Sets insertion point of fake cond branch to the last phi node in the block
[oota-llvm.git] / lib / CodeGen / CodeGenPrepare.cpp
index c8007a524e702acea8defcfee43251e2d8f34943..ac8fbbf9c762fd7582809a43c1025b867b7e4051 100644 (file)
 
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryLocation.h"
 #include "llvm/Analysis/TargetLibraryInfo.h"
 #include "llvm/Analysis/TargetTransformInfo.h"
 #include "llvm/Analysis/ValueTracking.h"
 #include "llvm/IR/GetElementPtrTypeIterator.h"
 #include "llvm/IR/IRBuilder.h"
 #include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/InstrTypes.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/IR/IntrinsicInst.h"
 #include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/NoFolder.h"
 #include "llvm/IR/PatternMatch.h"
 #include "llvm/IR/Statepoint.h"
 #include "llvm/IR/ValueHandle.h"
@@ -147,10 +154,15 @@ class TypePromotionTransaction;
     /// DataLayout for the Function being processed.
     const DataLayout *DL;
 
+    // XXX-comment:We need DominatorTree to figure out which instruction to
+    // taint.
+    DominatorTree *DT;
+
   public:
     static char ID; // Pass identification, replacement for typeid
     explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
-        : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
+        : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr),
+        DT(nullptr) {
         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
       }
     bool runOnFunction(Function &F) override;
@@ -161,6 +173,7 @@ class TypePromotionTransaction;
       AU.addPreserved<DominatorTreeWrapperPass>();
       AU.addRequired<TargetLibraryInfoWrapperPass>();
       AU.addRequired<TargetTransformInfoWrapperPass>();
+      AU.addRequired<DominatorTreeWrapperPass>();
     }
 
   private:
@@ -195,20 +208,1018 @@ class TypePromotionTransaction;
 }
 
 char CodeGenPrepare::ID = 0;
-INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
+INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare",
+                   "Optimize for code generation", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare",
                    "Optimize for code generation", false, false)
 
 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
   return new CodeGenPrepare(TM);
 }
 
+namespace {
+
+bool StoreAddressDependOnValue(StoreInst* SI, Value* DepVal);
+Value* GetUntaintedAddress(Value* CurrentAddress);
+
+// The depth we trace down a variable to look for its dependence set.
+const unsigned kDependenceDepth = 4;
+
+// Recursively looks for variables that 'Val' depends on at the given depth
+// 'Depth', and adds them in 'DepSet'. If 'InsertOnlyLeafNodes' is true, only
+// inserts the leaf node values; otherwise, all visited nodes are included in
+// 'DepSet'. Note that constants will be ignored.
+template <typename SetType>
+void recursivelyFindDependence(SetType* DepSet, Value* Val,
+                               bool InsertOnlyLeafNodes = false,
+                               unsigned Depth = kDependenceDepth) {
+  if (Val == nullptr) {
+    return;
+  }
+  if (!InsertOnlyLeafNodes && !isa<Constant>(Val)) {
+    DepSet->insert(Val);
+  }
+  if (Depth == 0) {
+    // Cannot go deeper. Insert the leaf nodes.
+    if (InsertOnlyLeafNodes && !isa<Constant>(Val)) {
+      DepSet->insert(Val);
+    }
+    return;
+  }
+
+  // Go one step further to explore the dependence of the operands.
+  Instruction* I = nullptr;
+  if ((I = dyn_cast<Instruction>(Val))) {
+    if (isa<LoadInst>(I)) {
+      // A load is considerd the leaf load of the dependence tree. Done.
+      DepSet->insert(Val);
+      return;
+    } else if (I->isBinaryOp()) {
+      BinaryOperator* I = dyn_cast<BinaryOperator>(Val);
+      Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1);
+      recursivelyFindDependence(DepSet, Op0, InsertOnlyLeafNodes, Depth - 1);
+      recursivelyFindDependence(DepSet, Op1, InsertOnlyLeafNodes, Depth - 1);
+    } else if (I->isCast()) {
+      Value* Op0 = I->getOperand(0);
+      recursivelyFindDependence(DepSet, Op0, InsertOnlyLeafNodes, Depth - 1);
+    } else if (I->getOpcode() == Instruction::Select) {
+      Value* Op0 = I->getOperand(0);
+      Value* Op1 = I->getOperand(1);
+      Value* Op2 = I->getOperand(2);
+      recursivelyFindDependence(DepSet, Op0, InsertOnlyLeafNodes, Depth - 1);
+      recursivelyFindDependence(DepSet, Op1, InsertOnlyLeafNodes, Depth - 1);
+      recursivelyFindDependence(DepSet, Op2, InsertOnlyLeafNodes, Depth - 1);
+    } else if (I->getOpcode() == Instruction::GetElementPtr) {
+      for (unsigned i = 0; i < I->getNumOperands(); i++) {
+        recursivelyFindDependence(DepSet, I->getOperand(i), InsertOnlyLeafNodes,
+                                  Depth - 1);
+      }
+    } else if (I->getOpcode() == Instruction::Store) {
+      auto* SI = dyn_cast<StoreInst>(Val);
+      recursivelyFindDependence(DepSet, SI->getPointerOperand(),
+                                InsertOnlyLeafNodes, Depth - 1);
+      recursivelyFindDependence(DepSet, SI->getValueOperand(),
+                                InsertOnlyLeafNodes, Depth - 1);
+    } else {
+      Value* Op0 = nullptr;
+      Value* Op1 = nullptr;
+      switch (I->getOpcode()) {
+        case Instruction::ICmp:
+        case Instruction::FCmp: {
+          Op0 = I->getOperand(0);
+          Op1 = I->getOperand(1);
+          recursivelyFindDependence(DepSet, Op0, InsertOnlyLeafNodes,
+                                    Depth - 1);
+          recursivelyFindDependence(DepSet, Op1, InsertOnlyLeafNodes,
+                                    Depth - 1);
+          break;
+        }
+        case Instruction::PHI: {
+          for (int i = 0; i < I->getNumOperands(); i++) {
+            auto* op = I->getOperand(i);
+            if (DepSet->count(op) == 0) {
+              recursivelyFindDependence(DepSet, I->getOperand(i),
+                                        InsertOnlyLeafNodes, Depth - 1);
+            }
+          }
+          break;
+        }
+        default: {
+          // Be conservative. Add it and be done with it.
+          DepSet->insert(Val);
+          return;
+        }
+      }
+    }
+  } else if (isa<Constant>(Val)) {
+    // Not interested in constant values. Done.
+    return;
+  } else {
+    // Be conservative. Add it and be done with it.
+    DepSet->insert(Val);
+    return;
+  }
+}
+
+// Helper function to create a Cast instruction.
+Value* createCast(IRBuilder<true, NoFolder>& Builder, Value* DepVal,
+                  Type* TargetIntegerType) {
+  Instruction::CastOps CastOp = Instruction::BitCast;
+  switch (DepVal->getType()->getTypeID()) {
+    case Type::IntegerTyID: {
+      CastOp = Instruction::SExt;
+      break;
+    }
+    case Type::FloatTyID:
+    case Type::DoubleTyID: {
+      CastOp = Instruction::FPToSI;
+      break;
+    }
+    case Type::PointerTyID: {
+      CastOp = Instruction::PtrToInt;
+      break;
+    }
+    default: { break; }
+  }
+
+  return Builder.CreateCast(CastOp, DepVal, TargetIntegerType);
+}
+
+// Given a value, if it's a tainted address, this function returns the
+// instruction that ORs the "dependence value" with the "original address".
+// Otherwise, returns nullptr.  This instruction is the first OR instruction
+// where one of its operand is an AND instruction with an operand being 0.
+//
+// E.g., it returns '%4 = or i32 %3, %2' given 'CurrentAddress' is '%5'.
+// %0 = load i32, i32* @y, align 4, !tbaa !1
+// %cmp = icmp ne i32 %0, 42  // <== this is like the condition
+// %1 = sext i1 %cmp to i32
+// %2 = ptrtoint i32* @x to i32
+// %3 = and i32 %1, 0
+// %4 = or i32 %3, %2
+// %5 = inttoptr i32 %4 to i32*
+// store i32 1, i32* %5, align 4
+Instruction* getOrAddress(Value* CurrentAddress) {
+  // Is it a cast from integer to pointer type.
+  Instruction* OrAddress = nullptr;
+  Instruction* AndDep = nullptr;
+  Instruction* CastToInt = nullptr;
+  Value* ActualAddress = nullptr;
+  Constant* ZeroConst = nullptr;
+
+  const Instruction* CastToPtr = dyn_cast<Instruction>(CurrentAddress);
+  if (CastToPtr && CastToPtr->getOpcode() == Instruction::IntToPtr) {
+    // Is it an OR instruction: %1 = or %and, %actualAddress.
+    if ((OrAddress = dyn_cast<Instruction>(CastToPtr->getOperand(0))) &&
+        OrAddress->getOpcode() == Instruction::Or) {
+      // The first operand should be and AND instruction.
+      AndDep = dyn_cast<Instruction>(OrAddress->getOperand(0));
+      if (AndDep && AndDep->getOpcode() == Instruction::And) {
+        // Also make sure its first operand of the "AND" is 0, or the "AND" is
+        // marked explicitly by "NoInstCombine".
+        if ((ZeroConst = dyn_cast<Constant>(AndDep->getOperand(1))) &&
+            ZeroConst->isNullValue()) {
+          return OrAddress;
+        }
+      }
+    }
+  }
+  // Looks like it's not been tainted.
+  return nullptr;
+}
+
+// Given a value, if it's a tainted address, this function returns the
+// instruction that taints the "dependence value". Otherwise, returns nullptr.
+// This instruction is the last AND instruction where one of its operand is 0.
+// E.g., it returns '%3' given 'CurrentAddress' is '%5'.
+// %0 = load i32, i32* @y, align 4, !tbaa !1
+// %cmp = icmp ne i32 %0, 42  // <== this is like the condition
+// %1 = sext i1 %cmp to i32
+// %2 = ptrtoint i32* @x to i32
+// %3 = and i32 %1, 0
+// %4 = or i32 %3, %2
+// %5 = inttoptr i32 %4 to i32*
+// store i32 1, i32* %5, align 4
+Instruction* getAndDependence(Value* CurrentAddress) {
+  // If 'CurrentAddress' is tainted, get the OR instruction.
+  auto* OrAddress = getOrAddress(CurrentAddress);
+  if (OrAddress == nullptr) {
+    return nullptr;
+  }
+
+  // No need to check the operands.
+  auto* AndDepInst = dyn_cast<Instruction>(OrAddress->getOperand(0));
+  assert(AndDepInst);
+  return AndDepInst;
+}
+
+// Given a value, if it's a tainted address, this function returns
+// the "dependence value", which is the first operand in the AND instruction.
+// E.g., it returns '%1' given 'CurrentAddress' is '%5'.
+// %0 = load i32, i32* @y, align 4, !tbaa !1
+// %cmp = icmp ne i32 %0, 42  // <== this is like the condition
+// %1 = sext i1 %cmp to i32
+// %2 = ptrtoint i32* @x to i32
+// %3 = and i32 %1, 0
+// %4 = or i32 %3, %2
+// %5 = inttoptr i32 %4 to i32*
+// store i32 1, i32* %5, align 4
+Value* getDependence(Value* CurrentAddress) {
+  auto* AndInst = getAndDependence(CurrentAddress);
+  if (AndInst == nullptr) {
+    return nullptr;
+  }
+  return AndInst->getOperand(0);
+}
+
+// Given an address that has been tainted, returns the only condition it depends
+// on, if any; otherwise, returns nullptr.
+Value* getConditionDependence(Value* Address) {
+  auto* Dep = getDependence(Address);
+  if (Dep == nullptr) {
+    // 'Address' has not been dependence-tainted.
+    return nullptr;
+  }
+
+  Value* Operand = Dep;
+  while (true) {
+    auto* Inst = dyn_cast<Instruction>(Operand);
+    if (Inst == nullptr) {
+      // Non-instruction type does not have condition dependence.
+      return nullptr;
+    }
+    if (Inst->getOpcode() == Instruction::ICmp) {
+      return Inst;
+    } else {
+      if (Inst->getNumOperands() != 1) {
+        return nullptr;
+      } else {
+        Operand = Inst->getOperand(0);
+      }
+    }
+  }
+}
+
+// Conservatively decides whether the dependence set of 'Val1' includes the
+// dependence set of 'Val2'. If 'ExpandSecondValue' is false, we do not expand
+// 'Val2' and use that single value as its dependence set.
+// If it returns true, it means the dependence set of 'Val1' includes that of
+// 'Val2'; otherwise, it only means we cannot conclusively decide it.
+bool dependenceSetInclusion(Value* Val1, Value* Val2,
+                            int Val1ExpandLevel = 2 * kDependenceDepth,
+                            int Val2ExpandLevel = kDependenceDepth) {
+  typedef SmallSet<Value*, 8> IncludingSet;
+  typedef SmallSet<Value*, 4> IncludedSet;
+
+  IncludingSet DepSet1;
+  IncludedSet DepSet2;
+  // Look for more depths for the including set.
+  recursivelyFindDependence(&DepSet1, Val1, false /*Insert all visited nodes*/,
+                            Val1ExpandLevel);
+  recursivelyFindDependence(&DepSet2, Val2, true /*Only insert leaf nodes*/,
+                            Val2ExpandLevel);
+
+  auto set_inclusion = [](IncludingSet FullSet, IncludedSet Subset) {
+    for (auto* Dep : Subset) {
+      if (0 == FullSet.count(Dep)) {
+        return false;
+      }
+    }
+    return true;
+  };
+  bool inclusion = set_inclusion(DepSet1, DepSet2);
+  DEBUG(dbgs() << "[dependenceSetInclusion]: " << inclusion << "\n");
+  DEBUG(dbgs() << "Including set for: " << *Val1 << "\n");
+  DEBUG(for (const auto* Dep : DepSet1) { dbgs() << "\t\t" << *Dep << "\n"; });
+  DEBUG(dbgs() << "Included set for: " << *Val2 << "\n");
+  DEBUG(for (const auto* Dep : DepSet2) { dbgs() << "\t\t" << *Dep << "\n"; });
+
+  return inclusion;
+}
+
+// Recursively iterates through the operands spawned from 'DepVal'. If there
+// exists a single value that 'DepVal' only depends on, we call that value the
+// root dependence of 'DepVal' and return it. Otherwise, return 'DepVal'.
+Value* getRootDependence(Value* DepVal) {
+  SmallSet<Value*, 8> DepSet;
+  for (unsigned depth = kDependenceDepth; depth > 0; --depth) {
+    recursivelyFindDependence(&DepSet, DepVal, true /*Only insert leaf nodes*/,
+                              depth);
+    if (DepSet.size() == 1) {
+      return *DepSet.begin();
+    }
+    DepSet.clear();
+  }
+  return DepVal;
+}
+
+// This function actually taints 'DepVal' to the address to 'SI'. If the
+// address
+// of 'SI' already depends on whatever 'DepVal' depends on, this function
+// doesn't do anything and returns false. Otherwise, returns true.
+//
+// This effect forces the store and any stores that comes later to depend on
+// 'DepVal'. For example, we have a condition "cond", and a store instruction
+// "s: STORE addr, val". If we want "s" (and any later store) to depend on
+// "cond", we do the following:
+// %conv = sext i1 %cond to i32
+// %addrVal = ptrtoint i32* %addr to i32
+// %andCond = and i32 conv, 0;
+// %orAddr = or i32 %andCond, %addrVal;
+// %NewAddr = inttoptr i32 %orAddr to i32*;
+//
+// This is a more concrete example:
+// ------
+// %0 = load i32, i32* @y, align 4, !tbaa !1
+// %cmp = icmp ne i32 %0, 42  // <== this is like the condition
+// %1 = sext i1 %cmp to i32
+// %2 = ptrtoint i32* @x to i32
+// %3 = and i32 %1, 0
+// %4 = or i32 %3, %2
+// %5 = inttoptr i32 %4 to i32*
+// store i32 1, i32* %5, align 4
+bool taintStoreAddress(StoreInst* SI, Value* DepVal) {
+  // Set the insertion point right after the 'DepVal'.
+  Instruction* Inst = nullptr;
+  IRBuilder<true, NoFolder> Builder(SI);
+  BasicBlock* BB = SI->getParent();
+  Value* Address = SI->getPointerOperand();
+  Type* TargetIntegerType =
+      IntegerType::get(Address->getContext(),
+                       BB->getModule()->getDataLayout().getPointerSizeInBits());
+
+  // Does SI's address already depends on whatever 'DepVal' depends on?
+  if (StoreAddressDependOnValue(SI, DepVal)) {
+    return false;
+  }
+
+  // Figure out if there's a root variable 'DepVal' depends on. For example, we
+  // can extract "getelementptr inbounds %struct, %struct* %0, i64 0, i32 123"
+  // to be "%struct* %0" since all other operands are constant.
+  auto* RootVal = getRootDependence(DepVal);
+  auto* RootInst = dyn_cast<Instruction>(RootVal);
+  auto* DepValInst = dyn_cast<Instruction>(DepVal);
+  if (RootInst && DepValInst &&
+      RootInst->getParent() == DepValInst->getParent()) {
+    DepVal = RootVal;
+  }
+
+  // Is this already a dependence-tainted store?
+  Value* OldDep = getDependence(Address);
+  if (OldDep) {
+    // The address of 'SI' has already been tainted.  Just need to absorb the
+    // DepVal to the existing dependence in the address of SI.
+    Instruction* AndDep = getAndDependence(Address);
+    IRBuilder<true, NoFolder> Builder(AndDep);
+    Value* NewDep = nullptr;
+    if (DepVal->getType() == AndDep->getType()) {
+      NewDep = Builder.CreateAnd(OldDep, DepVal);
+    } else {
+      NewDep = Builder.CreateAnd(
+          OldDep, createCast(Builder, DepVal, TargetIntegerType));
+    }
+
+    auto* NewDepInst = dyn_cast<Instruction>(NewDep);
+
+    // Use the new AND instruction as the dependence
+    AndDep->setOperand(0, NewDep);
+    return true;
+  }
+
+  // SI's address has not been tainted. Now taint it with 'DepVal'.
+  Value* CastDepToInt = createCast(Builder, DepVal, TargetIntegerType);
+  Value* PtrToIntCast = Builder.CreatePtrToInt(Address, TargetIntegerType);
+  Value* AndDepVal =
+      Builder.CreateAnd(CastDepToInt, ConstantInt::get(TargetIntegerType, 0));
+  auto AndInst = dyn_cast<Instruction>(AndDepVal);
+  // XXX-comment: The original IR InstCombiner would change our and instruction
+  // to a select and then the back end optimize the condition out.  We attach a
+  // flag to instructions and set it here to inform the InstCombiner to not to
+  // touch this and instruction at all.
+  Value* OrAddr = Builder.CreateOr(AndDepVal, PtrToIntCast);
+  Value* NewAddr = Builder.CreateIntToPtr(OrAddr, Address->getType());
+
+  DEBUG(dbgs() << "[taintStoreAddress]\n"
+               << "Original store: " << *SI << '\n');
+  SI->setOperand(1, NewAddr);
+
+  // Debug output.
+  DEBUG(dbgs() << "\tTargetIntegerType: " << *TargetIntegerType << '\n'
+               << "\tCast dependence value to integer: " << *CastDepToInt
+               << '\n'
+               << "\tCast address to integer: " << *PtrToIntCast << '\n'
+               << "\tAnd dependence value: " << *AndDepVal << '\n'
+               << "\tOr address: " << *OrAddr << '\n'
+               << "\tCast or instruction to address: " << *NewAddr << "\n\n");
+
+  return true;
+}
+
+// Looks for the previous store in the if block --- 'BrBB', which makes the
+// speculative store 'StoreToHoist' safe.
+Value* getSpeculativeStoreInPrevBB(StoreInst* StoreToHoist, BasicBlock* BrBB) {
+  assert(StoreToHoist && "StoreToHoist must be a real store");
+
+  Value* StorePtr = StoreToHoist->getPointerOperand();
+
+  // Look for a store to the same pointer in BrBB.
+  for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), RE = BrBB->rend();
+       RI != RE; ++RI) {
+    Instruction* CurI = &*RI;
+
+    StoreInst* SI = dyn_cast<StoreInst>(CurI);
+    // Found the previous store make sure it stores to the same location.
+    // XXX-update: If the previous store's original untainted address are the
+    // same as 'StorePtr', we are also good to hoist the store.
+    if (SI && (SI->getPointerOperand() == StorePtr ||
+               GetUntaintedAddress(SI->getPointerOperand()) == StorePtr)) {
+      // Found the previous store, return its value operand.
+      return SI;
+    }
+  }
+
+  assert(false &&
+         "We should not reach here since this store is safe to speculate");
+}
+
+// XXX-comment: Returns true if it changes the code, false otherwise (the branch
+// condition already depends on 'DepVal'.
+bool taintConditionalBranch(BranchInst* BI, Value* DepVal) {
+  assert(BI->isConditional());
+  auto* Cond = BI->getOperand(0);
+  if (dependenceSetInclusion(Cond, DepVal)) {
+    // The dependence/ordering is self-evident.
+    return false;
+  }
+
+  IRBuilder<true, NoFolder> Builder(BI);
+  auto* AndDep =
+      Builder.CreateAnd(DepVal, ConstantInt::get(DepVal->getType(), 0));
+  auto* TruncAndDep =
+      Builder.CreateTrunc(AndDep, IntegerType::get(DepVal->getContext(), 1));
+  auto* OrCond = Builder.CreateOr(TruncAndDep, Cond);
+  BI->setOperand(0, OrCond);
+
+  // Debug output.
+  DEBUG(dbgs() << "\tTainted branch condition:\n" << *BI->getParent());
+
+  return true;
+}
+
+bool ConditionalBranchDependsOnValue(BranchInst* BI, Value* DepVal) {
+  assert(BI->isConditional());
+  auto* Cond = BI->getOperand(0);
+  return dependenceSetInclusion(Cond, DepVal);
+}
+
+// XXX-update: For a relaxed load 'LI', find the first immediate atomic store or
+// the first conditional branch. Returns nullptr if there's no such immediately
+// following store/branch instructions, which we can only enforce the load with
+// 'acquire'. 'ChainedBB' contains all the blocks chained together with
+// unconditional branches from 'BB' to the block with the first store/cond
+// branch.
+template <typename Vector>
+Instruction* findFirstStoreCondBranchInst(LoadInst* LI, Vector* ChainedBB) {
+  // In some situations, relaxed loads can be left as is:
+  // 1. The relaxed load is used to calculate the address of the immediate
+  // following store;
+  // 2. The relaxed load is used as a condition in the immediate following
+  // condition, and there are no stores in between. This is actually quite
+  // common. E.g.,
+  // int r1 = x.load(relaxed);
+  // if (r1 != 0) {
+  //   y.store(1, relaxed);
+  // }
+  // However, in this function, we don't deal with them directly. Instead, we
+  // just find the immediate following store/condition branch and return it.
+
+  assert(ChainedBB != nullptr && "Chained BB should not be nullptr");
+  auto* BB = LI->getParent();
+  ChainedBB->push_back(BB);
+  auto BE = BB->end();
+  auto BBI = BasicBlock::iterator(LI);
+  BBI++;
+  while (true) {
+    for (; BBI != BE; BBI++) {
+      auto* Inst = dyn_cast<Instruction>(&*BBI);
+      if (Inst == nullptr) {
+        continue;
+      }
+      if (Inst->getOpcode() == Instruction::Store) {
+        return Inst;
+      } else if (Inst->getOpcode() == Instruction::Br) {
+        auto* BrInst = dyn_cast<BranchInst>(Inst);
+        if (BrInst->isConditional()) {
+          return Inst;
+        } else {
+          // Reinitialize iterators with the destination of the unconditional
+          // branch.
+          BB = BrInst->getSuccessor(0);
+          ChainedBB->push_back(BB);
+          BBI = BB->begin();
+          BE = BB->end();
+          break;
+        }
+      }
+    }
+    if (BBI == BE) {
+      return nullptr;
+    }
+  }
+}
+
+// XXX-comment: Returns whether the code has been changed.
+bool taintMonotonicLoads(const SmallVector<LoadInst*, 1>& MonotonicLoadInsts) {
+  bool Changed = false;
+  for (auto* LI : MonotonicLoadInsts) {
+    SmallVector<BasicBlock*, 2> ChainedBB;
+    auto* FirstInst = findFirstStoreCondBranchInst(LI, &ChainedBB);
+    if (FirstInst == nullptr) {
+      // We don't seem to be able to taint a following store/conditional branch
+      // instruction. Simply make it acquire.
+      DEBUG(dbgs() << "[RelaxedLoad]: Transformed to acquire load\n"
+                   << *LI << "\n");
+      LI->setOrdering(Acquire);
+      Changed = true;
+      continue;
+    }
+    // Taint 'FirstInst', which could be a store or a condition branch
+    // instruction.
+    if (FirstInst->getOpcode() == Instruction::Store) {
+      Changed |= taintStoreAddress(dyn_cast<StoreInst>(FirstInst), LI);
+    } else if (FirstInst->getOpcode() == Instruction::Br) {
+      Changed |= taintConditionalBranch(dyn_cast<BranchInst>(FirstInst), LI);
+    } else {
+      assert(false && "findFirstStoreCondBranchInst() should return a "
+                    "store/condition branch instruction");
+    }
+  }
+  return Changed;
+}
+
+// Inserts a fake conditional branch right after the instruction 'SplitInst',
+// and the branch condition is 'Condition'. 'SplitInst' will be placed in the
+// newly created block.
+void AddFakeConditionalBranch(Instruction* SplitInst, Value* Condition) {
+  auto* BB = SplitInst->getParent();
+  TerminatorInst* ThenTerm = nullptr;
+  TerminatorInst* ElseTerm = nullptr;
+  SplitBlockAndInsertIfThenElse(Condition, SplitInst, &ThenTerm, &ElseTerm);
+  assert(ThenTerm && ElseTerm &&
+         "Then/Else terminators cannot be empty after basic block spliting");
+  auto* ThenBB = ThenTerm->getParent();
+  auto* ElseBB = ElseTerm->getParent();
+  auto* TailBB = ThenBB->getSingleSuccessor();
+  assert(TailBB && "Tail block cannot be empty after basic block spliting");
+
+  ThenBB->disableCanEliminateBlock();
+  ThenBB->disableCanEliminateBlock();
+  TailBB->disableCanEliminateBlock();
+  ThenBB->setName(BB->getName() + "Then.Fake");
+  ElseBB->setName(BB->getName() + "Else.Fake");
+  DEBUG(dbgs() << "Add fake conditional branch:\n"
+               << "Then Block:\n"
+               << *ThenBB << "Else Block:\n"
+               << *ElseBB << "\n");
+}
+
+// Returns true if the code is changed, and false otherwise.
+void TaintRelaxedLoads(Instruction* UsageInst) {
+  // For better performance, we can add a "AND X 0" instruction before the
+  // condition.
+  auto* BB = UsageInst->getParent();
+  auto* InsertPoint = UsageInst->getNextNode();
+  while (dyn_cast<PHINode>(InsertPoint)) {
+    InsertPoint = InsertPoint->getNextNode();
+  }
+  IRBuilder<true, NoFolder> Builder(InsertPoint);
+  // First thing is to cast 'UsageInst' to an integer type if necessary.
+  Value* AndTarget = nullptr;
+  if (IntegerType::classof(UsageInst->getType())) {
+    AndTarget = UsageInst;
+  } else {
+    Type* TargetIntegerType = IntegerType::get(
+        UsageInst->getContext(),
+        BB->getModule()->getDataLayout().getPointerSizeInBits());
+    AndTarget = createCast(Builder, UsageInst, TargetIntegerType);
+  }
+
+  auto* AndZero = dyn_cast<Instruction>(
+      Builder.CreateAnd(AndTarget, Constant::getNullValue(AndTarget->getType())));
+  auto* FakeCondition = dyn_cast<Instruction>(Builder.CreateICmp(
+      CmpInst::ICMP_NE, AndZero, Constant::getNullValue(AndTarget->getType())));
+  AddFakeConditionalBranch(FakeCondition->getNextNode(), FakeCondition);
+}
+
+// XXX-comment: Finds the appropriate Value derived from an atomic load.
+// 'ChainedBB' contains all the blocks chained together with unconditional
+// branches from LI's parent BB to the block with the first store/cond branch.
+// If we don't find any, it means 'LI' is not used at all (which should not
+// happen in practice). We can simply set 'LI' to be acquire just to be safe.
+template <typename Vector>
+Instruction* findMostRecentDependenceUsage(LoadInst* LI, Instruction* LaterInst,
+                                           Vector* ChainedBB,
+                                           DominatorTree* DT) {
+  typedef SmallSet<Instruction*, 8> UsageSet;
+  typedef DenseMap<BasicBlock*, std::unique_ptr<UsageSet>> UsageMap;
+  assert(ChainedBB->size() >= 1 && "ChainedBB must have >=1 size");
+  // Mapping from basic block in 'ChainedBB' to the set of dependence usage of
+  // 'LI' in each block.
+  UsageMap usage_map;
+  auto* LoadBB = LI->getParent();
+  usage_map[LoadBB] = make_unique<UsageSet>();
+  usage_map[LoadBB]->insert(LI);
+
+  for (auto* BB : *ChainedBB) {
+    if (usage_map[BB] == nullptr) {
+      usage_map[BB] = make_unique<UsageSet>();
+    }
+    auto& usage_set = usage_map[BB];
+    if (usage_set->size() == 0) {
+      // The value has not been used.
+      return nullptr;
+    }
+    // Calculate the usage in the current BB first.
+    std::list<Value*> bb_usage_list;
+    std::copy(usage_set->begin(), usage_set->end(),
+              std::back_inserter(bb_usage_list));
+    for (auto list_iter = bb_usage_list.begin();
+         list_iter != bb_usage_list.end(); list_iter++) {
+      auto* val = *list_iter;
+      for (auto* U : val->users()) {
+        Instruction* Inst = nullptr;
+        if (!(Inst = dyn_cast<Instruction>(U))) {
+          continue;
+        }
+        assert(Inst && "Usage value must be an instruction");
+        auto iter =
+            std::find(ChainedBB->begin(), ChainedBB->end(), Inst->getParent());
+        if (iter == ChainedBB->end()) {
+          // Only care about usage within ChainedBB.
+          continue;
+        }
+        auto* UsageBB = *iter;
+        if (UsageBB == BB) {
+          // Current BB.
+          if (!usage_set->count(Inst)) {
+            bb_usage_list.push_back(Inst);
+            usage_set->insert(Inst);
+          }
+        } else {
+          // A following BB.
+          if (usage_map[UsageBB] == nullptr) {
+            usage_map[UsageBB] = make_unique<UsageSet>();
+          }
+          usage_map[UsageBB]->insert(Inst);
+        }
+      }
+    }
+  }
+
+  // Pick one usage that is in LaterInst's block and that dominates 'LaterInst'.
+  auto* LaterBB = LaterInst->getParent();
+  auto& usage_set = usage_map[LaterBB];
+  Instruction* usage_inst = nullptr;
+  for (auto* inst : *usage_set) {
+    if (DT->dominates(inst, LaterInst)) {
+      usage_inst = inst;
+      break;
+    }
+  }
+
+  assert(usage_inst && "The usage instruction in the same block but after the "
+                       "later instruction");
+  return usage_inst;
+}
+
+// XXX-comment: Returns whether the code has been changed.
+bool AddFakeConditionalBranchAfterMonotonicLoads(
+    const SmallVector<LoadInst*, 1>& MonotonicLoadInsts, DominatorTree* DT) {
+  bool Changed = false;
+  for (auto* LI : MonotonicLoadInsts) {
+    SmallVector<BasicBlock*, 2> ChainedBB;
+    auto* FirstInst = findFirstStoreCondBranchInst(LI, &ChainedBB);
+    if (FirstInst != nullptr) {
+      if (FirstInst->getOpcode() == Instruction::Store) {
+        if (StoreAddressDependOnValue(dyn_cast<StoreInst>(FirstInst), LI)) {
+          continue;
+        }
+      } else if (FirstInst->getOpcode() == Instruction::Br) {
+        if (ConditionalBranchDependsOnValue(dyn_cast<BranchInst>(FirstInst),
+                                            LI)) {
+          continue;
+        }
+      } else {
+        dbgs() << "FirstInst=" << *FirstInst << "\n";
+        assert(false && "findFirstStoreCondBranchInst() should return a "
+                        "store/condition branch instruction");
+      }
+    }
+
+    // We really need to process the relaxed load now.
+    StoreInst* SI = nullptr;;
+    if (FirstInst && (SI = dyn_cast<StoreInst>(FirstInst))) {
+      // For immediately coming stores, taint the address of the store.
+      if (SI->getParent() == LI->getParent() || DT->dominates(LI, SI)) {
+        Changed |= taintStoreAddress(SI, LI);
+      } else {
+        auto* Inst =
+            findMostRecentDependenceUsage(LI, FirstInst, &ChainedBB, DT);
+        if (!Inst) {
+          LI->setOrdering(Acquire);
+          Changed = true;
+        } else {
+          Changed |= taintStoreAddress(SI, Inst);
+        }
+      }
+    } else {
+      // No upcoming branch
+      if (!FirstInst) {
+        TaintRelaxedLoads(LI);
+        Changed = true;
+      } else {
+        // For immediately coming branch, directly add a fake branch.
+        if (FirstInst->getParent() == LI->getParent() ||
+            DT->dominates(LI, FirstInst)) {
+          TaintRelaxedLoads(LI);
+          Changed = true;
+        } else {
+          auto* Inst =
+              findMostRecentDependenceUsage(LI, FirstInst, &ChainedBB, DT);
+          if (Inst) {
+            TaintRelaxedLoads(Inst);
+          } else {
+            LI->setOrdering(Acquire);
+          }
+          Changed = true;
+        }
+      }
+    }
+  }
+  return Changed;
+}
+
+/**** Implementations of public methods for dependence tainting ****/
+Value* GetUntaintedAddress(Value* CurrentAddress) {
+  auto* OrAddress = getOrAddress(CurrentAddress);
+  if (OrAddress == nullptr) {
+    // Is it tainted by a select instruction?
+    auto* Inst = dyn_cast<Instruction>(CurrentAddress);
+    if (nullptr != Inst && Inst->getOpcode() == Instruction::Select) {
+      // A selection instruction.
+      if (Inst->getOperand(1) == Inst->getOperand(2)) {
+        return Inst->getOperand(1);
+      }
+    }
+
+    return CurrentAddress;
+  }
+  Value* ActualAddress = nullptr;
+
+  auto* CastToInt = dyn_cast<Instruction>(OrAddress->getOperand(1));
+  if (CastToInt && CastToInt->getOpcode() == Instruction::PtrToInt) {
+    return CastToInt->getOperand(0);
+  } else {
+    // This should be a IntToPtr constant expression.
+    ConstantExpr* PtrToIntExpr =
+        dyn_cast<ConstantExpr>(OrAddress->getOperand(1));
+    if (PtrToIntExpr && PtrToIntExpr->getOpcode() == Instruction::PtrToInt) {
+      return PtrToIntExpr->getOperand(0);
+    }
+  }
+
+  // Looks like it's not been dependence-tainted. Returns itself.
+  return CurrentAddress;
+}
+
+MemoryLocation GetUntaintedMemoryLocation(StoreInst* SI) {
+  AAMDNodes AATags;
+  SI->getAAMetadata(AATags);
+  const auto& DL = SI->getModule()->getDataLayout();
+  const auto* OriginalAddr = GetUntaintedAddress(SI->getPointerOperand());
+  DEBUG(if (OriginalAddr != SI->getPointerOperand()) {
+    dbgs() << "[GetUntaintedMemoryLocation]\n"
+           << "Storing address: " << *SI->getPointerOperand()
+           << "\nUntainted address: " << *OriginalAddr << "\n";
+  });
+  return MemoryLocation(OriginalAddr,
+                        DL.getTypeStoreSize(SI->getValueOperand()->getType()),
+                        AATags);
+}
+
+bool TaintDependenceToStore(StoreInst* SI, Value* DepVal) {
+  if (dependenceSetInclusion(SI, DepVal)) {
+    return false;
+  }
+
+  bool tainted = taintStoreAddress(SI, DepVal);
+  assert(tainted);
+  return tainted;
+}
+
+bool TaintDependenceToStoreAddress(StoreInst* SI, Value* DepVal) {
+  if (dependenceSetInclusion(SI->getPointerOperand(), DepVal)) {
+    return false;
+  }
+
+  bool tainted = taintStoreAddress(SI, DepVal);
+  assert(tainted);
+  return tainted;
+}
+
+bool CompressTaintedStore(BasicBlock* BB) {
+  // This function looks for windows of adajcent stores in 'BB' that satisfy the
+  // following condition (and then do optimization):
+  // *Addr(d1) = v1, d1 is a condition and is the only dependence the store's
+  //                 address depends on && Dep(v1) includes Dep(d1);
+  // *Addr(d2) = v2, d2 is a condition and is the only dependnece the store's
+  //                 address depends on && Dep(v2) includes Dep(d2) &&
+  //                 Dep(d2) includes Dep(d1);
+  // ...
+  // *Addr(dN) = vN, dN is a condition and is the only dependence the store's
+  //                 address depends on && Dep(dN) includes Dep(d"N-1").
+  //
+  // As a result, Dep(dN) includes [Dep(d1) V ... V Dep(d"N-1")], so we can
+  // safely transform the above to the following. In between these stores, we
+  // can omit untainted stores to the same address 'Addr' since they internally
+  // have dependence on the previous stores on the same address.
+  // =>
+  // *Addr = v1
+  // *Addr = v2
+  // *Addr(d3) = v3
+  for (auto BI = BB->begin(), BE = BB->end(); BI != BE; BI++) {
+    // Look for the first store in such a window of adajacent stores.
+    auto* FirstSI = dyn_cast<StoreInst>(&*BI);
+    if (!FirstSI) {
+      continue;
+    }
+
+    // The first store in the window must be tainted.
+    auto* UntaintedAddress = GetUntaintedAddress(FirstSI->getPointerOperand());
+    if (UntaintedAddress == FirstSI->getPointerOperand()) {
+      continue;
+    }
+
+    // The first store's address must directly depend on and only depend on a
+    // condition.
+    auto* FirstSIDepCond = getConditionDependence(FirstSI->getPointerOperand());
+    if (nullptr == FirstSIDepCond) {
+      continue;
+    }
+
+    // Dep(first store's storing value) includes Dep(tainted dependence).
+    if (!dependenceSetInclusion(FirstSI->getValueOperand(), FirstSIDepCond)) {
+      continue;
+    }
+
+    // Look for subsequent stores to the same address that satisfy the condition
+    // of "compressing the dependence".
+    SmallVector<StoreInst*, 8> AdajacentStores;
+    AdajacentStores.push_back(FirstSI);
+    auto BII = BasicBlock::iterator(FirstSI);
+    for (BII++; BII != BE; BII++) {
+      auto* CurrSI = dyn_cast<StoreInst>(&*BII);
+      if (!CurrSI) {
+        if (BII->mayHaveSideEffects()) {
+          // Be conservative. Instructions with side effects are similar to
+          // stores.
+          break;
+        }
+        continue;
+      }
+
+      auto* OrigAddress = GetUntaintedAddress(CurrSI->getPointerOperand());
+      auto* CurrSIDepCond = getConditionDependence(CurrSI->getPointerOperand());
+      // All other stores must satisfy either:
+      // A. 'CurrSI' is an untainted store to the same address, or
+      // B. the combination of the following 5 subconditions:
+      // 1. Tainted;
+      // 2. Untainted address is the same as the group's address;
+      // 3. The address is tainted with a sole value which is a condition;
+      // 4. The storing value depends on the condition in 3.
+      // 5. The condition in 3 depends on the previous stores dependence
+      // condition.
+
+      // Condition A. Should ignore this store directly.
+      if (OrigAddress == CurrSI->getPointerOperand() &&
+          OrigAddress == UntaintedAddress) {
+        continue;
+      }
+      // Check condition B.
+      Value* Cond = nullptr;
+      if (OrigAddress == CurrSI->getPointerOperand() ||
+          OrigAddress != UntaintedAddress || CurrSIDepCond == nullptr ||
+          !dependenceSetInclusion(CurrSI->getValueOperand(), CurrSIDepCond)) {
+        // Check condition 1, 2, 3 & 4.
+        break;
+      }
+
+      // Check condition 5.
+      StoreInst* PrevSI = AdajacentStores[AdajacentStores.size() - 1];
+      auto* PrevSIDepCond = getConditionDependence(PrevSI->getPointerOperand());
+      assert(PrevSIDepCond &&
+             "Store in the group must already depend on a condtion");
+      if (!dependenceSetInclusion(CurrSIDepCond, PrevSIDepCond)) {
+        break;
+      }
+
+      AdajacentStores.push_back(CurrSI);
+    }
+
+    if (AdajacentStores.size() == 1) {
+      // The outer loop should keep looking from the next store.
+      continue;
+    }
+
+    // Now we have such a group of tainted stores to the same address.
+    DEBUG(dbgs() << "[CompressTaintedStore]\n");
+    DEBUG(dbgs() << "Original BB\n");
+    DEBUG(dbgs() << *BB << '\n');
+    auto* LastSI = AdajacentStores[AdajacentStores.size() - 1];
+    for (unsigned i = 0; i < AdajacentStores.size() - 1; ++i) {
+      auto* SI = AdajacentStores[i];
+
+      // Use the original address for stores before the last one.
+      SI->setOperand(1, UntaintedAddress);
+
+      DEBUG(dbgs() << "Store address has been reversed: " << *SI << '\n';);
+    }
+    // XXX-comment: Try to make the last store use fewer registers.
+    // If LastSI's storing value is a select based on the condition with which
+    // its address is tainted, transform the tainted address to a select
+    // instruction, as follows:
+    // r1 = Select Cond ? A : B
+    // r2 = Cond & 0
+    // r3 = Addr | r2
+    // *r3 = r1
+    // ==>
+    // r1 = Select Cond ? A : B
+    // r2 = Select Cond ? Addr : Addr
+    // *r2 = r1
+    // The idea is that both Select instructions depend on the same condition,
+    // so hopefully the backend can generate two cmov instructions for them (and
+    // this saves the number of registers needed).
+    auto* LastSIDep = getConditionDependence(LastSI->getPointerOperand());
+    auto* LastSIValue = dyn_cast<Instruction>(LastSI->getValueOperand());
+    if (LastSIValue && LastSIValue->getOpcode() == Instruction::Select &&
+        LastSIValue->getOperand(0) == LastSIDep) {
+      // XXX-comment: Maybe it's better for us to just leave it as an and/or
+      // dependence pattern.
+      //      /*
+      IRBuilder<true, NoFolder> Builder(LastSI);
+      auto* Address =
+          Builder.CreateSelect(LastSIDep, UntaintedAddress, UntaintedAddress);
+      LastSI->setOperand(1, Address);
+      DEBUG(dbgs() << "The last store becomes :" << *LastSI << "\n\n";);
+      //      */
+    }
+  }
+
+  return true;
+}
+
+bool PassDependenceToStore(Value* OldAddress, StoreInst* NewStore) {
+  Value* OldDep = getDependence(OldAddress);
+  // Return false when there's no dependence to pass from the OldAddress.
+  if (!OldDep) {
+    return false;
+  }
+
+  // No need to pass the dependence to NewStore's address if it already depends
+  // on whatever 'OldAddress' depends on.
+  if (StoreAddressDependOnValue(NewStore, OldDep)) {
+    return false;
+  }
+  return taintStoreAddress(NewStore, OldAddress);
+}
+
+SmallSet<Value*, 8> FindDependence(Value* Val) {
+  SmallSet<Value*, 8> DepSet;
+  recursivelyFindDependence(&DepSet, Val, true /*Only insert leaf nodes*/);
+  return DepSet;
+}
+
+bool StoreAddressDependOnValue(StoreInst* SI, Value* DepVal) {
+  return dependenceSetInclusion(SI->getPointerOperand(), DepVal);
+}
+
+bool StoreDependOnValue(StoreInst* SI, Value* Dep) {
+  return dependenceSetInclusion(SI, Dep);
+}
+
+} // namespace
+
+
+
 bool CodeGenPrepare::runOnFunction(Function &F) {
+  bool EverMadeChange = false;
+
   if (skipOptnoneFunction(F))
     return false;
 
   DL = &F.getParent()->getDataLayout();
 
-  bool EverMadeChange = false;
   // Clear per function information.
   InsertedInsts.clear();
   PromotedInsts.clear();
@@ -218,6 +1229,7 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
     TLI = TM->getSubtargetImpl(F)->getTargetLowering();
   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   OptSize = F.optForSize();
 
   /// This optimization identifies DIV instructions that can be
@@ -317,6 +1329,29 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
       EverMadeChange |= simplifyOffsetableRelocate(*I);
   }
 
+  // XXX-comment: Delay dealing with relaxed loads in this function to avoid
+  // further changes done by other passes (e.g., SimplifyCFG).
+  // Collect all the relaxed loads.
+  SmallVector<LoadInst*, 1> MonotonicLoadInsts;
+  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
+    if (I->isAtomic()) {
+      switch (I->getOpcode()) {
+        case Instruction::Load: {
+          auto* LI = dyn_cast<LoadInst>(&*I);
+          if (LI->getOrdering() == Monotonic) {
+            MonotonicLoadInsts.push_back(LI);
+          }
+          break;
+        }
+        default: {
+          break;
+        }
+      }
+    }
+  }
+  EverMadeChange |=
+      AddFakeConditionalBranchAfterMonotonicLoads(MonotonicLoadInsts, DT);
+
   return EverMadeChange;
 }
 
@@ -363,7 +1398,6 @@ bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
   // Note that this intentionally skips the entry block.
   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
     BasicBlock *BB = &*I++;
-
     // If this block doesn't end with an uncond branch, ignore it.
     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
     if (!BI || !BI->isUnconditional())
@@ -411,7 +1445,7 @@ bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
       const Instruction *UI = cast<Instruction>(U);
       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
         return false;
-      // If User is inside DestBB block and it is a PHINode then check
+      // IfUser is inside DestBB block and it is a PHINode then check
       // incoming value. If incoming value is not from BB then this is
       // a complex condition (e.g. preheaders) we want to avoid here.
       if (UI->getParent() == DestBB) {