Create a wrapper pass for BranchProbabilityInfo.
[oota-llvm.git] / lib / Analysis / BranchProbabilityInfo.cpp
index 263ea2c26b06611d6b3d42c9f2683a7a6dab74ef..b813dca9369a029ccaba9d51bdd4800cceb03d52 100644 (file)
@@ -1,4 +1,4 @@
-//===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -*- C++ -*-===//
+//===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
 //
 //===----------------------------------------------------------------------===//
 
-#include "llvm/Instructions.h"
 #include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
 
 using namespace llvm;
 
-INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
+#define DEBUG_TYPE "branch-prob"
+
+INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
                       "Branch Probability Analysis", false, true)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
-INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
                     "Branch Probability Analysis", false, true)
 
-char BranchProbabilityInfo::ID = 0;
-
-namespace {
-// Please note that BranchProbabilityAnalysis is not a FunctionPass.
-// It is created by BranchProbabilityInfo (which is a FunctionPass), which
-// provides a clear interface. Thanks to that, all heuristics and other
-// private methods are hidden in the .cpp file.
-class BranchProbabilityAnalysis {
-
-  typedef std::pair<BasicBlock *, BasicBlock *> Edge;
-
-  DenseMap<Edge, uint32_t> *Weights;
-
-  BranchProbabilityInfo *BP;
-
-  LoopInfo *LI;
-
-
-  // Weights are for internal use only. They are used by heuristics to help to
-  // estimate edges' probability. Example:
-  //
-  // Using "Loop Branch Heuristics" we predict weights of edges for the
-  // block BB2.
-  //         ...
-  //          |
-  //          V
-  //         BB1<-+
-  //          |   |
-  //          |   | (Weight = 128)
-  //          V   |
-  //         BB2--+
-  //          |
-  //          | (Weight = 4)
-  //          V
-  //         BB3
-  //
-  // Probability of the edge BB2->BB1 = 128 / (128 + 4) = 0.9696..
-  // Probability of the edge BB2->BB3 = 4 / (128 + 4) = 0.0303..
-
-  static const uint32_t LBH_TAKEN_WEIGHT = 128;
-  static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
-
-  // Standard weight value. Used when none of the heuristics set weight for
-  // the edge.
-  static const uint32_t NORMAL_WEIGHT = 16;
-
-  // Minimum weight of an edge. Please note, that weight is NEVER 0.
-  static const uint32_t MIN_WEIGHT = 1;
-
-  // Return TRUE if BB leads directly to a Return Instruction.
-  static bool isReturningBlock(BasicBlock *BB) {
-    SmallPtrSet<BasicBlock *, 8> Visited;
-
-    while (true) {
-      TerminatorInst *TI = BB->getTerminator();
-      if (isa<ReturnInst>(TI))
-        return true;
-
-      if (TI->getNumSuccessors() > 1)
-        break;
-
-      // It is unreachable block which we can consider as a return instruction.
-      if (TI->getNumSuccessors() == 0)
-        return true;
-
-      Visited.insert(BB);
-      BB = TI->getSuccessor(0);
-
-      // Stop if cycle is detected.
-      if (Visited.count(BB))
-        return false;
-    }
+char BranchProbabilityInfoWrapperPass::ID = 0;
 
+// Weights are for internal use only. They are used by heuristics to help to
+// estimate edges' probability. Example:
+//
+// Using "Loop Branch Heuristics" we predict weights of edges for the
+// block BB2.
+//         ...
+//          |
+//          V
+//         BB1<-+
+//          |   |
+//          |   | (Weight = 124)
+//          V   |
+//         BB2--+
+//          |
+//          | (Weight = 4)
+//          V
+//         BB3
+//
+// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
+// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
+static const uint32_t LBH_TAKEN_WEIGHT = 124;
+static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
+
+/// \brief Unreachable-terminating branch taken weight.
+///
+/// This is the weight for a branch being taken to a block that terminates
+/// (eventually) in unreachable. These are predicted as unlikely as possible.
+static const uint32_t UR_TAKEN_WEIGHT = 1;
+
+/// \brief Unreachable-terminating branch not-taken weight.
+///
+/// This is the weight for a branch not being taken toward a block that
+/// terminates (eventually) in unreachable. Such a branch is essentially never
+/// taken. Set the weight to an absurdly high value so that nested loops don't
+/// easily subsume it.
+static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1;
+
+/// \brief Weight for a branch taken going into a cold block.
+///
+/// This is the weight for a branch taken toward a block marked
+/// cold.  A block is marked cold if it's postdominated by a
+/// block containing a call to a cold function.  Cold functions
+/// are those marked with attribute 'cold'.
+static const uint32_t CC_TAKEN_WEIGHT = 4;
+
+/// \brief Weight for a branch not-taken into a cold block.
+///
+/// This is the weight for a branch not taken toward a block marked
+/// cold.
+static const uint32_t CC_NONTAKEN_WEIGHT = 64;
+
+static const uint32_t PH_TAKEN_WEIGHT = 20;
+static const uint32_t PH_NONTAKEN_WEIGHT = 12;
+
+static const uint32_t ZH_TAKEN_WEIGHT = 20;
+static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
+
+static const uint32_t FPH_TAKEN_WEIGHT = 20;
+static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
+
+/// \brief Invoke-terminating normal branch taken weight
+///
+/// This is the weight for branching to the normal destination of an invoke
+/// instruction. We expect this to happen most of the time. Set the weight to an
+/// absurdly high value so that nested loops subsume it.
+static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
+
+/// \brief Invoke-terminating normal branch not-taken weight.
+///
+/// This is the weight for branching to the unwind destination of an invoke
+/// instruction. This is essentially never taken.
+static const uint32_t IH_NONTAKEN_WEIGHT = 1;
+
+// Standard weight value. Used when none of the heuristics set weight for
+// the edge.
+static const uint32_t NORMAL_WEIGHT = 16;
+
+// Minimum weight of an edge. Please note, that weight is NEVER 0.
+static const uint32_t MIN_WEIGHT = 1;
+
+/// \brief Calculate edge weights for successors lead to unreachable.
+///
+/// Predict that a successor which leads necessarily to an
+/// unreachable-terminated block as extremely unlikely.
+bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
+  TerminatorInst *TI = BB->getTerminator();
+  if (TI->getNumSuccessors() == 0) {
+    if (isa<UnreachableInst>(TI))
+      PostDominatedByUnreachable.insert(BB);
     return false;
   }
 
-  // Multiply Edge Weight by two.
-  void incEdgeWeight(BasicBlock *Src, BasicBlock *Dst) {
-    uint32_t Weight = BP->getEdgeWeight(Src, Dst);
-    uint32_t MaxWeight = getMaxWeightFor(Src);
+  SmallVector<unsigned, 4> UnreachableEdges;
+  SmallVector<unsigned, 4> ReachableEdges;
 
-    if (Weight * 2 > MaxWeight)
-      BP->setEdgeWeight(Src, Dst, MaxWeight);
+  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
+    if (PostDominatedByUnreachable.count(*I))
+      UnreachableEdges.push_back(I.getSuccessorIndex());
     else
-      BP->setEdgeWeight(Src, Dst, Weight * 2);
+      ReachableEdges.push_back(I.getSuccessorIndex());
   }
 
-  // Divide Edge Weight by two.
-  void decEdgeWeight(BasicBlock *Src, BasicBlock *Dst) {
-    uint32_t Weight = BP->getEdgeWeight(Src, Dst);
+  // If all successors are in the set of blocks post-dominated by unreachable,
+  // this block is too.
+  if (UnreachableEdges.size() == TI->getNumSuccessors())
+    PostDominatedByUnreachable.insert(BB);
 
-    assert(Weight > 0);
-    if (Weight / 2 < MIN_WEIGHT)
-      BP->setEdgeWeight(Src, Dst, MIN_WEIGHT);
-    else
-      BP->setEdgeWeight(Src, Dst, Weight / 2);
-  }
+  // Skip probabilities if this block has a single successor or if all were
+  // reachable.
+  if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
+    return false;
 
+  uint32_t UnreachableWeight =
+    std::max(UR_TAKEN_WEIGHT / (unsigned)UnreachableEdges.size(), MIN_WEIGHT);
+  for (SmallVectorImpl<unsigned>::iterator I = UnreachableEdges.begin(),
+                                           E = UnreachableEdges.end();
+       I != E; ++I)
+    setEdgeWeight(BB, *I, UnreachableWeight);
+
+  if (ReachableEdges.empty())
+    return true;
+  uint32_t ReachableWeight =
+    std::max(UR_NONTAKEN_WEIGHT / (unsigned)ReachableEdges.size(),
+             NORMAL_WEIGHT);
+  for (SmallVectorImpl<unsigned>::iterator I = ReachableEdges.begin(),
+                                           E = ReachableEdges.end();
+       I != E; ++I)
+    setEdgeWeight(BB, *I, ReachableWeight);
+
+  return true;
+}
 
-  uint32_t getMaxWeightFor(BasicBlock *BB) const {
-    return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
-  }
+// Propagate existing explicit probabilities from either profile data or
+// 'expect' intrinsic processing.
+bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) {
+  TerminatorInst *TI = BB->getTerminator();
+  if (TI->getNumSuccessors() == 1)
+    return false;
+  if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
+    return false;
 
-public:
-  BranchProbabilityAnalysis(DenseMap<Edge, uint32_t> *W,
-                            BranchProbabilityInfo *BP, LoopInfo *LI)
-    : Weights(W), BP(BP), LI(LI) {
-  }
+  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
+  if (!WeightsNode)
+    return false;
 
-  // Return Heuristics
-  void calcReturnHeuristics(BasicBlock *BB);
+  // Check that the number of successors is manageable.
+  assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
 
-  // Pointer Heuristics
-  void calcPointerHeuristics(BasicBlock *BB);
+  // Ensure there are weights for all of the successors. Note that the first
+  // operand to the metadata node is a name, not a weight.
+  if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
+    return false;
 
-  // Loop Branch Heuristics
-  void calcLoopBranchHeuristics(BasicBlock *BB);
+  // Build up the final weights that will be used in a temporary buffer.
+  // Compute the sum of all weights to later decide whether they need to
+  // be scaled to fit in 32 bits.
+  uint64_t WeightSum = 0;
+  SmallVector<uint32_t, 2> Weights;
+  Weights.reserve(TI->getNumSuccessors());
+  for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
+    ConstantInt *Weight =
+        mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
+    if (!Weight)
+      return false;
+    assert(Weight->getValue().getActiveBits() <= 32 &&
+           "Too many bits for uint32_t");
+    Weights.push_back(Weight->getZExtValue());
+    WeightSum += Weights.back();
+  }
+  assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
+
+  // If the sum of weights does not fit in 32 bits, scale every weight down
+  // accordingly.
+  uint64_t ScalingFactor =
+      (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
+
+  WeightSum = 0;
+  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
+    uint32_t W = Weights[i] / ScalingFactor;
+    WeightSum += W;
+    setEdgeWeight(BB, i, W);
+  }
+  assert(WeightSum <= UINT32_MAX &&
+         "Expected weights to scale down to 32 bits");
 
-  bool runOnFunction(Function &F);
-};
-} // end anonymous namespace
+  return true;
+}
 
-// Calculate Edge Weights using "Return Heuristics". Predict a successor which
-// leads directly to Return Instruction will not be taken.
-void BranchProbabilityAnalysis::calcReturnHeuristics(BasicBlock *BB){
-  if (BB->getTerminator()->getNumSuccessors() == 1)
-    return;
+/// \brief Calculate edge weights for edges leading to cold blocks.
+///
+/// A cold block is one post-dominated by  a block with a call to a
+/// cold function.  Those edges are unlikely to be taken, so we give
+/// them relatively low weight.
+///
+/// Return true if we could compute the weights for cold edges.
+/// Return false, otherwise.
+bool BranchProbabilityInfo::calcColdCallHeuristics(BasicBlock *BB) {
+  TerminatorInst *TI = BB->getTerminator();
+  if (TI->getNumSuccessors() == 0)
+    return false;
 
-  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
-    BasicBlock *Succ = *I;
-    if (isReturningBlock(Succ)) {
-      decEdgeWeight(BB, Succ);
-    }
+  // Determine which successors are post-dominated by a cold block.
+  SmallVector<unsigned, 4> ColdEdges;
+  SmallVector<unsigned, 4> NormalEdges;
+  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
+    if (PostDominatedByColdCall.count(*I))
+      ColdEdges.push_back(I.getSuccessorIndex());
+    else
+      NormalEdges.push_back(I.getSuccessorIndex());
+
+  // If all successors are in the set of blocks post-dominated by cold calls,
+  // this block is in the set post-dominated by cold calls.
+  if (ColdEdges.size() == TI->getNumSuccessors())
+    PostDominatedByColdCall.insert(BB);
+  else {
+    // Otherwise, if the block itself contains a cold function, add it to the
+    // set of blocks postdominated by a cold call.
+    assert(!PostDominatedByColdCall.count(BB));
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+      if (CallInst *CI = dyn_cast<CallInst>(I))
+        if (CI->hasFnAttr(Attribute::Cold)) {
+          PostDominatedByColdCall.insert(BB);
+          break;
+        }
   }
+
+  // Skip probabilities if this block has a single successor.
+  if (TI->getNumSuccessors() == 1 || ColdEdges.empty())
+    return false;
+
+  uint32_t ColdWeight =
+      std::max(CC_TAKEN_WEIGHT / (unsigned) ColdEdges.size(), MIN_WEIGHT);
+  for (SmallVectorImpl<unsigned>::iterator I = ColdEdges.begin(),
+                                           E = ColdEdges.end();
+       I != E; ++I)
+    setEdgeWeight(BB, *I, ColdWeight);
+
+  if (NormalEdges.empty())
+    return true;
+  uint32_t NormalWeight = std::max(
+      CC_NONTAKEN_WEIGHT / (unsigned) NormalEdges.size(), NORMAL_WEIGHT);
+  for (SmallVectorImpl<unsigned>::iterator I = NormalEdges.begin(),
+                                           E = NormalEdges.end();
+       I != E; ++I)
+    setEdgeWeight(BB, *I, NormalWeight);
+
+  return true;
 }
 
 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
 // between two pointer or pointer and NULL will fail.
-void BranchProbabilityAnalysis::calcPointerHeuristics(BasicBlock *BB) {
+bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) {
   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
   if (!BI || !BI->isConditional())
-    return;
+    return false;
 
   Value *Cond = BI->getCondition();
   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
-  if (!CI)
-    return;
+  if (!CI || !CI->isEquality())
+    return false;
 
   Value *LHS = CI->getOperand(0);
 
   if (!LHS->getType()->isPointerTy())
-    return;
+    return false;
 
   assert(CI->getOperand(1)->getType()->isPointerTy());
 
-  BasicBlock *Taken = BI->getSuccessor(0);
-  BasicBlock *NonTaken = BI->getSuccessor(1);
-
   // p != 0   ->   isProb = true
   // p == 0   ->   isProb = false
   // p != q   ->   isProb = true
   // p == q   ->   isProb = false;
-  bool isProb = !CI->isEquality();
+  unsigned TakenIdx = 0, NonTakenIdx = 1;
+  bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
   if (!isProb)
-    std::swap(Taken, NonTaken);
+    std::swap(TakenIdx, NonTakenIdx);
 
-  incEdgeWeight(BB, Taken);
-  decEdgeWeight(BB, NonTaken);
+  setEdgeWeight(BB, TakenIdx, PH_TAKEN_WEIGHT);
+  setEdgeWeight(BB, NonTakenIdx, PH_NONTAKEN_WEIGHT);
+  return true;
 }
 
 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
 // as taken, exiting edges as not-taken.
-void BranchProbabilityAnalysis::calcLoopBranchHeuristics(BasicBlock *BB) {
-  uint32_t numSuccs = BB->getTerminator()->getNumSuccessors();
-
-  Loop *L = LI->getLoopFor(BB);
+bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB,
+                                                     const LoopInfo &LI) {
+  Loop *L = LI.getLoopFor(BB);
   if (!L)
-    return;
+    return false;
 
-  SmallVector<BasicBlock *, 8> BackEdges;
-  SmallVector<BasicBlock *, 8> ExitingEdges;
+  SmallVector<unsigned, 8> BackEdges;
+  SmallVector<unsigned, 8> ExitingEdges;
+  SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
 
   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
-    BasicBlock *Succ = *I;
-    Loop *SuccL = LI->getLoopFor(Succ);
-    if (SuccL != L)
-      ExitingEdges.push_back(Succ);
-    else if (Succ == L->getHeader())
-      BackEdges.push_back(Succ);
+    if (!L->contains(*I))
+      ExitingEdges.push_back(I.getSuccessorIndex());
+    else if (L->getHeader() == *I)
+      BackEdges.push_back(I.getSuccessorIndex());
+    else
+      InEdges.push_back(I.getSuccessorIndex());
   }
 
+  if (BackEdges.empty() && ExitingEdges.empty())
+    return false;
+
   if (uint32_t numBackEdges = BackEdges.size()) {
     uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
     if (backWeight < NORMAL_WEIGHT)
       backWeight = NORMAL_WEIGHT;
 
-    for (SmallVector<BasicBlock *, 8>::iterator EI = BackEdges.begin(),
+    for (SmallVectorImpl<unsigned>::iterator EI = BackEdges.begin(),
          EE = BackEdges.end(); EI != EE; ++EI) {
-      BasicBlock *Back = *EI;
-      BP->setEdgeWeight(BB, Back, backWeight);
+      setEdgeWeight(BB, *EI, backWeight);
+    }
+  }
+
+  if (uint32_t numInEdges = InEdges.size()) {
+    uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
+    if (inWeight < NORMAL_WEIGHT)
+      inWeight = NORMAL_WEIGHT;
+
+    for (SmallVectorImpl<unsigned>::iterator EI = InEdges.begin(),
+         EE = InEdges.end(); EI != EE; ++EI) {
+      setEdgeWeight(BB, *EI, inWeight);
     }
   }
 
-  uint32_t numExitingEdges = ExitingEdges.size();
-  if (uint32_t numNonExitingEdges = numSuccs - numExitingEdges) {
-    uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numNonExitingEdges;
+  if (uint32_t numExitingEdges = ExitingEdges.size()) {
+    uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges;
     if (exitWeight < MIN_WEIGHT)
       exitWeight = MIN_WEIGHT;
 
-    for (SmallVector<BasicBlock *, 8>::iterator EI = ExitingEdges.begin(),
+    for (SmallVectorImpl<unsigned>::iterator EI = ExitingEdges.begin(),
          EE = ExitingEdges.end(); EI != EE; ++EI) {
-      BasicBlock *Exiting = *EI;
-      BP->setEdgeWeight(BB, Exiting, exitWeight);
+      setEdgeWeight(BB, *EI, exitWeight);
     }
   }
+
+  return true;
 }
 
-bool BranchProbabilityAnalysis::runOnFunction(Function &F) {
+bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) {
+  BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
+  if (!BI || !BI->isConditional())
+    return false;
 
-  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
-    BasicBlock *BB = I++;
+  Value *Cond = BI->getCondition();
+  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
+  if (!CI)
+    return false;
 
-    // Only LBH uses setEdgeWeight method.
-    calcLoopBranchHeuristics(BB);
+  Value *RHS = CI->getOperand(1);
+  ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
+  if (!CV)
+    return false;
 
-    // PH and RH use only incEdgeWeight and decEwdgeWeight methods to
-    // not efface LBH results.
-    calcPointerHeuristics(BB);
-    calcReturnHeuristics(BB);
+  // If the LHS is the result of AND'ing a value with a single bit bitmask,
+  // we don't have information about probabilities.
+  if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
+    if (LHS->getOpcode() == Instruction::And)
+      if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
+        if (AndRHS->getUniqueInteger().isPowerOf2())
+          return false;
+
+  bool isProb;
+  if (CV->isZero()) {
+    switch (CI->getPredicate()) {
+    case CmpInst::ICMP_EQ:
+      // X == 0   ->  Unlikely
+      isProb = false;
+      break;
+    case CmpInst::ICMP_NE:
+      // X != 0   ->  Likely
+      isProb = true;
+      break;
+    case CmpInst::ICMP_SLT:
+      // X < 0   ->  Unlikely
+      isProb = false;
+      break;
+    case CmpInst::ICMP_SGT:
+      // X > 0   ->  Likely
+      isProb = true;
+      break;
+    default:
+      return false;
+    }
+  } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
+    // InstCombine canonicalizes X <= 0 into X < 1.
+    // X <= 0   ->  Unlikely
+    isProb = false;
+  } else if (CV->isAllOnesValue()) {
+    switch (CI->getPredicate()) {
+    case CmpInst::ICMP_EQ:
+      // X == -1  ->  Unlikely
+      isProb = false;
+      break;
+    case CmpInst::ICMP_NE:
+      // X != -1  ->  Likely
+      isProb = true;
+      break;
+    case CmpInst::ICMP_SGT:
+      // InstCombine canonicalizes X >= 0 into X > -1.
+      // X >= 0   ->  Likely
+      isProb = true;
+      break;
+    default:
+      return false;
+    }
+  } else {
+    return false;
   }
 
-  return false;
-}
+  unsigned TakenIdx = 0, NonTakenIdx = 1;
+
+  if (!isProb)
+    std::swap(TakenIdx, NonTakenIdx);
 
+  setEdgeWeight(BB, TakenIdx, ZH_TAKEN_WEIGHT);
+  setEdgeWeight(BB, NonTakenIdx, ZH_NONTAKEN_WEIGHT);
 
-bool BranchProbabilityInfo::runOnFunction(Function &F) {
-  LoopInfo &LI = getAnalysis<LoopInfo>();
-  BranchProbabilityAnalysis BPA(&Weights, this, &LI);
-  return BPA.runOnFunction(F);
+  return true;
 }
 
-uint32_t BranchProbabilityInfo::getSumForBlock(BasicBlock *BB) const {
-  uint32_t Sum = 0;
+bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) {
+  BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+  if (!BI || !BI->isConditional())
+    return false;
 
-  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
-    BasicBlock *Succ = *I;
-    uint32_t Weight = getEdgeWeight(BB, Succ);
-    uint32_t PrevSum = Sum;
+  Value *Cond = BI->getCondition();
+  FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
+  if (!FCmp)
+    return false;
 
-    Sum += Weight;
-    assert(Sum > PrevSum); (void) PrevSum;
+  bool isProb;
+  if (FCmp->isEquality()) {
+    // f1 == f2 -> Unlikely
+    // f1 != f2 -> Likely
+    isProb = !FCmp->isTrueWhenEqual();
+  } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
+    // !isnan -> Likely
+    isProb = true;
+  } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
+    // isnan -> Unlikely
+    isProb = false;
+  } else {
+    return false;
   }
 
-  return Sum;
+  unsigned TakenIdx = 0, NonTakenIdx = 1;
+
+  if (!isProb)
+    std::swap(TakenIdx, NonTakenIdx);
+
+  setEdgeWeight(BB, TakenIdx, FPH_TAKEN_WEIGHT);
+  setEdgeWeight(BB, NonTakenIdx, FPH_NONTAKEN_WEIGHT);
+
+  return true;
+}
+
+bool BranchProbabilityInfo::calcInvokeHeuristics(BasicBlock *BB) {
+  InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
+  if (!II)
+    return false;
+
+  setEdgeWeight(BB, 0/*Index for Normal*/, IH_TAKEN_WEIGHT);
+  setEdgeWeight(BB, 1/*Index for Unwind*/, IH_NONTAKEN_WEIGHT);
+  return true;
+}
+
+void BranchProbabilityInfo::releaseMemory() {
+  Weights.clear();
 }
 
-uint32_t BranchProbabilityInfo::getBackSumForBlock(BasicBlock *BB) const {
+void BranchProbabilityInfo::print(raw_ostream &OS) const {
+  OS << "---- Branch Probabilities ----\n";
+  // We print the probabilities from the last function the analysis ran over,
+  // or the function it is currently running over.
+  assert(LastF && "Cannot print prior to running over a function");
+  for (Function::const_iterator BI = LastF->begin(), BE = LastF->end();
+       BI != BE; ++BI) {
+    for (succ_const_iterator SI = succ_begin(BI), SE = succ_end(BI);
+         SI != SE; ++SI) {
+      printEdgeProbability(OS << "  ", BI, *SI);
+    }
+  }
+}
+
+uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
   uint32_t Sum = 0;
 
-  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
-    BasicBlock *Pred = *I;
-    uint32_t Weight = getEdgeWeight(Pred, BB);
+  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
+    uint32_t Weight = getEdgeWeight(BB, I.getSuccessorIndex());
     uint32_t PrevSum = Sum;
 
     Sum += Weight;
-    assert(Sum > PrevSum); (void) PrevSum;
+    assert(Sum >= PrevSum); (void) PrevSum;
   }
 
   return Sum;
 }
 
-bool BranchProbabilityInfo::isEdgeHot(BasicBlock *Src, BasicBlock *Dst) const {
+bool BranchProbabilityInfo::
+isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
   // Hot probability is at least 4/5 = 80%
-  uint32_t Weight = getEdgeWeight(Src, Dst);
-  uint32_t Sum = getSumForBlock(Src);
-
-  // FIXME: Implement BranchProbability::compare then change this code to
-  // compare this BranchProbability against a static "hot" BranchProbability.
-  return (uint64_t)Weight * 5 > (uint64_t)Sum * 4;
+  // FIXME: Compare against a static "hot" BranchProbability.
+  return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
 }
 
 BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
   uint32_t Sum = 0;
   uint32_t MaxWeight = 0;
-  BasicBlock *MaxSucc = 0;
+  BasicBlock *MaxSucc = nullptr;
 
   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
     BasicBlock *Succ = *I;
@@ -323,18 +563,20 @@ BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
     }
   }
 
-  // FIXME: Use BranchProbability::compare.
-  if ((uint64_t)MaxWeight * 5 > (uint64_t)Sum * 4)
+  // Hot probability is at least 4/5 = 80%
+  if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5))
     return MaxSucc;
 
-  return 0;
+  return nullptr;
 }
 
-// Return edge's weight. If can't find it, return DEFAULT_WEIGHT value.
-uint32_t
-BranchProbabilityInfo::getEdgeWeight(BasicBlock *Src, BasicBlock *Dst) const {
-  Edge E(Src, Dst);
-  DenseMap<Edge, uint32_t>::const_iterator I = Weights.find(E);
+/// Get the raw edge weight for the edge. If can't find it, return
+/// DEFAULT_WEIGHT value. Here an edge is specified using PredBlock and an index
+/// to the successors.
+uint32_t BranchProbabilityInfo::
+getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const {
+  DenseMap<Edge, uint32_t>::const_iterator I =
+      Weights.find(std::make_pair(Src, IndexInSuccessors));
 
   if (I != Weights.end())
     return I->second;
@@ -342,41 +584,120 @@ BranchProbabilityInfo::getEdgeWeight(BasicBlock *Src, BasicBlock *Dst) const {
   return DEFAULT_WEIGHT;
 }
 
-void BranchProbabilityInfo::setEdgeWeight(BasicBlock *Src, BasicBlock *Dst,
-                                     uint32_t Weight) {
-  Weights[std::make_pair(Src, Dst)] = Weight;
-  DEBUG(dbgs() << "set edge " << Src->getNameStr() << " -> "
-               << Dst->getNameStr() << " weight to " << Weight
-               << (isEdgeHot(Src, Dst) ? " [is HOT now]\n" : "\n"));
+uint32_t BranchProbabilityInfo::getEdgeWeight(const BasicBlock *Src,
+                                              succ_const_iterator Dst) const {
+  return getEdgeWeight(Src, Dst.getSuccessorIndex());
 }
 
+/// Get the raw edge weight calculated for the block pair. This returns the sum
+/// of all raw edge weights from Src to Dst.
+uint32_t BranchProbabilityInfo::
+getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const {
+  uint32_t Weight = 0;
+  bool FoundWeight = false;
+  DenseMap<Edge, uint32_t>::const_iterator MapI;
+  for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
+    if (*I == Dst) {
+      MapI = Weights.find(std::make_pair(Src, I.getSuccessorIndex()));
+      if (MapI != Weights.end()) {
+        FoundWeight = true;
+        Weight += MapI->second;
+      }
+    }
+  return (!FoundWeight) ? DEFAULT_WEIGHT : Weight;
+}
 
-BranchProbability BranchProbabilityInfo::
-getEdgeProbability(BasicBlock *Src, BasicBlock *Dst) const {
+/// Set the edge weight for a given edge specified by PredBlock and an index
+/// to the successors.
+void BranchProbabilityInfo::
+setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors,
+              uint32_t Weight) {
+  Weights[std::make_pair(Src, IndexInSuccessors)] = Weight;
+  DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
+               << IndexInSuccessors << " successor weight to "
+               << Weight << "\n");
+}
 
-  uint32_t N = getEdgeWeight(Src, Dst);
+/// Get an edge's probability, relative to other out-edges from Src.
+BranchProbability BranchProbabilityInfo::
+getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const {
+  uint32_t N = getEdgeWeight(Src, IndexInSuccessors);
   uint32_t D = getSumForBlock(Src);
 
   return BranchProbability(N, D);
 }
 
+/// Get the probability of going from Src to Dst. It returns the sum of all
+/// probabilities for edges from Src to Dst.
 BranchProbability BranchProbabilityInfo::
-getBackEdgeProbability(BasicBlock *Src, BasicBlock *Dst) const {
+getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const {
 
   uint32_t N = getEdgeWeight(Src, Dst);
-  uint32_t D = getBackSumForBlock(Dst);
+  uint32_t D = getSumForBlock(Src);
 
   return BranchProbability(N, D);
 }
 
 raw_ostream &
-BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, BasicBlock *Src,
-                                            BasicBlock *Dst) const {
+BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
+                                            const BasicBlock *Src,
+                                            const BasicBlock *Dst) const {
 
   const BranchProbability Prob = getEdgeProbability(Src, Dst);
-  OS << "edge " << Src->getNameStr() << " -> " << Dst->getNameStr()
+  OS << "edge " << Src->getName() << " -> " << Dst->getName()
      << " probability is " << Prob
      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
 
   return OS;
 }
+
+void BranchProbabilityInfo::calculate(Function &F, const LoopInfo& LI) {
+  DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
+               << " ----\n\n");
+  LastF = &F; // Store the last function we ran on for printing.
+  assert(PostDominatedByUnreachable.empty());
+  assert(PostDominatedByColdCall.empty());
+
+  // Walk the basic blocks in post-order so that we can build up state about
+  // the successors of a block iteratively.
+  for (auto BB : post_order(&F.getEntryBlock())) {
+    DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
+    if (calcUnreachableHeuristics(BB))
+      continue;
+    if (calcMetadataWeights(BB))
+      continue;
+    if (calcColdCallHeuristics(BB))
+      continue;
+    if (calcLoopBranchHeuristics(BB, LI))
+      continue;
+    if (calcPointerHeuristics(BB))
+      continue;
+    if (calcZeroHeuristics(BB))
+      continue;
+    if (calcFloatingPointHeuristics(BB))
+      continue;
+    calcInvokeHeuristics(BB);
+  }
+
+  PostDominatedByUnreachable.clear();
+  PostDominatedByColdCall.clear();
+}
+
+void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
+    AnalysisUsage &AU) const {
+  AU.addRequired<LoopInfoWrapperPass>();
+  AU.setPreservesAll();
+}
+
+bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
+  const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+  BPI.calculate(F, LI);
+  return false;
+}
+
+void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
+
+void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
+                                             const Module *) const {
+  BPI.print(OS);
+}