[Docs] Fix Sphinx warning
[oota-llvm.git] / docs / ExceptionHandling.rst
index 89bac95f48c2ee014a935c10f55eb95c22bf1580..a90f7be9d71c335b94bf701c5624d9680fc0ecf9 100644 (file)
@@ -64,6 +64,14 @@ handling at the expense of slower execution when no exceptions are thrown. As
 exceptions are, by their nature, intended for uncommon code paths, DWARF
 exception handling is generally preferred to SJLJ.
 
+Windows Runtime Exception Handling
+-----------------------------------
+
+LLVM supports handling exceptions produced by the Windows runtime, but it
+requires a very different intermediate representation. It is not based on the
+":ref:`landingpad <i_landingpad>`" instruction like the other two models, and is
+described later in this document under :ref:`wineh`.
+
 Overview
 --------
 
@@ -142,7 +150,7 @@ continuation points:
 #. where to continue if the call raises an exception, either by a throw or the
    unwinding of a throw
 
-The term used to define the place where an ``invoke`` continues after an
+The term used to define the place where an ``invoke`` continues after an
 exception is called a *landing pad*. LLVM landing pads are conceptually
 alternative function entry points where an exception structure reference and a
 type info index are passed in as arguments. The landing pad saves the exception
@@ -157,12 +165,61 @@ the *selector value* respectively.
 The ``landingpad`` instruction takes a reference to the personality function to
 be used for this ``try``/``catch`` sequence. The remainder of the instruction is
 a list of *cleanup*, *catch*, and *filter* clauses. The exception is tested
-against the clauses sequentially from first to last. The selector value is a
-positive number if the exception matched a type info, a negative number if it
-matched a filter, and zero if it matched a cleanup. If nothing is matched, the
-behavior of the program is `undefined`_. If a type info matched, then the
-selector value is the index of the type info in the exception table, which can
-be obtained using the `llvm.eh.typeid.for`_ intrinsic.
+against the clauses sequentially from first to last. The clauses have the
+following meanings:
+
+-  ``catch <type> @ExcType``
+
+   - This clause means that the landingpad block should be entered if the
+     exception being thrown is of type ``@ExcType`` or a subtype of
+     ``@ExcType``. For C++, ``@ExcType`` is a pointer to the ``std::type_info``
+     object (an RTTI object) representing the C++ exception type.
+
+   - If ``@ExcType`` is ``null``, any exception matches, so the landingpad
+     should always be entered. This is used for C++ catch-all blocks ("``catch
+     (...)``").
+
+   - When this clause is matched, the selector value will be equal to the value
+     returned by "``@llvm.eh.typeid.for(i8* @ExcType)``". This will always be a
+     positive value.
+
+-  ``filter <type> [<type> @ExcType1, ..., <type> @ExcTypeN]``
+
+   - This clause means that the landingpad should be entered if the exception
+     being thrown does *not* match any of the types in the list (which, for C++,
+     are again specified as ``std::type_info`` pointers).
+
+   - C++ front-ends use this to implement C++ exception specifications, such as
+     "``void foo() throw (ExcType1, ..., ExcTypeN) { ... }``".
+
+   - When this clause is matched, the selector value will be negative.
+
+   - The array argument to ``filter`` may be empty; for example, "``[0 x i8**]
+     undef``". This means that the landingpad should always be entered. (Note
+     that such a ``filter`` would not be equivalent to "``catch i8* null``",
+     because ``filter`` and ``catch`` produce negative and positive selector
+     values respectively.)
+
+-  ``cleanup``
+
+   - This clause means that the landingpad should always be entered.
+
+   - C++ front-ends use this for calling objects' destructors.
+
+   - When this clause is matched, the selector value will be zero.
+
+   - The runtime may treat "``cleanup``" differently from "``catch <type>
+     null``".
+
+     In C++, if an unhandled exception occurs, the language runtime will call
+     ``std::terminate()``, but it is implementation-defined whether the runtime
+     unwinds the stack and calls object destructors first. For example, the GNU
+     C++ unwinder does not call object destructors when an unhandled exception
+     occurs. The reason for this is to improve debuggability: it ensures that
+     ``std::terminate()`` is called from the context of the ``throw``, so that
+     this context is not lost by unwinding the stack. A runtime will typically
+     implement this by searching for a matching non-``cleanup`` clause, and
+     aborting if it does not find one, before entering any landingpad blocks.
 
 Once the landing pad has the type info selector, the code branches to the code
 for the first catch. The catch then checks the value of the type info selector
@@ -214,9 +271,9 @@ there are no catches or filters that require it to.
   exceptions and throws a third.
 
 When all cleanups are finished, if the exception is not handled by the current
-function, resume unwinding by calling the `resume
-instruction <LangRef.html#i_resume>`_, passing in the result of the
-``landingpad`` instruction for the original landing pad.
+function, resume unwinding by calling the :ref:`resume instruction <i_resume>`,
+passing in the result of the ``landingpad`` instruction for the original
+landing pad.
 
 Throw Filters
 -------------
@@ -266,8 +323,8 @@ handling information at various points in generated code.
 
 .. _llvm.eh.typeid.for:
 
-llvm.eh.typeid.for
-------------------
+``llvm.eh.typeid.for``
+----------------------
 
 .. code-block:: llvm
 
@@ -278,10 +335,97 @@ This intrinsic returns the type info index in the exception table of the current
 function.  This value can be used to compare against the result of
 ``landingpad`` instruction.  The single argument is a reference to a type info.
 
+Uses of this intrinsic are generated by the C++ front-end.
+
+.. _llvm.eh.begincatch:
+
+``llvm.eh.begincatch``
+----------------------
+
+.. code-block:: llvm
+
+  void @llvm.eh.begincatch(i8* %ehptr, i8* %ehobj)
+
+
+This intrinsic marks the beginning of catch handling code within the blocks
+following a ``landingpad`` instruction.  The exact behavior of this function
+depends on the compilation target and the personality function associated
+with the ``landingpad`` instruction.
+
+The first argument to this intrinsic is a pointer that was previously extracted
+from the aggregate return value of the ``landingpad`` instruction.  The second
+argument to the intrinsic is a pointer to stack space where the exception object
+should be stored. The runtime handles the details of copying the exception
+object into the slot. If the second parameter is null, no copy occurs.
+
+Uses of this intrinsic are generated by the C++ front-end.  Many targets will
+use implementation-specific functions (such as ``__cxa_begin_catch``) instead
+of this intrinsic.  The intrinsic is provided for targets that require a more
+abstract interface.
+
+When used in the native Windows C++ exception handling implementation, this
+intrinsic serves as a placeholder to delimit code before a catch handler is
+outlined.  When the handler is is outlined, this intrinsic will be replaced
+by instructions that retrieve the exception object pointer from the frame
+allocation block.
+
+
+.. _llvm.eh.endcatch:
+
+``llvm.eh.endcatch``
+----------------------
+
+.. code-block:: llvm
+
+  void @llvm.eh.endcatch()
+
+
+This intrinsic marks the end of catch handling code within the current block,
+which will be a successor of a block which called ``llvm.eh.begincatch''.
+The exact behavior of this function depends on the compilation target and the
+personality function associated with the corresponding ``landingpad``
+instruction.
+
+There may be more than one call to ``llvm.eh.endcatch`` for any given call to
+``llvm.eh.begincatch`` with each ``llvm.eh.endcatch`` call corresponding to the
+end of a different control path.  All control paths following a call to
+``llvm.eh.begincatch`` must reach a call to ``llvm.eh.endcatch``.
+
+Uses of this intrinsic are generated by the C++ front-end.  Many targets will
+use implementation-specific functions (such as ``__cxa_begin_catch``) instead
+of this intrinsic.  The intrinsic is provided for targets that require a more
+abstract interface.
+
+When used in the native Windows C++ exception handling implementation, this
+intrinsic serves as a placeholder to delimit code before a catch handler is
+outlined.  After the handler is outlined, this intrinsic is simply removed.
+
+
+.. _llvm.eh.exceptionpointer:
+
+``llvm.eh.exceptionpointer``
+----------------------------
+
+.. code-block:: llvm
+
+  i8 addrspace(N)* @llvm.eh.padparam.pNi8(token %catchpad)
+
+
+This intrinsic retrieves a pointer to the exception caught by the given
+``catchpad``.
+
+
+SJLJ Intrinsics
+---------------
+
+The ``llvm.eh.sjlj`` intrinsics are used internally within LLVM's
+backend.  Uses of them are generated by the backend's
+``SjLjEHPrepare`` pass.
+
 .. _llvm.eh.sjlj.setjmp:
 
-llvm.eh.sjlj.setjmp
--------------------
+``llvm.eh.sjlj.setjmp``
+~~~~~~~~~~~~~~~~~~~~~~~
 
 .. code-block:: llvm
 
@@ -302,8 +446,8 @@ available for use in a target-specific manner.
 
 .. _llvm.eh.sjlj.longjmp:
 
-llvm.eh.sjlj.longjmp
---------------------
+``llvm.eh.sjlj.longjmp``
+~~~~~~~~~~~~~~~~~~~~~~~~
 
 .. code-block:: llvm
 
@@ -315,8 +459,8 @@ a buffer populated by `llvm.eh.sjlj.setjmp`_. The frame pointer and stack
 pointer are restored from the buffer, then control is transferred to the
 destination address.
 
-llvm.eh.sjlj.lsda
------------------
+``llvm.eh.sjlj.lsda``
+~~~~~~~~~~~~~~~~~~~~~
 
 .. code-block:: llvm
 
@@ -327,8 +471,8 @@ the address of the Language Specific Data Area (LSDA) for the current
 function. The SJLJ front-end code stores this address in the exception handling
 function context for use by the runtime.
 
-llvm.eh.sjlj.callsite
----------------------
+``llvm.eh.sjlj.callsite``
+~~~~~~~~~~~~~~~~~~~~~~~~~
 
 .. code-block:: llvm
 
@@ -355,10 +499,228 @@ an exception handling frame for each function in a compile unit, plus a common
 exception handling frame that defines information common to all functions in the
 unit.
 
+The format of this call frame information (CFI) is often platform-dependent,
+however. ARM, for example, defines their own format. Apple has their own compact
+unwind info format.  On Windows, another format is used for all architectures
+since 32-bit x86.  LLVM will emit whatever information is required by the
+target.
+
 Exception Tables
 ----------------
 
 An exception table contains information about what actions to take when an
-exception is thrown in a particular part of a function's code. There is one
-exception table per function, except leaf functions and functions that have
-calls only to non-throwing functions. They do not need an exception table.
+exception is thrown in a particular part of a function's code. This is typically
+referred to as the language-specific data area (LSDA). The format of the LSDA
+table is specific to the personality function, but the majority of personalities
+out there use a variation of the tables consumed by ``__gxx_personality_v0``.
+There is one exception table per function, except leaf functions and functions
+that have calls only to non-throwing functions. They do not need an exception
+table.
+
+.. _wineh:
+
+Exception Handling using the Windows Runtime
+=================================================
+
+(Note: Windows C++ exception handling support is a work in progress and is not
+yet fully implemented.  The text below describes how it will work when
+completed.)
+
+Background on Windows exceptions
+---------------------------------
+
+Interacting with exceptions on Windows is significantly more complicated than on
+Itanium C++ ABI platforms. The fundamental difference between the two models is
+that Itanium EH is designed around the idea of "successive unwinding," while
+Windows EH is not.
+
+Under Itanium, throwing an exception typically involes allocating thread local
+memory to hold the exception, and calling into the EH runtime. The runtime
+identifies frames with appropriate exception handling actions, and successively
+resets the register context of the current thread to the most recently active
+frame with actions to run. In LLVM, execution resumes at a ``landingpad``
+instruction, which produces register values provided by the runtime. If a
+function is only cleaning up allocated resources, the function is responsible
+for calling ``_Unwind_Resume`` to transition to the next most recently active
+frame after it is finished cleaning up. Eventually, the frame responsible for
+handling the exception calls ``__cxa_end_catch`` to destroy the exception,
+release its memory, and resume normal control flow.
+
+The Windows EH model does not use these successive register context resets.
+Instead, the active exception is typically described by a frame on the stack.
+In the case of C++ exceptions, the exception object is allocated in stack memory
+and its address is passed to ``__CxxThrowException``. General purpose structured
+exceptions (SEH) are more analogous to Linux signals, and they are dispatched by
+userspace DLLs provided with Windows. Each frame on the stack has an assigned EH
+personality routine, which decides what actions to take to handle the exception.
+There are a few major personalities for C and C++ code: the C++ personality
+(``__CxxFrameHandler3``) and the SEH personalities (``_except_handler3``,
+``_except_handler4``, and ``__C_specific_handler``). All of them implement
+cleanups by calling back into a "funclet" contained in the parent function.
+
+Funclets, in this context, are regions of the parent function that can be called
+as though they were a function pointer with a very special calling convention.
+The frame pointer of the parent frame is passed into the funclet either using
+the standard EBP register or as the first parameter register, depending on the
+architecture. The funclet implements the EH action by accessing local variables
+in memory through the frame pointer, and returning some appropriate value,
+continuing the EH process.  No variables live in to or out of the funclet can be
+allocated in registers.
+
+The C++ personality also uses funclets to contain the code for catch blocks
+(i.e. all user code between the braces in ``catch (Type obj) { ... }``). The
+runtime must use funclets for catch bodies because the C++ exception object is
+allocated in a child stack frame of the function handling the exception. If the
+runtime rewound the stack back to frame of the catch, the memory holding the
+exception would be overwritten quickly by subsequent function calls.  The use of
+funclets also allows ``__CxxFrameHandler3`` to implement rethrow without
+resorting to TLS. Instead, the runtime throws a special exception, and then uses
+SEH (``__try / __except``) to resume execution with new information in the child
+frame.
+
+In other words, the successive unwinding approach is incompatible with Visual
+C++ exceptions and general purpose Windows exception handling. Because the C++
+exception object lives in stack memory, LLVM cannot provide a custom personality
+function that uses landingpads.  Similarly, SEH does not provide any mechanism
+to rethrow an exception or continue unwinding.  Therefore, LLVM must use the IR
+constructs described later in this document to implement compatible exception
+handling.
+
+SEH filter expressions
+-----------------------
+
+The SEH personality functions also use funclets to implement filter expressions,
+which allow executing arbitrary user code to decide which exceptions to catch.
+Filter expressions should not be confused with the ``filter`` clause of the LLVM
+``landingpad`` instruction.  Typically filter expressions are used to determine
+if the exception came from a particular DLL or code region, or if code faulted
+while accessing a particular memory address range. LLVM does not currently have
+IR to represent filter expressions because it is difficult to represent their
+control dependencies.  Filter expressions run during the first phase of EH,
+before cleanups run, making it very difficult to build a faithful control flow
+graph.  For now, the new EH instructions cannot represent SEH filter
+expressions, and frontends must outline them ahead of time. Local variables of
+the parent function can be escaped and accessed using the ``llvm.localescape``
+and ``llvm.localrecover`` intrinsics.
+
+New exception handling instructions
+------------------------------------
+
+The primary design goal of the new EH instructions is to support funclet
+generation while preserving information about the CFG so that SSA formation
+still works.  As a secondary goal, they are designed to be generic across MSVC
+and Itanium C++ exceptions. They make very few assumptions about the data
+required by the personality, so long as it uses the familiar core EH actions:
+catch, cleanup, and terminate.  However, the new instructions are hard to modify
+without knowing details of the EH personality. While they can be used to
+represent Itanium EH, the landingpad model is strictly better for optimization
+purposes.
+
+The following new instructions are considered "exception handling pads", in that
+they must be the first non-phi instruction of a basic block that may be the
+unwind destination of an invoke: ``catchpad``, ``cleanuppad``, and
+``terminatepad``. As with landingpads, when entering a try scope, if the
+frontend encounters a call site that may throw an exception, it should emit an
+invoke that unwinds to a ``catchpad`` block. Similarly, inside the scope of a
+C++ object with a destructor, invokes should unwind to a ``cleanuppad``. The
+``terminatepad`` instruction exists to represent ``noexcept`` and throw
+specifications with one combined instruction. All potentially throwing calls in
+a ``noexcept`` function should transitively unwind to a terminateblock. Throw
+specifications are not implemented by MSVC, and are not yet supported.
+
+New instructions are also used to mark the points where control is transferred
+out of a catch/cleanup handler (which will correspond to exits from the
+generated funclet).  A catch handler which reaches its end by normal execution
+executes a ``catchret`` instruction, which is a terminator indicating where in
+the function control is returned to.  A cleanup handler which reaches its end
+by normal execution executes a ``cleanupret`` instruction, which is a terminator
+indicating where the active exception will unwind to next.  A catch or cleanup
+handler which is exited by another exception being raised during its execution will
+unwind through a ``catchendpad`` or ``cleanuupendpad`` (respectively).  The
+``catchendpad`` and ``cleanupendpad`` instructions are considered "exception
+handling pads" in the same sense that ``catchpad``, ``cleanuppad``, and
+``terminatepad`` are.
+
+Each of these new EH pad instructions has a way to identify which
+action should be considered after this action. The ``catchpad`` and
+``terminatepad`` instructions are terminators, and have a label operand considered
+to be an unwind destination analogous to the unwind destination of an invoke. The
+``cleanuppad`` instruction is different from the other two in that it is not a
+terminator. The code inside a cleanuppad runs before transferring control to the
+next action, so the ``cleanupret`` and ``cleanupendpad`` instructions are the
+instructions that hold a label operand and unwind to the next EH pad. All of
+these "unwind edges" may refer to a basic block that contains an EH pad instruction,
+or they may simply unwind to the caller. Unwinding to the caller has roughly the
+same semantics as the ``resume`` instruction in the ``landingpad`` model. When
+inlining through an invoke, instructions that unwind to the caller are hooked
+up to unwind to the unwind destination of the call site.
+
+Putting things together, here is a hypothetical lowering of some C++ that uses
+all of the new IR instructions:
+
+.. code-block:: c
+
+  struct Cleanup {
+    Cleanup();
+    ~Cleanup();
+    int m;
+  };
+  void may_throw();
+  int f() noexcept {
+    try {
+      Cleanup obj;
+      may_throw();
+    } catch (int e) {
+      may_throw();
+      return e;
+    }
+    return 0;
+  }
+
+.. code-block:: llvm
+
+  define i32 @f() nounwind personality i32 (...)* @__CxxFrameHandler3 {
+  entry:
+    %obj = alloca %struct.Cleanup, align 4
+    %e = alloca i32, align 4
+    %call = invoke %struct.Cleanup* @"\01??0Cleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj)
+            to label %invoke.cont unwind label %lpad.catch
+
+  invoke.cont:                                      ; preds = %entry
+    invoke void @"\01?may_throw@@YAXXZ"()
+            to label %invoke.cont.2 unwind label %lpad.cleanup
+
+  invoke.cont.2:                                    ; preds = %invoke.cont
+    call void @"\01??_DCleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj) nounwind
+    br label %return
+
+  return:                                           ; preds = %invoke.cont.2, %invoke.cont.3
+    %retval.0 = phi i32 [ 0, %invoke.cont.2 ], [ %9, %catch ]
+    ret i32 %retval.0
+
+  ; EH scope code, ordered innermost to outermost:
+
+  lpad.cleanup:                                     ; preds = %invoke.cont
+    %cleanup = cleanuppad []
+    call void @"\01??_DCleanup@@QEAA@XZ"(%struct.Cleanup* nonnull %obj) nounwind
+    cleanupret %cleanup unwind label %lpad.catch
+
+  lpad.catch:                                       ; preds = %entry, %lpad.cleanup
+    %catch = catchpad [%rtti.TypeDescriptor2* @"\01??_R0H@8", i32 0, i32* %e]
+            to label %catch.body unwind label %catchend
+
+  catch.body:                                       ; preds = %lpad.catch
+    invoke void @"\01?may_throw@@YAXXZ"()
+            to label %invoke.cont.3 unwind label %catchend
+
+  invoke.cont.3:                                    ; preds = %catch.body
+    %9 = load i32, i32* %e, align 4
+    catchret %catch label %return
+
+  catchend:                                         ; preds = %lpad.catch, %catch.body
+    catchendpad unwind label %lpad.terminate
+
+  lpad.terminate:                                   ; preds = %catchend
+    terminatepad [void ()* @"\01?terminate@@YAXXZ"]
+            unwind to caller
+  }