Section.Address + 2,
+          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
+          // apply to the low part of the instructions, so we have to update
+          // the offset according to the target endianness.
+          uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
+          if (!IsTargetLittleEndian)
+            StubRelocOffset += 2;
+
+          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
-          RelocationEntry REhr(SectionID,
-                               StubTargetAddr - Section.Address + 6,
+          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
-          RelocationEntry REh(SectionID,
-                              StubTargetAddr - Section.Address + 14,
+          RelocationEntry REh(SectionID, StubRelocOffset + 12,
                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
-          RelocationEntry REl(SectionID,
-                              StubTargetAddr - Section.Address + 18,
+          RelocationEntry REl(SectionID, StubRelocOffset + 16,
                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
 
           if (Value.SymbolName) {
             addRelocationForSymbol(REhst, Value.SymbolName);
-            addRelocationForSymbol(REhr,  Value.SymbolName);
-            addRelocationForSymbol(REh,   Value.SymbolName);
-            addRelocationForSymbol(REl,   Value.SymbolName);
+            addRelocationForSymbol(REhr, Value.SymbolName);
+            addRelocationForSymbol(REh, Value.SymbolName);
+            addRelocationForSymbol(REl, Value.SymbolName);
           } else {
             addRelocationForSection(REhst, Value.SectionID);
-            addRelocationForSection(REhr,  Value.SectionID);
-            addRelocationForSection(REh,   Value.SectionID);
-            addRelocationForSection(REl,   Value.SectionID);
+            addRelocationForSection(REhr, Value.SectionID);
+            addRelocationForSection(REh, Value.SectionID);
+            addRelocationForSection(REl, Value.SectionID);
           }
 
           resolveRelocation(Section, Offset,
                             (uint64_t)Section.Address + Section.StubOffset,
                             RelType, 0);
-          if (SymType == SymbolRef::ST_Unknown)
-            // Restore the TOC for external calls
-            writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
           Section.StubOffset += getMaxStubSize();
         }
+        if (SymType == SymbolRef::ST_Unknown) {
+          // Restore the TOC for external calls
+          if (AbiVariant == 2)
+            writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
+          else
+            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
+        }
       }
+    } else if (RelType == ELF::R_PPC64_TOC16 ||
+               RelType == ELF::R_PPC64_TOC16_DS ||
+               RelType == ELF::R_PPC64_TOC16_LO ||
+               RelType == ELF::R_PPC64_TOC16_LO_DS ||
+               RelType == ELF::R_PPC64_TOC16_HI ||
+               RelType == ELF::R_PPC64_TOC16_HA) {
+      // These relocations are supposed to subtract the TOC address from
+      // the final value.  This does not fit cleanly into the RuntimeDyld
+      // scheme, since there may be *two* sections involved in determining
+      // the relocation value (the section of the symbol refered to by the
+      // relocation, and the TOC section associated with the current module).
+      //
+      // Fortunately, these relocations are currently only ever generated
+      // refering to symbols that themselves reside in the TOC, which means
+      // that the two sections are actually the same.  Thus they cancel out
+      // and we can immediately resolve the relocation right now.
+      switch (RelType) {
+      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
+      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
+      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
+      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
+      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
+      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
+      default: llvm_unreachable("Wrong relocation type.");
+      }
+
+      RelocationValueRef TOCValue;
+      findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
+      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
+        llvm_unreachable("Unsupported TOC relocation.");
+      Value.Addend -= TOCValue.Addend;
+      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
     } else {
+      // There are two ways to refer to the TOC address directly: either
+      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
+      // ignored), or via any relocation that refers to the magic ".TOC."
+      // symbols (in which case the addend is respected).
+      if (RelType == ELF::R_PPC64_TOC) {
+        RelType = ELF::R_PPC64_ADDR64;
+        findPPC64TOCSection(Obj, ObjSectionToID, Value);
+      } else if (TargetName == ".TOC.") {
+        findPPC64TOCSection(Obj, ObjSectionToID, Value);
+        Value.Addend += Addend;
+      }
+
       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
-      // Extra check to avoid relocation againt empty symbols (usually
-      // the R_PPC64_TOC).
-      if (Value.SymbolName && !TargetName.empty())
+
+      if (Value.SymbolName)
         addRelocationForSymbol(RE, Value.SymbolName);
       else
         addRelocationForSection(RE, Value.SectionID);
     }
   } else if (Arch == Triple::systemz &&
-             (RelType == ELF::R_390_PLT32DBL ||
-              RelType == ELF::R_390_GOTENT)) {
+             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
     // Create function stubs for both PLT and GOT references, regardless of
     // whether the GOT reference is to data or code.  The stub contains the
     // full address of the symbol, as needed by GOT references, and the
@@ -1044,14 +1231,14 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
 
       uintptr_t BaseAddress = uintptr_t(Section.Address);
       uintptr_t StubAlignment = getStubAlignment();
-      StubAddress = (BaseAddress + Section.StubOffset +
-                     StubAlignment - 1) & -StubAlignment;
+      StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+                    -StubAlignment;
       unsigned StubOffset = StubAddress - BaseAddress;
 
       Stubs[Value] = StubOffset;
       createStubFunction((uint8_t *)StubAddress);
-      RelocationEntry RE(SectionID, StubOffset + 8,
-                         ELF::R_390_64, Value.Addend - Addend);
+      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
+                         Value.Offset);
       if (Value.SymbolName)
         addRelocationForSymbol(RE, Value.SymbolName);
       else
@@ -1060,22 +1247,192 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
     }
 
     if (RelType == ELF::R_390_GOTENT)
-      resolveRelocation(Section, Offset, StubAddress + 8,
-                        ELF::R_390_PC32DBL, Addend);
+      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
+                        Addend);
     else
       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
+  } else if (Arch == Triple::x86_64) {
+    if (RelType == ELF::R_X86_64_PLT32) {
+      // The way the PLT relocations normally work is that the linker allocates
+      // the
+      // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
+      // entry will then jump to an address provided by the GOT.  On first call,
+      // the
+      // GOT address will point back into PLT code that resolves the symbol. After
+      // the first call, the GOT entry points to the actual function.
+      //
+      // For local functions we're ignoring all of that here and just replacing
+      // the PLT32 relocation type with PC32, which will translate the relocation
+      // into a PC-relative call directly to the function. For external symbols we
+      // can't be sure the function will be within 2^32 bytes of the call site, so
+      // we need to create a stub, which calls into the GOT.  This case is
+      // equivalent to the usual PLT implementation except that we use the stub
+      // mechanism in RuntimeDyld (which puts stubs at the end of the section)
+      // rather than allocating a PLT section.
+      if (Value.SymbolName) {
+        // This is a call to an external function.
+        // Look for an existing stub.
+        SectionEntry &Section = Sections[SectionID];
+        StubMap::const_iterator i = Stubs.find(Value);
+        uintptr_t StubAddress;
+        if (i != Stubs.end()) {
+        StubAddress = uintptr_t(Section.Address) + i->second;
+        DEBUG(dbgs() << " Stub function found\n");
+        } else {
+        // Create a new stub function (equivalent to a PLT entry).
+        DEBUG(dbgs() << " Create a new stub function\n");
+
+        uintptr_t BaseAddress = uintptr_t(Section.Address);
+        uintptr_t StubAlignment = getStubAlignment();
+        StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+                -StubAlignment;
+        unsigned StubOffset = StubAddress - BaseAddress;
+        Stubs[Value] = StubOffset;
+        createStubFunction((uint8_t *)StubAddress);
+
+        // Bump our stub offset counter
+        Section.StubOffset = StubOffset + getMaxStubSize();
+
+        // Allocate a GOT Entry
+        uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
+
+        // The load of the GOT address has an addend of -4
+        resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
+
+        // Fill in the value of the symbol we're targeting into the GOT
+        addRelocationForSymbol(computeGOTOffsetRE(SectionID,GOTOffset,0,ELF::R_X86_64_64),
+          Value.SymbolName);
+        }
+
+        // Make the target call a call into the stub table.
+        resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
+                Addend);
+      } else {
+        RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
+                  Value.Offset);
+        addRelocationForSection(RE, Value.SectionID);
+      }
+    } else if (RelType == ELF::R_X86_64_GOTPCREL) {
+      uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
+      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
+
+      // Fill in the value of the symbol we're targeting into the GOT
+      RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
+      if (Value.SymbolName)
+        addRelocationForSymbol(RE, Value.SymbolName);
+      else
+        addRelocationForSection(RE, Value.SectionID);
+    } else if (RelType == ELF::R_X86_64_PC32) {
+      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
+      processSimpleRelocation(SectionID, Offset, RelType, Value);
+    } else if (RelType == ELF::R_X86_64_PC64) {
+      Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
+      processSimpleRelocation(SectionID, Offset, RelType, Value);
+    } else {
+      processSimpleRelocation(SectionID, Offset, RelType, Value);
+    }
   } else {
-    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
-    if (Value.SymbolName)
-      addRelocationForSymbol(RE, Value.SymbolName);
-    else
-      addRelocationForSection(RE, Value.SectionID);
+    if (Arch == Triple::x86) {
+      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
+    }
+    processSimpleRelocation(SectionID, Offset, RelType, Value);
+  }
+  return ++RelI;
+}
+
+size_t RuntimeDyldELF::getGOTEntrySize() {
+  // We don't use the GOT in all of these cases, but it's essentially free
+  // to put them all here.
+  size_t Result = 0;
+  switch (Arch) {
+  case Triple::x86_64:
+  case Triple::aarch64:
+  case Triple::aarch64_be:
+  case Triple::ppc64:
+  case Triple::ppc64le:
+  case Triple::systemz:
+    Result = sizeof(uint64_t);
+    break;
+  case Triple::x86:
+  case Triple::arm:
+  case Triple::thumb:
+  case Triple::mips:
+  case Triple::mipsel:
+    Result = sizeof(uint32_t);
+    break;
+  default:
+    llvm_unreachable("Unsupported CPU type!");
+  }
+  return Result;
+}
+
+uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
+{
+  (void)SectionID; // The GOT Section is the same for all section in the object file
+  if (GOTSectionID == 0) {
+    GOTSectionID = Sections.size();
+    // Reserve a section id. We'll allocate the section later
+    // once we know the total size
+    Sections.push_back(SectionEntry(".got", 0, 0, 0));
+  }
+  uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
+  CurrentGOTIndex += no;
+  return StartOffset;
+}
+
+void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
+{
+  // Fill in the relative address of the GOT Entry into the stub
+  RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
+  addRelocationForSection(GOTRE, GOTSectionID);
+}
+
+RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
+                                                   uint32_t Type)
+{
+  (void)SectionID; // The GOT Section is the same for all section in the object file
+  return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
+}
+
+void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
+                                  ObjSectionToIDMap &SectionMap) {
+  // If necessary, allocate the global offset table
+  if (GOTSectionID != 0) {
+    // Allocate memory for the section
+    size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
+    uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
+                                                GOTSectionID, ".got", false);
+    if (!Addr)
+      report_fatal_error("Unable to allocate memory for GOT!");
+
+    Sections[GOTSectionID] = SectionEntry(".got", Addr, TotalSize, 0);
+
+    if (Checker)
+      Checker->registerSection(Obj.getFileName(), GOTSectionID);
+
+    // For now, initialize all GOT entries to zero.  We'll fill them in as
+    // needed when GOT-based relocations are applied.
+    memset(Addr, 0, TotalSize);
+  }
+
+  // Look for and record the EH frame section.
+  ObjSectionToIDMap::iterator i, e;
+  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
+    const SectionRef &Section = i->first;
+    StringRef Name;
+    Section.getName(Name);
+    if (Name == ".eh_frame") {
+      UnregisteredEHFrameSections.push_back(i->second);
+      break;
+    }
   }
+
+  GOTSectionID = 0;
+  CurrentGOTIndex = 0;
 }
 
-bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
-  if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
-    return false;
-  return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
+bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
+  return Obj.isELF();
 }
+
 } // namespace llvm