[RuntimeDyld] Tidy up emitCommonSymbols a little. NFC.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
index 2c068be970e19fdfa6071d3f1f5f7578a0539a8b..b47b56cc0d99a888e28c356199faffead943ede6 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "dyld"
 #include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "ObjectImageCommon.h"
+#include "RuntimeDyldCheckerImpl.h"
 #include "RuntimeDyldELF.h"
 #include "RuntimeDyldImpl.h"
 #include "RuntimeDyldMachO.h"
-#include "llvm/Support/FileSystem.h"
+#include "llvm/Object/ELFObjectFile.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/MutexGuard.h"
-#include "llvm/Object/ELF.h"
 
 using namespace llvm;
 using namespace llvm::object;
 
+#define DEBUG_TYPE "dyld"
+
 // Empty out-of-line virtual destructor as the key function.
 RuntimeDyldImpl::~RuntimeDyldImpl() {}
 
+// Pin LoadedObjectInfo's vtables to this file.
+void RuntimeDyld::LoadedObjectInfo::anchor() {}
+
 namespace llvm {
 
-void RuntimeDyldImpl::registerEHFrames() {
-}
+void RuntimeDyldImpl::registerEHFrames() {}
+
+void RuntimeDyldImpl::deregisterEHFrames() {}
+
+#ifndef NDEBUG
+static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
+  dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
+
+  if (S.Address == nullptr) {
+    dbgs() << "\n          <section not emitted>\n";
+    return;
+  }
 
-void RuntimeDyldImpl::deregisterEHFrames() {
+  const unsigned ColsPerRow = 16;
+
+  uint8_t *DataAddr = S.Address;
+  uint64_t LoadAddr = S.LoadAddress;
+
+  unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
+  unsigned BytesRemaining = S.Size;
+
+  if (StartPadding) {
+    dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr & ~(ColsPerRow - 1)) << ":";
+    while (StartPadding--)
+      dbgs() << "   ";
+  }
+
+  while (BytesRemaining > 0) {
+    if ((LoadAddr & (ColsPerRow - 1)) == 0)
+      dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
+
+    dbgs() << " " << format("%02x", *DataAddr);
+
+    ++DataAddr;
+    ++LoadAddr;
+    --BytesRemaining;
+  }
+
+  dbgs() << "\n";
 }
+#endif
 
 // Resolve the relocations for all symbols we currently know about.
 void RuntimeDyldImpl::resolveRelocations() {
@@ -50,10 +89,11 @@ void RuntimeDyldImpl::resolveRelocations() {
     // symbol for the relocation is located.  The SectionID in the relocation
     // entry provides the section to which the relocation will be applied.
     uint64_t Addr = Sections[i].LoadAddress;
-    DEBUG(dbgs() << "Resolving relocations Section #" << i
-            << "\t" << format("%p", (uint8_t *)Addr)
-            << "\n");
+    DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
+                 << format("0x%x", Addr) << "\n");
+    DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
     resolveRelocationList(Relocations[i], Addr);
+    DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
     Relocations.erase(i);
   }
 }
@@ -70,214 +110,422 @@ void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
   llvm_unreachable("Attempting to remap address of unknown section!");
 }
 
-// Subclasses can implement this method to create specialized image instances.
-// The caller owns the pointer that is returned.
-ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
-  return new ObjectImageCommon(InputBuffer);
+static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
+  uint64_t Address;
+  if (std::error_code EC = Sym.getAddress(Address))
+    return EC;
+
+  if (Address == UnknownAddressOrSize) {
+    Result = UnknownAddressOrSize;
+    return object_error::success;
+  }
+
+  const ObjectFile *Obj = Sym.getObject();
+  section_iterator SecI(Obj->section_begin());
+  if (std::error_code EC = Sym.getSection(SecI))
+    return EC;
+
+  if (SecI == Obj->section_end()) {
+    Result = UnknownAddressOrSize;
+    return object_error::success;
+  }
+
+  uint64_t SectionAddress = SecI->getAddress();
+  Result = Address - SectionAddress;
+  return object_error::success;
 }
 
-ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
+std::pair<unsigned, unsigned>
+RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
   MutexGuard locked(lock);
 
-  OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
-  if (!obj)
-    report_fatal_error("Unable to create object image from memory buffer!");
+  // Grab the first Section ID. We'll use this later to construct the underlying
+  // range for the returned LoadedObjectInfo.
+  unsigned SectionsAddedBeginIdx = Sections.size();
 
   // Save information about our target
-  Arch = (Triple::ArchType)obj->getArch();
-  IsTargetLittleEndian = obj->getObjectFile()->isLittleEndian();
+  Arch = (Triple::ArchType)Obj.getArch();
+  IsTargetLittleEndian = Obj.isLittleEndian();
+
+  // Compute the memory size required to load all sections to be loaded
+  // and pass this information to the memory manager
+  if (MemMgr->needsToReserveAllocationSpace()) {
+    uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
+    computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
+    MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
+  }
 
-  // Symbols found in this object
-  StringMap<SymbolLoc> LocalSymbols;
   // Used sections from the object file
   ObjSectionToIDMap LocalSections;
 
   // Common symbols requiring allocation, with their sizes and alignments
-  CommonSymbolMap CommonSymbols;
-  // Maximum required total memory to allocate all common symbols
-  uint64_t CommonSize = 0;
+  CommonSymbolList CommonSymbols;
 
-  error_code err;
   // Parse symbols
   DEBUG(dbgs() << "Parse symbols:\n");
-  for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
-       i != e; i.increment(err)) {
-    Check(err);
-    object::SymbolRef::Type SymType;
-    StringRef Name;
-    Check(i->getType(SymType));
-    Check(i->getName(Name));
+  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
+       ++I) {
+    uint32_t Flags = I->getFlags();
 
-    uint32_t flags;
-    Check(i->getFlags(flags));
+    bool IsCommon = Flags & SymbolRef::SF_Common;
+    if (IsCommon)
+      CommonSymbols.push_back(*I);
+    else {
+      object::SymbolRef::Type SymType;
+      Check(I->getType(SymType));
 
-    bool isCommon = flags & SymbolRef::SF_Common;
-    if (isCommon) {
-      // Add the common symbols to a list.  We'll allocate them all below.
-      uint32_t Align;
-      Check(i->getAlignment(Align));
-      uint64_t Size = 0;
-      Check(i->getSize(Size));
-      CommonSize += Size + Align;
-      CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
-    } else {
       if (SymType == object::SymbolRef::ST_Function ||
           SymType == object::SymbolRef::ST_Data ||
           SymType == object::SymbolRef::ST_Unknown) {
-        uint64_t FileOffset;
+
+        StringRef Name;
+        uint64_t SectOffset;
+        Check(I->getName(Name));
+        Check(getOffset(*I, SectOffset));
+        section_iterator SI = Obj.section_end();
+        Check(I->getSection(SI));
+        if (SI == Obj.section_end())
+          continue;
         StringRef SectionData;
-        bool IsCode;
-        section_iterator si = obj->end_sections();
-        Check(i->getFileOffset(FileOffset));
-        Check(i->getSection(si));
-        if (si == obj->end_sections()) continue;
-        Check(si->getContents(SectionData));
-        Check(si->isText(IsCode));
-        const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
-                                (uintptr_t)FileOffset;
-        uintptr_t SectOffset = (uintptr_t)(SymPtr -
-                                           (const uint8_t*)SectionData.begin());
-        unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
-        LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
-        DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
-                     << " flags: " << flags
-                     << " SID: " << SectionID
-                     << " Offset: " << format("%p", SectOffset));
-        GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
+        Check(SI->getContents(SectionData));
+        bool IsCode = SI->isText();
+        unsigned SectionID =
+            findOrEmitSection(Obj, *SI, IsCode, LocalSections);
+        DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
+                     << " SID: " << SectionID << " Offset: "
+                     << format("%p", (uintptr_t)SectOffset)
+                     << " flags: " << Flags << "\n");
+        SymbolInfo::Visibility Vis =
+          (Flags & SymbolRef::SF_Exported) ?
+            SymbolInfo::Default : SymbolInfo::Hidden;
+        GlobalSymbolTable[Name] = SymbolInfo(SectionID, SectOffset, Vis);
       }
     }
-    DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
   }
 
   // Allocate common symbols
-  if (CommonSize != 0)
-    emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
+  emitCommonSymbols(Obj, CommonSymbols);
 
   // Parse and process relocations
   DEBUG(dbgs() << "Parse relocations:\n");
-  for (section_iterator si = obj->begin_sections(),
-       se = obj->end_sections(); si != se; si.increment(err)) {
-    Check(err);
-    bool isFirstRelocation = true;
+  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+       SI != SE; ++SI) {
     unsigned SectionID = 0;
     StubMap Stubs;
-    section_iterator RelocatedSection = si->getRelocatedSection();
-
-    for (relocation_iterator i = si->begin_relocations(),
-         e = si->end_relocations(); i != e; i.increment(err)) {
-      Check(err);
-
-      // If it's the first relocation in this section, find its SectionID
-      if (isFirstRelocation) {
-        SectionID =
-            findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
-        DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
-        isFirstRelocation = false;
+    section_iterator RelocatedSection = SI->getRelocatedSection();
+
+    relocation_iterator I = SI->relocation_begin();
+    relocation_iterator E = SI->relocation_end();
+
+    if (I == E && !ProcessAllSections)
+      continue;
+
+    bool IsCode = RelocatedSection->isText();
+    SectionID =
+        findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
+    DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
+
+    for (; I != E;)
+      I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
+
+    // If there is an attached checker, notify it about the stubs for this
+    // section so that they can be verified.
+    if (Checker)
+      Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
+  }
+
+  // Give the subclasses a chance to tie-up any loose ends.
+  finalizeLoad(Obj, LocalSections);
+
+  unsigned SectionsAddedEndIdx = Sections.size();
+
+  return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
+}
+
+// A helper method for computeTotalAllocSize.
+// Computes the memory size required to allocate sections with the given sizes,
+// assuming that all sections are allocated with the given alignment
+static uint64_t
+computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
+                                 uint64_t Alignment) {
+  uint64_t TotalSize = 0;
+  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
+    uint64_t AlignedSize =
+        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
+    TotalSize += AlignedSize;
+  }
+  return TotalSize;
+}
+
+static bool isRequiredForExecution(const SectionRef &Section) {
+  const ObjectFile *Obj = Section.getObject();
+  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
+    return ELFObj->getSectionFlags(Section) & ELF::SHF_ALLOC;
+  assert(isa<MachOObjectFile>(Obj));
+  return true;
+ }
+
+static bool isReadOnlyData(const SectionRef &Section) {
+  const ObjectFile *Obj = Section.getObject();
+  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
+    return !(ELFObj->getSectionFlags(Section) &
+             (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
+  assert(isa<MachOObjectFile>(Obj));
+  return false;
+}
+
+static bool isZeroInit(const SectionRef &Section) {
+  const ObjectFile *Obj = Section.getObject();
+  if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
+    return ELFObj->getSectionType(Section) == ELF::SHT_NOBITS;
+
+  auto *MachO = cast<MachOObjectFile>(Obj);
+  unsigned SectionType = MachO->getSectionType(Section);
+  return SectionType == MachO::S_ZEROFILL ||
+         SectionType == MachO::S_GB_ZEROFILL;
+}
+
+// Compute an upper bound of the memory size that is required to load all
+// sections
+void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
+                                            uint64_t &CodeSize,
+                                            uint64_t &DataSizeRO,
+                                            uint64_t &DataSizeRW) {
+  // Compute the size of all sections required for execution
+  std::vector<uint64_t> CodeSectionSizes;
+  std::vector<uint64_t> ROSectionSizes;
+  std::vector<uint64_t> RWSectionSizes;
+  uint64_t MaxAlignment = sizeof(void *);
+
+  // Collect sizes of all sections to be loaded;
+  // also determine the max alignment of all sections
+  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+       SI != SE; ++SI) {
+    const SectionRef &Section = *SI;
+
+    bool IsRequired = isRequiredForExecution(Section);
+
+    // Consider only the sections that are required to be loaded for execution
+    if (IsRequired) {
+      StringRef Name;
+      uint64_t DataSize = Section.getSize();
+      uint64_t Alignment64 = Section.getAlignment();
+      bool IsCode = Section.isText();
+      bool IsReadOnly = isReadOnlyData(Section);
+      Check(Section.getName(Name));
+      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+
+      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
+      uint64_t SectionSize = DataSize + StubBufSize;
+
+      // The .eh_frame section (at least on Linux) needs an extra four bytes
+      // padded
+      // with zeroes added at the end.  For MachO objects, this section has a
+      // slightly different name, so this won't have any effect for MachO
+      // objects.
+      if (Name == ".eh_frame")
+        SectionSize += 4;
+
+      if (SectionSize > 0) {
+        // save the total size of the section
+        if (IsCode) {
+          CodeSectionSizes.push_back(SectionSize);
+        } else if (IsReadOnly) {
+          ROSectionSizes.push_back(SectionSize);
+        } else {
+          RWSectionSizes.push_back(SectionSize);
+        }
+        // update the max alignment
+        if (Alignment > MaxAlignment) {
+          MaxAlignment = Alignment;
+        }
       }
+    }
+  }
 
-      processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
-                          Stubs);
+  // Compute the size of all common symbols
+  uint64_t CommonSize = 0;
+  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
+       ++I) {
+    uint32_t Flags = I->getFlags();
+    if (Flags & SymbolRef::SF_Common) {
+      // Add the common symbols to a list.  We'll allocate them all below.
+      uint64_t Size = 0;
+      Check(I->getSize(Size));
+      CommonSize += Size;
     }
   }
+  if (CommonSize != 0) {
+    RWSectionSizes.push_back(CommonSize);
+  }
 
-  // Give the subclasses a chance to tie-up any loose ends.
-  finalizeLoad(LocalSections);
+  // Compute the required allocation space for each different type of sections
+  // (code, read-only data, read-write data) assuming that all sections are
+  // allocated with the max alignment. Note that we cannot compute with the
+  // individual alignments of the sections, because then the required size
+  // depends on the order, in which the sections are allocated.
+  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
+  DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
+  DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
+}
 
-  return obj.take();
+// compute stub buffer size for the given section
+unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
+                                                    const SectionRef &Section) {
+  unsigned StubSize = getMaxStubSize();
+  if (StubSize == 0) {
+    return 0;
+  }
+  // FIXME: this is an inefficient way to handle this. We should computed the
+  // necessary section allocation size in loadObject by walking all the sections
+  // once.
+  unsigned StubBufSize = 0;
+  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+       SI != SE; ++SI) {
+    section_iterator RelSecI = SI->getRelocatedSection();
+    if (!(RelSecI == Section))
+      continue;
+
+    for (const RelocationRef &Reloc : SI->relocations()) {
+      (void)Reloc;
+      StubBufSize += StubSize;
+    }
+  }
+
+  // Get section data size and alignment
+  uint64_t DataSize = Section.getSize();
+  uint64_t Alignment64 = Section.getAlignment();
+
+  // Add stubbuf size alignment
+  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+  unsigned StubAlignment = getStubAlignment();
+  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
+  if (StubAlignment > EndAlignment)
+    StubBufSize += StubAlignment - EndAlignment;
+  return StubBufSize;
+}
+
+uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
+                                             unsigned Size) const {
+  uint64_t Result = 0;
+  if (IsTargetLittleEndian) {
+    Src += Size - 1;
+    while (Size--)
+      Result = (Result << 8) | *Src--;
+  } else
+    while (Size--)
+      Result = (Result << 8) | *Src++;
+
+  return Result;
+}
+
+void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
+                                          unsigned Size) const {
+  if (IsTargetLittleEndian) {
+    while (Size--) {
+      *Dst++ = Value & 0xFF;
+      Value >>= 8;
+    }
+  } else {
+    Dst += Size - 1;
+    while (Size--) {
+      *Dst-- = Value & 0xFF;
+      Value >>= 8;
+    }
+  }
 }
 
-void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
-                                        const CommonSymbolMap &CommonSymbols,
-                                        uint64_t TotalSize,
-                                        SymbolTableMap &SymbolTable) {
+void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
+                                        CommonSymbolList &CommonSymbols) {
+  if (CommonSymbols.empty())
+    return;
+
+  uint64_t CommonSize = 0;
+  CommonSymbolList SymbolsToAllocate;
+
+  DEBUG(dbgs() << "Processing common symbols...\n");
+
+  for (const auto &Sym : CommonSymbols) {
+    StringRef Name;
+    Check(Sym.getName(Name));
+
+    assert((GlobalSymbolTable.find(Name) == GlobalSymbolTable.end()) &&
+           "Common symbol in global symbol table.");
+
+    // Skip common symbols already elsewhere.
+    if (GlobalSymbolTable.count(Name)) {
+      DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
+                   << "'\n");
+      continue;
+    }
+
+    uint32_t Align = 0;
+    uint64_t Size = 0;
+    Check(Sym.getAlignment(Align));
+    Check(Sym.getSize(Size));
+
+    CommonSize += Align + Size;
+    SymbolsToAllocate.push_back(Sym);
+  }
+
   // Allocate memory for the section
   unsigned SectionID = Sections.size();
-  uint8_t *Addr = MemMgr->allocateDataSection(
-    TotalSize, sizeof(void*), SectionID, StringRef(), false);
+  uint8_t *Addr = MemMgr->allocateDataSection(CommonSize, sizeof(void *),
+                                              SectionID, StringRef(), false);
   if (!Addr)
     report_fatal_error("Unable to allocate memory for common symbols!");
   uint64_t Offset = 0;
-  Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
-  memset(Addr, 0, TotalSize);
+  Sections.push_back(SectionEntry("<common symbols>", Addr, CommonSize, 0));
+  memset(Addr, 0, CommonSize);
 
-  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
-               << " new addr: " << format("%p", Addr)
-               << " DataSize: " << TotalSize
-               << "\n");
+  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
+               << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
 
   // Assign the address of each symbol
-  for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
-       itEnd = CommonSymbols.end(); it != itEnd; it++) {
-    uint64_t Size = it->second.first;
-    uint64_t Align = it->second.second;
+  for (auto &Sym : SymbolsToAllocate) {
+    uint32_t Align;
+    uint64_t Size;
     StringRef Name;
-    it->first.getName(Name);
+    Check(Sym.getAlignment(Align));
+    Check(Sym.getSize(Size));
+    Check(Sym.getName(Name));
     if (Align) {
       // This symbol has an alignment requirement.
       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
       Addr += AlignOffset;
       Offset += AlignOffset;
-      DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
-                      format("%p\n", Addr));
     }
-    Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
-    SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
+    uint32_t Flags = Sym.getFlags();
+    SymbolInfo::Visibility Vis =
+      (Flags & SymbolRef::SF_Exported) ?
+        SymbolInfo::Default : SymbolInfo::Hidden;
+    DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
+                 << format("%p", Addr) << "\n");
+    GlobalSymbolTable[Name] = SymbolInfo(SectionID, Offset, Vis);
     Offset += Size;
     Addr += Size;
   }
 }
 
-unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
-                                      const SectionRef &Section,
-                                      bool IsCode) {
-
-  unsigned StubBufSize = 0,
-           StubSize = getMaxStubSize();
-  error_code err;
-  const ObjectFile *ObjFile = Obj.getObjectFile();
-  // FIXME: this is an inefficient way to handle this. We should computed the
-  // necessary section allocation size in loadObject by walking all the sections
-  // once.
-  if (StubSize > 0) {
-    for (section_iterator SI = ObjFile->begin_sections(),
-           SE = ObjFile->end_sections();
-         SI != SE; SI.increment(err), Check(err)) {
-      section_iterator RelSecI = SI->getRelocatedSection();
-      if (!(RelSecI == Section))
-        continue;
-
-      for (relocation_iterator I = SI->begin_relocations(),
-             E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
-        StubBufSize += StubSize;
-      }
-    }
-  }
+unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
+                                      const SectionRef &Section, bool IsCode) {
 
   StringRef data;
-  uint64_t Alignment64;
   Check(Section.getContents(data));
-  Check(Section.getAlignment(Alignment64));
+  uint64_t Alignment64 = Section.getAlignment();
 
   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
-  bool IsRequired;
-  bool IsVirtual;
-  bool IsZeroInit;
-  bool IsReadOnly;
-  uint64_t DataSize;
   unsigned PaddingSize = 0;
+  unsigned StubBufSize = 0;
   StringRef Name;
-  Check(Section.isRequiredForExecution(IsRequired));
-  Check(Section.isVirtual(IsVirtual));
-  Check(Section.isZeroInit(IsZeroInit));
-  Check(Section.isReadOnlyData(IsReadOnly));
-  Check(Section.getSize(DataSize));
+  bool IsRequired = isRequiredForExecution(Section);
+  bool IsVirtual = Section.isVirtual();
+  bool IsZeroInit = isZeroInit(Section);
+  bool IsReadOnly = isReadOnlyData(Section);
+  uint64_t DataSize = Section.getSize();
   Check(Section.getName(Name));
-  if (StubSize > 0) {
-    unsigned StubAlignment = getStubAlignment();
-    unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
-    if (StubAlignment > EndAlignment)
-      StubBufSize += StubAlignment - EndAlignment;
-  }
+
+  StubBufSize = computeSectionStubBufSize(Obj, Section);
 
   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
   // with zeroes added at the end.  For MachO objects, this section has a
@@ -285,19 +533,19 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
   if (Name == ".eh_frame")
     PaddingSize = 4;
 
-  unsigned Allocate;
+  uintptr_t Allocate;
   unsigned SectionID = Sections.size();
   uint8_t *Addr;
-  const char *pData = 0;
+  const char *pData = nullptr;
 
   // Some sections, such as debug info, don't need to be loaded for execution.
   // Leave those where they are.
   if (IsRequired) {
     Allocate = DataSize + PaddingSize + StubBufSize;
-    Addr = IsCode
-      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name)
-      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name,
-                                    IsReadOnly);
+    Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
+                                                Name)
+                  : MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
+                                                Name, IsReadOnly);
     if (!Addr)
       report_fatal_error("Unable to allocate section memory!");
 
@@ -318,37 +566,32 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
       DataSize += PaddingSize;
     }
 
-    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
-                 << " Name: " << Name
+    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
                  << " obj addr: " << format("%p", pData)
                  << " new addr: " << format("%p", Addr)
-                 << " DataSize: " << DataSize
-                 << " StubBufSize: " << StubBufSize
-                 << " Allocate: " << Allocate
-                 << "\n");
-    Obj.updateSectionAddress(Section, (uint64_t)Addr);
-  }
-  else {
+                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
+                 << " Allocate: " << Allocate << "\n");
+  } else {
     // Even if we didn't load the section, we need to record an entry for it
     // to handle later processing (and by 'handle' I mean don't do anything
     // with these sections).
     Allocate = 0;
-    Addr = 0;
-    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
-                 << " Name: " << Name
-                 << " obj addr: " << format("%p", data.data())
-                 << " new addr: 0"
-                 << " DataSize: " << DataSize
-                 << " StubBufSize: " << StubBufSize
-                 << " Allocate: " << Allocate
-                 << "\n");
+    Addr = nullptr;
+    DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
+                 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
+                 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
+                 << " Allocate: " << Allocate << "\n");
   }
 
   Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
+
+  if (Checker)
+    Checker->registerSection(Obj.getFileName(), SectionID);
+
   return SectionID;
 }
 
-unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
+unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
                                             const SectionRef &Section,
                                             bool IsCode,
                                             ObjSectionToIDMap &LocalSections) {
@@ -374,45 +617,38 @@ void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
   // Relocation by symbol.  If the symbol is found in the global symbol table,
   // create an appropriate section relocation.  Otherwise, add it to
   // ExternalSymbolRelocations.
-  SymbolTableMap::const_iterator Loc =
-      GlobalSymbolTable.find(SymbolName);
+  RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
   if (Loc == GlobalSymbolTable.end()) {
     ExternalSymbolRelocations[SymbolName].push_back(RE);
   } else {
     // Copy the RE since we want to modify its addend.
     RelocationEntry RECopy = RE;
-    RECopy.Addend += Loc->second.second;
-    Relocations[Loc->second.first].push_back(RECopy);
+    const auto &SymInfo = Loc->second;
+    RECopy.Addend += SymInfo.getOffset();
+    Relocations[SymInfo.getSectionID()].push_back(RECopy);
   }
 }
 
-uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
-  if (Arch == Triple::aarch64) {
+uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
+                                             unsigned AbiVariant) {
+  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
     // This stub has to be able to access the full address space,
     // since symbol lookup won't necessarily find a handy, in-range,
     // PLT stub for functions which could be anywhere.
-    uint32_t *StubAddr = (uint32_t*)Addr;
-
     // Stub can use ip0 (== x16) to calculate address
-    *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
-    StubAddr++;
-    *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
-    StubAddr++;
-    *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
-    StubAddr++;
-    *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
-    StubAddr++;
-    *StubAddr = 0xd61f0200; // br ip0
+    writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
+    writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
+    writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
+    writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
+    writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
 
     return Addr;
-  } else if (Arch == Triple::arm) {
+  } else if (Arch == Triple::arm || Arch == Triple::armeb) {
     // TODO: There is only ARM far stub now. We should add the Thumb stub,
     // and stubs for branches Thumb - ARM and ARM - Thumb.
-    uint32_t *StubAddr = (uint32_t*)Addr;
-    *StubAddr = 0xe51ff004; // ldr pc,<label>
-    return (uint8_t*)++StubAddr;
+    writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
+    return Addr + 4;
   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
-    uint32_t *StubAddr = (uint32_t*)Addr;
     // 0:   3c190000        lui     t9,%hi(addr).
     // 4:   27390000        addiu   t9,t9,%lo(addr).
     // 8:   03200008        jr      t9.
@@ -420,31 +656,37 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
 
-    *StubAddr = LuiT9Instr;
-    StubAddr++;
-    *StubAddr = AdduiT9Instr;
-    StubAddr++;
-    *StubAddr = JrT9Instr;
-    StubAddr++;
-    *StubAddr = NopInstr;
+    writeBytesUnaligned(LuiT9Instr, Addr, 4);
+    writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
+    writeBytesUnaligned(JrT9Instr, Addr+8, 4);
+    writeBytesUnaligned(NopInstr, Addr+12, 4);
     return Addr;
   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
-    // PowerPC64 stub: the address points to a function descriptor
-    // instead of the function itself. Load the function address
-    // on r11 and sets it to control register. Also loads the function
-    // TOC in r2 and environment pointer to r11.
+    // Depending on which version of the ELF ABI is in use, we need to
+    // generate one of two variants of the stub.  They both start with
+    // the same sequence to load the target address into r12.
     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
-    writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
-    writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
-    writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
-    writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
-    writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
-    writeInt32BE(Addr+40, 0x4E800420); // bctr
-
+    if (AbiVariant == 2) {
+      // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
+      // The address is already in r12 as required by the ABI.  Branch to it.
+      writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
+      writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
+      writeInt32BE(Addr+28, 0x4E800420); // bctr
+    } else {
+      // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
+      // Load the function address on r11 and sets it to control register. Also
+      // loads the function TOC in r2 and environment pointer to r11.
+      writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
+      writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
+      writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
+      writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
+      writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
+      writeInt32BE(Addr+40, 0x4E800420); // bctr
+    }
     return Addr;
   } else if (Arch == Triple::systemz) {
     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
@@ -457,6 +699,8 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
     *Addr      = 0xFF; // jmp
     *(Addr+1)  = 0x25; // rip
     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
+  } else if (Arch == Triple::x86) {
+    *Addr      = 0xE9; // 32-bit pc-relative jump.
   }
   return Addr;
 }
@@ -475,6 +719,10 @@ void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
   // Addr is a uint64_t because we can't assume the pointer width
   // of the target is the same as that of the host. Just use a generic
   // "big enough" type.
+  DEBUG(dbgs() << "Reassigning address for section "
+               << SectionID << " (" << Sections[SectionID].Name << "): "
+               << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
+               << format("0x%016" PRIx64, Addr) << "\n");
   Sections[SectionID].LoadAddress = Addr;
 }
 
@@ -483,52 +731,53 @@ void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
     const RelocationEntry &RE = Relocs[i];
     // Ignore relocations for sections that were not loaded
-    if (Sections[RE.SectionID].Address == 0)
+    if (Sections[RE.SectionID].Address == nullptr)
       continue;
     resolveRelocation(RE, Value);
   }
 }
 
 void RuntimeDyldImpl::resolveExternalSymbols() {
-  while(!ExternalSymbolRelocations.empty()) {
+  while (!ExternalSymbolRelocations.empty()) {
     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
 
     StringRef Name = i->first();
     if (Name.size() == 0) {
       // This is an absolute symbol, use an address of zero.
-      DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
+      DEBUG(dbgs() << "Resolving absolute relocations."
+                   << "\n");
       RelocationList &Relocs = i->second;
       resolveRelocationList(Relocs, 0);
     } else {
       uint64_t Addr = 0;
-      SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
+      RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
       if (Loc == GlobalSymbolTable.end()) {
-          // This is an external symbol, try to get its address from
-          // MemoryManager.
-          Addr = MemMgr->getSymbolAddress(Name.data());
-          // The call to getSymbolAddress may have caused additional modules to
-          // be loaded, which may have added new entries to the
-          // ExternalSymbolRelocations map.  Consquently, we need to update our
-          // iterator.  This is also why retrieval of the relocation list
-          // associated with this symbol is deferred until below this point.
-          // New entries may have been added to the relocation list.
-          i = ExternalSymbolRelocations.find(Name);
+        // This is an external symbol, try to get its address from
+        // MemoryManager.
+        Addr = MemMgr->getSymbolAddress(Name.data());
+        // The call to getSymbolAddress may have caused additional modules to
+        // be loaded, which may have added new entries to the
+        // ExternalSymbolRelocations map.  Consquently, we need to update our
+        // iterator.  This is also why retrieval of the relocation list
+        // associated with this symbol is deferred until below this point.
+        // New entries may have been added to the relocation list.
+        i = ExternalSymbolRelocations.find(Name);
       } else {
         // We found the symbol in our global table.  It was probably in a
         // Module that we loaded previously.
-        SymbolLoc SymLoc = Loc->second;
-        Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
+        const auto &SymInfo = Loc->second;
+        Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
+               SymInfo.getOffset();
       }
 
       // FIXME: Implement error handling that doesn't kill the host program!
       if (!Addr)
         report_fatal_error("Program used external function '" + Name +
-                          "' which could not be resolved!");
+                           "' which could not be resolved!");
 
       updateGOTEntries(Name, Addr);
-      DEBUG(dbgs() << "Resolving relocations Name: " << Name
-              << "\t" << format("0x%lx", Addr)
-              << "\n");
+      DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
+                   << format("0x%lx", Addr) << "\n");
       // This list may have been updated when we called getSymbolAddress, so
       // don't change this code to get the list earlier.
       RelocationList &Relocs = i->second;
@@ -539,9 +788,18 @@ void RuntimeDyldImpl::resolveExternalSymbols() {
   }
 }
 
-
 //===----------------------------------------------------------------------===//
 // RuntimeDyld class implementation
+
+uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
+                                                  StringRef SectionName) const {
+  for (unsigned I = BeginIdx; I != EndIdx; ++I)
+    if (RTDyld.Sections[I].Name == SectionName)
+      return RTDyld.Sections[I].LoadAddress;
+
+  return 0;
+}
+
 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
   // FIXME: There's a potential issue lurking here if a single instance of
   // RuntimeDyld is used to load multiple objects.  The current implementation
@@ -549,73 +807,72 @@ RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
   // though the public class spawns a new 'impl' instance for each load,
   // they share a single memory manager.  This can become a problem when page
   // permissions are applied.
-  Dyld = 0;
+  Dyld = nullptr;
   MM = mm;
+  ProcessAllSections = false;
+  Checker = nullptr;
+}
+
+RuntimeDyld::~RuntimeDyld() {}
+
+static std::unique_ptr<RuntimeDyldELF>
+createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections,
+                     RuntimeDyldCheckerImpl *Checker) {
+  std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
+  Dyld->setProcessAllSections(ProcessAllSections);
+  Dyld->setRuntimeDyldChecker(Checker);
+  return Dyld;
 }
 
-RuntimeDyld::~RuntimeDyld() {
-  delete Dyld;
+static std::unique_ptr<RuntimeDyldMachO>
+createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
+                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
+  std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM));
+  Dyld->setProcessAllSections(ProcessAllSections);
+  Dyld->setRuntimeDyldChecker(Checker);
+  return Dyld;
 }
 
-ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyld::loadObject(const ObjectFile &Obj) {
   if (!Dyld) {
-    sys::fs::file_magic Type =
-        sys::fs::identify_magic(InputBuffer->getBuffer());
-    switch (Type) {
-    case sys::fs::file_magic::elf_relocatable:
-    case sys::fs::file_magic::elf_executable:
-    case sys::fs::file_magic::elf_shared_object:
-    case sys::fs::file_magic::elf_core:
-      Dyld = new RuntimeDyldELF(MM);
-      break;
-    case sys::fs::file_magic::macho_object:
-    case sys::fs::file_magic::macho_executable:
-    case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
-    case sys::fs::file_magic::macho_core:
-    case sys::fs::file_magic::macho_preload_executable:
-    case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
-    case sys::fs::file_magic::macho_dynamic_linker:
-    case sys::fs::file_magic::macho_bundle:
-    case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
-    case sys::fs::file_magic::macho_dsym_companion:
-      Dyld = new RuntimeDyldMachO(MM);
-      break;
-    case sys::fs::file_magic::unknown:
-    case sys::fs::file_magic::bitcode:
-    case sys::fs::file_magic::archive:
-    case sys::fs::file_magic::coff_object:
-    case sys::fs::file_magic::coff_import_library:
-    case sys::fs::file_magic::pecoff_executable:
-    case sys::fs::file_magic::macho_universal_binary:
-    case sys::fs::file_magic::windows_resource:
-      report_fatal_error("Incompatible object format!");
-    }
-  } else {
-    if (!Dyld->isCompatibleFormat(InputBuffer))
+    if (Obj.isELF())
+      Dyld = createRuntimeDyldELF(MM, ProcessAllSections, Checker);
+    else if (Obj.isMachO())
+      Dyld = createRuntimeDyldMachO(
+               static_cast<Triple::ArchType>(Obj.getArch()), MM,
+               ProcessAllSections, Checker);
+    else
       report_fatal_error("Incompatible object format!");
   }
 
-  return Dyld->loadObject(InputBuffer);
+  if (!Dyld->isCompatibleFile(Obj))
+    report_fatal_error("Incompatible object format!");
+
+  return Dyld->loadObject(Obj);
 }
 
-void *RuntimeDyld::getSymbolAddress(StringRef Name) {
+void *RuntimeDyld::getSymbolAddress(StringRef Name) const {
   if (!Dyld)
-    return NULL;
+    return nullptr;
   return Dyld->getSymbolAddress(Name);
 }
 
-uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
+uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) const {
   if (!Dyld)
     return 0;
   return Dyld->getSymbolLoadAddress(Name);
 }
 
-void RuntimeDyld::resolveRelocations() {
-  Dyld->resolveRelocations();
+uint64_t RuntimeDyld::getExportedSymbolLoadAddress(StringRef Name) const {
+  if (!Dyld)
+    return 0;
+  return Dyld->getExportedSymbolLoadAddress(Name);
 }
 
-void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
-                                         uint64_t Addr) {
+void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
+
+void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
   Dyld->reassignSectionAddress(SectionID, Addr);
 }
 
@@ -624,9 +881,9 @@ void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
 }
 
-StringRef RuntimeDyld::getErrorString() {
-  return Dyld->getErrorString();
-}
+bool RuntimeDyld::hasError() { return Dyld->hasError(); }
+
+StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
 
 void RuntimeDyld::registerEHFrames() {
   if (Dyld)