[MCJIT] Remove the local symbol table from RuntimeDlyd - it's not needed.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
index c9db976dcc9c81cce7452a083f6bdc13c27a9a2b..2664a10ece5f11e1b97772cd9c7bd5777e83cd23 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #include "RuntimeDyldELF.h"
-#include "JITRegistrar.h"
-#include "ObjectImageCommon.h"
 #include "llvm/ADT/IntervalMap.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/StringRef.h"
 #include "llvm/ADT/Triple.h"
-#include "llvm/ExecutionEngine/ObjectBuffer.h"
-#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/MC/MCStreamer.h"
 #include "llvm/Object/ELFObjectFile.h"
 #include "llvm/Object/ObjectFile.h"
 #include "llvm/Support/ELF.h"
+#include "llvm/Support/Endian.h"
 #include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/TargetRegistry.h"
 
 using namespace llvm;
 using namespace llvm::object;
 
 #define DEBUG_TYPE "dyld"
 
-namespace {
-
-static inline error_code check(error_code Err) {
+static inline std::error_code check(std::error_code Err) {
   if (Err) {
     report_fatal_error(Err.message());
   }
   return Err;
 }
 
+namespace {
+
 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 
@@ -51,16 +50,12 @@ template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
 
   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
 
-  std::unique_ptr<ObjectFile> UnderlyingFile;
-
 public:
-  DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
-                MemoryBuffer *Wrapper, error_code &ec);
-
-  DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
+  DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
 
   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
-  void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
+
+  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
 
   // Methods for type inquiry through isa, cast and dyn_cast
   static inline bool classof(const Binary *v) {
@@ -70,55 +65,17 @@ public:
   static inline bool classof(const ELFObjectFile<ELFT> *v) {
     return v->isDyldType();
   }
-};
 
-template <class ELFT> class ELFObjectImage : public ObjectImageCommon {
-  bool Registered;
-
-public:
-  ELFObjectImage(ObjectBuffer *Input, std::unique_ptr<DyldELFObject<ELFT>> Obj)
-      : ObjectImageCommon(Input, std::move(Obj)), Registered(false) {}
-
-  virtual ~ELFObjectImage() {
-    if (Registered)
-      deregisterWithDebugger();
-  }
+};
 
-  // Subclasses can override these methods to update the image with loaded
-  // addresses for sections and common symbols
-  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override {
-    static_cast<DyldELFObject<ELFT>*>(getObjectFile())
-        ->updateSectionAddress(Sec, Addr);
-  }
 
-  void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override {
-    static_cast<DyldELFObject<ELFT>*>(getObjectFile())
-        ->updateSymbolAddress(Sym, Addr);
-  }
-
-  void registerWithDebugger() override {
-    JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
-    Registered = true;
-  }
-  void deregisterWithDebugger() override {
-    JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
-  }
-};
 
 // The MemoryBuffer passed into this constructor is just a wrapper around the
 // actual memory.  Ultimately, the Binary parent class will take ownership of
 // this MemoryBuffer object but not the underlying memory.
 template <class ELFT>
-DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
-    : ELFObjectFile<ELFT>(Wrapper, ec) {
-  this->isDyldELFObject = true;
-}
-
-template <class ELFT>
-DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
-                                   MemoryBuffer *Wrapper, error_code &ec)
-    : ELFObjectFile<ELFT>(Wrapper, ec),
-      UnderlyingFile(std::move(UnderlyingFile)) {
+DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
+    : ELFObjectFile<ELFT>(Wrapper, EC) {
   this->isDyldELFObject = true;
 }
 
@@ -146,10 +103,89 @@ void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
   sym->st_value = static_cast<addr_type>(Addr);
 }
 
+class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo {
+public:
+  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
+                      unsigned EndIdx)
+    : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
+
+  OwningBinary<ObjectFile>
+  getObjectForDebug(const ObjectFile &Obj) const override;
+};
+
+template <typename ELFT>
+std::unique_ptr<DyldELFObject<ELFT>>
+createRTDyldELFObject(MemoryBufferRef Buffer,
+                      const LoadedELFObjectInfo &L,
+                      std::error_code &ec) {
+  typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
+  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+  std::unique_ptr<DyldELFObject<ELFT>> Obj =
+    llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
+
+  // Iterate over all sections in the object.
+  for (const auto &Sec : Obj->sections()) {
+    StringRef SectionName;
+    Sec.getName(SectionName);
+    if (SectionName != "") {
+      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
+          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
+        // This assumes that the address passed in matches the target address
+        // bitness. The template-based type cast handles everything else.
+        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
+      }
+    }
+  }
+
+  return Obj;
+}
+
+OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
+                                              const LoadedELFObjectInfo &L) {
+  assert(Obj.isELF() && "Not an ELF object file.");
+
+  std::unique_ptr<MemoryBuffer> Buffer =
+    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
+
+  std::error_code ec;
+
+  std::unique_ptr<ObjectFile> DebugObj;
+  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
+    typedef ELFType<support::little, 2, false> ELF32LE;
+    DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
+  } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
+    typedef ELFType<support::big, 2, false> ELF32BE;
+    DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
+  } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
+    typedef ELFType<support::big, 2, true> ELF64BE;
+    DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
+  } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
+    typedef ELFType<support::little, 2, true> ELF64LE;
+    DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
+  } else
+    llvm_unreachable("Unexpected ELF format");
+
+  assert(!ec && "Could not construct copy ELF object file");
+
+  return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
+}
+
+OwningBinary<ObjectFile>
+LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
+  return createELFDebugObject(Obj, *this);
+}
+
 } // namespace
 
 namespace llvm {
 
+RuntimeDyldELF::RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+RuntimeDyldELF::~RuntimeDyldELF() {}
+
 void RuntimeDyldELF::registerEHFrames() {
   if (!MemMgr)
     return;
@@ -177,79 +213,14 @@ void RuntimeDyldELF::deregisterEHFrames() {
   RegisteredEHFrameSections.clear();
 }
 
-ObjectImage *
-RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile) {
-  if (!ObjFile)
-    return nullptr;
-
-  error_code ec;
-  MemoryBuffer *Buffer =
-      MemoryBuffer::getMemBuffer(ObjFile->getData(), "", false);
-
-  if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
-    auto Obj =
-        llvm::make_unique<DyldELFObject<ELFType<support::little, 2, false>>>(
-            std::move(ObjFile), Buffer, ec);
-    return new ELFObjectImage<ELFType<support::little, 2, false>>(
-        nullptr, std::move(Obj));
-  } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
-    auto Obj =
-        llvm::make_unique<DyldELFObject<ELFType<support::big, 2, false>>>(
-            std::move(ObjFile), Buffer, ec);
-    return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, std::move(Obj));
-  } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
-    auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 2, true>>>(
-        std::move(ObjFile), Buffer, ec);
-    return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr,
-                                                              std::move(Obj));
-  } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
-    auto Obj =
-        llvm::make_unique<DyldELFObject<ELFType<support::little, 2, true>>>(
-            std::move(ObjFile), Buffer, ec);
-    return new ELFObjectImage<ELFType<support::little, 2, true>>(
-        nullptr, std::move(Obj));
-  } else
-    llvm_unreachable("Unexpected ELF format");
-}
-
-ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
-  if (Buffer->getBufferSize() < ELF::EI_NIDENT)
-    llvm_unreachable("Unexpected ELF object size");
-  std::pair<unsigned char, unsigned char> Ident =
-      std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
-                     (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
-  error_code ec;
-
-  if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
-    auto Obj =
-        llvm::make_unique<DyldELFObject<ELFType<support::little, 4, false>>>(
-            Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::little, 4, false>>(
-        Buffer, std::move(Obj));
-  } else if (Ident.first == ELF::ELFCLASS32 &&
-             Ident.second == ELF::ELFDATA2MSB) {
-    auto Obj =
-        llvm::make_unique<DyldELFObject<ELFType<support::big, 4, false>>>(
-            Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::big, 4, false>>(Buffer,
-                                                               std::move(Obj));
-  } else if (Ident.first == ELF::ELFCLASS64 &&
-             Ident.second == ELF::ELFDATA2MSB) {
-    auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 8, true>>>(
-        Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::big, 8, true>>(Buffer, std::move(Obj));
-  } else if (Ident.first == ELF::ELFCLASS64 &&
-             Ident.second == ELF::ELFDATA2LSB) {
-    auto Obj =
-        llvm::make_unique<DyldELFObject<ELFType<support::little, 8, true>>>(
-            Buffer->getMemBuffer(), ec);
-    return new ELFObjectImage<ELFType<support::little, 8, true>>(Buffer, std::move(Obj));
-  } else
-    llvm_unreachable("Unexpected ELF format");
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
+  unsigned SectionStartIdx, SectionEndIdx;
+  std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
+  return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
+                                                SectionEndIdx);
 }
 
-RuntimeDyldELF::~RuntimeDyldELF() {}
-
 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
                                              uint64_t Offset, uint64_t Value,
                                              uint32_t Type, int64_t Addend,
@@ -259,10 +230,9 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
     llvm_unreachable("Relocation type not implemented yet!");
     break;
   case ELF::R_X86_64_64: {
-    uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
-    *Target = Value + Addend;
+    support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
-                 << format("%p\n", Target));
+                 << format("%p\n", Section.Address + Offset));
     break;
   }
   case ELF::R_X86_64_32:
@@ -272,17 +242,15 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
            (Type == ELF::R_X86_64_32S &&
             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
-    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
-    *Target = TruncatedAddr;
+    support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
-                 << format("%p\n", Target));
+                 << format("%p\n", Section.Address + Offset));
     break;
   }
   case ELF::R_X86_64_GOTPCREL: {
     // findGOTEntry returns the 'G + GOT' part of the relocation calculation
     // based on the load/target address of the GOT (not the current/local addr).
     uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
-    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
     uint64_t FinalAddress = Section.LoadAddress + Offset;
     // The processRelocationRef method combines the symbol offset and the addend
     // and in most cases that's what we want.  For this relocation type, we need
@@ -290,30 +258,29 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
     int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
-    *Target = TruncOffset;
+    support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
     break;
   }
   case ELF::R_X86_64_PC32: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder =
-        reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+    support::ulittle32_t::ref Placeholder(
+        (void *)(Section.ObjAddress + Offset));
     uint64_t FinalAddress = Section.LoadAddress + Offset;
-    int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
+    int64_t RealOffset = Placeholder + Value + Addend - FinalAddress;
     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
-    *Target = TruncOffset;
+    support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
     break;
   }
   case ELF::R_X86_64_PC64: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint64_t *Placeholder =
-        reinterpret_cast<uint64_t *>(Section.ObjAddress + Offset);
-    uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
+    support::ulittle64_t::ref Placeholder(
+        (void *)(Section.ObjAddress + Offset));
     uint64_t FinalAddress = Section.LoadAddress + Offset;
-    *Target = *Placeholder + Value + Addend - FinalAddress;
+    support::ulittle64_t::ref(Section.Address + Offset) =
+        Placeholder + Value + Addend - FinalAddress;
     break;
   }
   }
@@ -326,21 +293,20 @@ void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
   case ELF::R_386_32: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder =
-        reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
-    *Target = *Placeholder + Value + Addend;
+    support::ulittle32_t::ref Placeholder(
+        (void *)(Section.ObjAddress + Offset));
+    support::ulittle32_t::ref(Section.Address + Offset) =
+        Placeholder + Value + Addend;
     break;
   }
   case ELF::R_386_PC32: {
     // Get the placeholder value from the generated object since
     // a previous relocation attempt may have overwritten the loaded version
-    uint32_t *Placeholder =
-        reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
-    uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+    support::ulittle32_t::ref Placeholder(
+        (void *)(Section.ObjAddress + Offset));
     uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
-    uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
-    *Target = RealOffset;
+    uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
+    support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
     break;
   }
   default:
@@ -612,43 +578,51 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
   }
 }
 
-// Return the .TOC. section address to R_PPC64_TOC relocations.
-uint64_t RuntimeDyldELF::findPPC64TOC() const {
+// Return the .TOC. section and offset.
+void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
+                                         ObjSectionToIDMap &LocalSections,
+                                         RelocationValueRef &Rel) {
+  // Set a default SectionID in case we do not find a TOC section below.
+  // This may happen for references to TOC base base (sym@toc, .odp
+  // relocation) without a .toc directive.  In this case just use the
+  // first section (which is usually the .odp) since the code won't
+  // reference the .toc base directly.
+  Rel.SymbolName = NULL;
+  Rel.SectionID = 0;
+
   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
   // order. The TOC starts where the first of these sections starts.
-  SectionList::const_iterator it = Sections.begin();
-  SectionList::const_iterator ite = Sections.end();
-  for (; it != ite; ++it) {
-    if (it->Name == ".got" || it->Name == ".toc" || it->Name == ".tocbss" ||
-        it->Name == ".plt")
+  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
+       si != se; ++si) {
+
+    StringRef SectionName;
+    check(si->getName(SectionName));
+
+    if (SectionName == ".got"
+        || SectionName == ".toc"
+        || SectionName == ".tocbss"
+        || SectionName == ".plt") {
+      Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
       break;
+    }
   }
-  if (it == ite) {
-    // This may happen for
-    // * references to TOC base base (sym@toc, .odp relocation) without
-    // a .toc directive.
-    // In this case just use the first section (which is usually
-    // the .odp) since the code won't reference the .toc base
-    // directly.
-    it = Sections.begin();
-  }
-  assert(it != ite);
+
   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
   // thus permitting a full 64 Kbytes segment.
-  return it->LoadAddress + 0x8000;
+  Rel.Addend = 0x8000;
 }
 
 // Returns the sections and offset associated with the ODP entry referenced
 // by Symbol.
-void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
+void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
                                          ObjSectionToIDMap &LocalSections,
                                          RelocationValueRef &Rel) {
   // Get the ELF symbol value (st_value) to compare with Relocation offset in
   // .opd entries
-  for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
+  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
        si != se; ++si) {
     section_iterator RelSecI = si->getRelocatedSection();
-    if (RelSecI == Obj.end_sections())
+    if (RelSecI == Obj.section_end())
       continue;
 
     StringRef RelSectionName;
@@ -690,10 +664,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
       if (Rel.Addend != (int64_t)TargetSymbolOffset)
         continue;
 
-      section_iterator tsi(Obj.end_sections());
+      section_iterator tsi(Obj.section_end());
       check(TargetSymbol->getSection(tsi));
-      bool IsCode = false;
-      tsi->isText(IsCode);
+      bool IsCode = tsi->isText();
       Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
       Rel.Addend = (intptr_t)Addend;
       return;
@@ -702,24 +675,37 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
   llvm_unreachable("Attempting to get address of ODP entry!");
 }
 
-// Relocation masks following the #lo(value), #hi(value), #higher(value),
-// and #highest(value) macros defined in section 4.5.1. Relocation Types
-// in PPC-elf64abi document.
-//
+// Relocation masks following the #lo(value), #hi(value), #ha(value),
+// #higher(value), #highera(value), #highest(value), and #highesta(value)
+// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
+// document.
+
 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
 
 static inline uint16_t applyPPChi(uint64_t value) {
   return (value >> 16) & 0xffff;
 }
 
+static inline uint16_t applyPPCha (uint64_t value) {
+  return ((value + 0x8000) >> 16) & 0xffff;
+}
+
 static inline uint16_t applyPPChigher(uint64_t value) {
   return (value >> 32) & 0xffff;
 }
 
+static inline uint16_t applyPPChighera (uint64_t value) {
+  return ((value + 0x8000) >> 32) & 0xffff;
+}
+
 static inline uint16_t applyPPChighest(uint64_t value) {
   return (value >> 48) & 0xffff;
 }
 
+static inline uint16_t applyPPChighesta (uint64_t value) {
+  return ((value + 0x8000) >> 48) & 0xffff;
+}
+
 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
                                             uint64_t Offset, uint64_t Value,
                                             uint32_t Type, int64_t Addend) {
@@ -728,24 +714,57 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
   default:
     llvm_unreachable("Relocation type not implemented yet!");
     break;
+  case ELF::R_PPC64_ADDR16:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
+    break;
+  case ELF::R_PPC64_ADDR16_DS:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+    break;
   case ELF::R_PPC64_ADDR16_LO:
     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
     break;
+  case ELF::R_PPC64_ADDR16_LO_DS:
+    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+    break;
   case ELF::R_PPC64_ADDR16_HI:
     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
     break;
+  case ELF::R_PPC64_ADDR16_HA:
+    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
+    break;
   case ELF::R_PPC64_ADDR16_HIGHER:
     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
     break;
+  case ELF::R_PPC64_ADDR16_HIGHERA:
+    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
+    break;
   case ELF::R_PPC64_ADDR16_HIGHEST:
     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
     break;
+  case ELF::R_PPC64_ADDR16_HIGHESTA:
+    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
+    break;
   case ELF::R_PPC64_ADDR14: {
     assert(((Value + Addend) & 3) == 0);
     // Preserve the AA/LK bits in the branch instruction
     uint8_t aalk = *(LocalAddress + 3);
     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
   } break;
+  case ELF::R_PPC64_REL16_LO: {
+    uint64_t FinalAddress = (Section.LoadAddress + Offset);
+    uint64_t Delta = Value - FinalAddress + Addend;
+    writeInt16BE(LocalAddress, applyPPClo(Delta));
+  } break;
+  case ELF::R_PPC64_REL16_HI: {
+    uint64_t FinalAddress = (Section.LoadAddress + Offset);
+    uint64_t Delta = Value - FinalAddress + Addend;
+    writeInt16BE(LocalAddress, applyPPChi(Delta));
+  } break;
+  case ELF::R_PPC64_REL16_HA: {
+    uint64_t FinalAddress = (Section.LoadAddress + Offset);
+    uint64_t Delta = Value - FinalAddress + Addend;
+    writeInt16BE(LocalAddress, applyPPCha(Delta));
+  } break;
   case ELF::R_PPC64_ADDR32: {
     int32_t Result = static_cast<int32_t>(Value + Addend);
     if (SignExtend32<32>(Result) != Result)
@@ -775,19 +794,6 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
   case ELF::R_PPC64_ADDR64:
     writeInt64BE(LocalAddress, Value + Addend);
     break;
-  case ELF::R_PPC64_TOC:
-    writeInt64BE(LocalAddress, findPPC64TOC());
-    break;
-  case ELF::R_PPC64_TOC16: {
-    uint64_t TOCStart = findPPC64TOC();
-    Value = applyPPClo((Value + Addend) - TOCStart);
-    writeInt16BE(LocalAddress, applyPPClo(Value));
-  } break;
-  case ELF::R_PPC64_TOC16_DS: {
-    uint64_t TOCStart = findPPC64TOC();
-    Value = ((Value + Addend) - TOCStart);
-    writeInt16BE(LocalAddress, applyPPClo(Value));
-  } break;
   }
 }
 
@@ -866,8 +872,6 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
     break;
   case Triple::aarch64:
   case Triple::aarch64_be:
-  case Triple::arm64:
-  case Triple::arm64_be:
     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
     break;
   case Triple::arm: // Fall through.
@@ -895,8 +899,9 @@ void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
 }
 
 relocation_iterator RuntimeDyldELF::processRelocationRef(
-    unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
-    ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
+    unsigned SectionID, relocation_iterator RelI,
+    const ObjectFile &Obj,
+    ObjSectionToIDMap &ObjSectionToID,
     StubMap &Stubs) {
   uint64_t RelType;
   Check(RelI->getType(RelType));
@@ -906,75 +911,65 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
 
   // Obtain the symbol name which is referenced in the relocation
   StringRef TargetName;
-  if (Symbol != Obj.end_symbols())
+  if (Symbol != Obj.symbol_end())
     Symbol->getName(TargetName);
   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
                << " TargetName: " << TargetName << "\n");
   RelocationValueRef Value;
   // First search for the symbol in the local symbol table
-  SymbolTableMap::const_iterator lsi = Symbols.end();
   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
-  if (Symbol != Obj.end_symbols()) {
-    lsi = Symbols.find(TargetName.data());
+
+  // Search for the symbol in the global symbol table
+  SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
+  if (Symbol != Obj.symbol_end()) {
+    gsi = GlobalSymbolTable.find(TargetName.data());
     Symbol->getType(SymType);
   }
-  if (lsi != Symbols.end()) {
-    Value.SectionID = lsi->second.first;
-    Value.Offset = lsi->second.second;
-    Value.Addend = lsi->second.second + Addend;
+  if (gsi != GlobalSymbolTable.end()) {
+    Value.SectionID = gsi->second.first;
+    Value.Offset = gsi->second.second;
+    Value.Addend = gsi->second.second + Addend;
   } else {
-    // Search for the symbol in the global symbol table
-    SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
-    if (Symbol != Obj.end_symbols())
-      gsi = GlobalSymbolTable.find(TargetName.data());
-    if (gsi != GlobalSymbolTable.end()) {
-      Value.SectionID = gsi->second.first;
-      Value.Offset = gsi->second.second;
-      Value.Addend = gsi->second.second + Addend;
-    } else {
-      switch (SymType) {
-      case SymbolRef::ST_Debug: {
-        // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
-        // and can be changed by another developers. Maybe best way is add
-        // a new symbol type ST_Section to SymbolRef and use it.
-        section_iterator si(Obj.end_sections());
-        Symbol->getSection(si);
-        if (si == Obj.end_sections())
-          llvm_unreachable("Symbol section not found, bad object file format!");
-        DEBUG(dbgs() << "\t\tThis is section symbol\n");
-        // Default to 'true' in case isText fails (though it never does).
-        bool isCode = true;
-        si->isText(isCode);
-        Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
-        Value.Addend = Addend;
-        break;
-      }
-      case SymbolRef::ST_Data:
-      case SymbolRef::ST_Unknown: {
-        Value.SymbolName = TargetName.data();
-        Value.Addend = Addend;
-
-        // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
-        // will manifest here as a NULL symbol name.
-        // We can set this as a valid (but empty) symbol name, and rely
-        // on addRelocationForSymbol to handle this.
-        if (!Value.SymbolName)
-          Value.SymbolName = "";
-        break;
-      }
-      default:
-        llvm_unreachable("Unresolved symbol type!");
-        break;
-      }
+    switch (SymType) {
+    case SymbolRef::ST_Debug: {
+      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+      // and can be changed by another developers. Maybe best way is add
+      // a new symbol type ST_Section to SymbolRef and use it.
+      section_iterator si(Obj.section_end());
+      Symbol->getSection(si);
+      if (si == Obj.section_end())
+        llvm_unreachable("Symbol section not found, bad object file format!");
+      DEBUG(dbgs() << "\t\tThis is section symbol\n");
+      bool isCode = si->isText();
+      Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
+      Value.Addend = Addend;
+      break;
+    }
+    case SymbolRef::ST_Data:
+    case SymbolRef::ST_Unknown: {
+      Value.SymbolName = TargetName.data();
+      Value.Addend = Addend;
+
+      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
+      // will manifest here as a NULL symbol name.
+      // We can set this as a valid (but empty) symbol name, and rely
+      // on addRelocationForSymbol to handle this.
+      if (!Value.SymbolName)
+        Value.SymbolName = "";
+      break;
+    }
+    default:
+      llvm_unreachable("Unresolved symbol type!");
+      break;
     }
   }
+
   uint64_t Offset;
   Check(RelI->getOffset(Offset));
 
   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
                << "\n");
-  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
-       Arch == Triple::arm64 || Arch == Triple::arm64_be) &&
+  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
     // This is an AArch64 branch relocation, need to use a stub function.
     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
@@ -1096,6 +1091,10 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
     }
   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
     if (RelType == ELF::R_PPC64_REL24) {
+      // Determine ABI variant in use for this object.
+      unsigned AbiVariant;
+      Obj.getPlatformFlags(AbiVariant);
+      AbiVariant &= ELF::EF_PPC64_ABI;
       // A PPC branch relocation will need a stub function if the target is
       // an external symbol (Symbol::ST_Unknown) or if the target address
       // is not within the signed 24-bits branch address.
@@ -1103,10 +1102,18 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
       uint8_t *Target = Section.Address + Offset;
       bool RangeOverflow = false;
       if (SymType != SymbolRef::ST_Unknown) {
-        // A function call may points to the .opd entry, so the final symbol
-        // value
-        // in calculated based in the relocation values in .opd section.
-        findOPDEntrySection(Obj, ObjSectionToID, Value);
+        if (AbiVariant != 2) {
+          // In the ELFv1 ABI, a function call may point to the .opd entry,
+          // so the final symbol value is calculated based on the relocation
+          // values in the .opd section.
+          findOPDEntrySection(Obj, ObjSectionToID, Value);
+        } else {
+          // In the ELFv2 ABI, a function symbol may provide a local entry
+          // point, which must be used for direct calls.
+          uint8_t SymOther;
+          Symbol->getOther(SymOther);
+          Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
+        }
         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
         // If it is within 24-bits branch range, just set the branch target
@@ -1134,19 +1141,26 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
           DEBUG(dbgs() << " Create a new stub function\n");
           Stubs[Value] = Section.StubOffset;
           uint8_t *StubTargetAddr =
-              createStubFunction(Section.Address + Section.StubOffset);
+              createStubFunction(Section.Address + Section.StubOffset,
+                                 AbiVariant);
           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
                              ELF::R_PPC64_ADDR64, Value.Addend);
 
           // Generates the 64-bits address loads as exemplified in section
-          // 4.5.1 in PPC64 ELF ABI.
-          RelocationEntry REhst(SectionID, StubTargetAddr - Section.Address + 2,
+          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
+          // apply to the low part of the instructions, so we have to update
+          // the offset according to the target endianness.
+          uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
+          if (!IsTargetLittleEndian)
+            StubRelocOffset += 2;
+
+          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
-          RelocationEntry REhr(SectionID, StubTargetAddr - Section.Address + 6,
+          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
-          RelocationEntry REh(SectionID, StubTargetAddr - Section.Address + 14,
+          RelocationEntry REh(SectionID, StubRelocOffset + 12,
                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
-          RelocationEntry REl(SectionID, StubTargetAddr - Section.Address + 18,
+          RelocationEntry REl(SectionID, StubRelocOffset + 16,
                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
 
           if (Value.SymbolName) {
@@ -1166,16 +1180,60 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
                             RelType, 0);
           Section.StubOffset += getMaxStubSize();
         }
-        if (SymType == SymbolRef::ST_Unknown)
+        if (SymType == SymbolRef::ST_Unknown) {
           // Restore the TOC for external calls
-          writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
+          if (AbiVariant == 2)
+            writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
+          else
+            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
+        }
       }
+    } else if (RelType == ELF::R_PPC64_TOC16 ||
+               RelType == ELF::R_PPC64_TOC16_DS ||
+               RelType == ELF::R_PPC64_TOC16_LO ||
+               RelType == ELF::R_PPC64_TOC16_LO_DS ||
+               RelType == ELF::R_PPC64_TOC16_HI ||
+               RelType == ELF::R_PPC64_TOC16_HA) {
+      // These relocations are supposed to subtract the TOC address from
+      // the final value.  This does not fit cleanly into the RuntimeDyld
+      // scheme, since there may be *two* sections involved in determining
+      // the relocation value (the section of the symbol refered to by the
+      // relocation, and the TOC section associated with the current module).
+      //
+      // Fortunately, these relocations are currently only ever generated
+      // refering to symbols that themselves reside in the TOC, which means
+      // that the two sections are actually the same.  Thus they cancel out
+      // and we can immediately resolve the relocation right now.
+      switch (RelType) {
+      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
+      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
+      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
+      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
+      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
+      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
+      default: llvm_unreachable("Wrong relocation type.");
+      }
+
+      RelocationValueRef TOCValue;
+      findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
+      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
+        llvm_unreachable("Unsupported TOC relocation.");
+      Value.Addend -= TOCValue.Addend;
+      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
     } else {
+      // There are two ways to refer to the TOC address directly: either
+      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
+      // ignored), or via any relocation that refers to the magic ".TOC."
+      // symbols (in which case the addend is respected).
+      if (RelType == ELF::R_PPC64_TOC) {
+        RelType = ELF::R_PPC64_ADDR64;
+        findPPC64TOCSection(Obj, ObjSectionToID, Value);
+      } else if (TargetName == ".TOC.") {
+        findPPC64TOCSection(Obj, ObjSectionToID, Value);
+        Value.Addend += Addend;
+      }
+
       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
-      // Extra check to avoid relocation againt empty symbols (usually
-      // the R_PPC64_TOC).
-      if (SymType != SymbolRef::ST_Unknown && TargetName.empty())
-        Value.SymbolName = nullptr;
 
       if (Value.SymbolName)
         addRelocationForSymbol(RE, Value.SymbolName);
@@ -1215,7 +1273,7 @@ relocation_iterator RuntimeDyldELF::processRelocationRef(
       Stubs[Value] = StubOffset;
       createStubFunction((uint8_t *)StubAddress);
       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
-                         Value.Addend - Addend);
+                         Value.Offset);
       if (Value.SymbolName)
         addRelocationForSymbol(RE, Value.SymbolName);
       else
@@ -1323,8 +1381,6 @@ size_t RuntimeDyldELF::getGOTEntrySize() {
   case Triple::x86_64:
   case Triple::aarch64:
   case Triple::aarch64_be:
-  case Triple::arm64:
-  case Triple::arm64_be:
   case Triple::ppc64:
   case Triple::ppc64le:
   case Triple::systemz:
@@ -1397,7 +1453,8 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
   return 0;
 }
 
-void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
+void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
+                                  ObjSectionToIDMap &SectionMap) {
   // If necessary, allocate the global offset table
   if (MemMgr) {
     // Allocate the GOT if necessary
@@ -1434,15 +1491,8 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
   }
 }
 
-bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
-  if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
-    return false;
-  return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic,
-                 strlen(ELF::ElfMagic))) == 0;
-}
-
-bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
-  return Obj->isELF();
+bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
+  return Obj.isELF();
 }
 
 } // namespace llvm