/*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file was developed by Reid Spencer and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the flex scanner for LLVM 1.9 assembly languages files. // //===----------------------------------------------------------------------===*/ %option prefix="Upgrade" %option yylineno %option nostdinit %option never-interactive %option batch %option noyywrap %option nodefault %option 8bit %option outfile="UpgradeLexer.cpp" %option ecs %option noreject %option noyymore %{ #include "UpgradeInternals.h" #include "llvm/Module.h" #include #include "UpgradeParser.h" #include #include #define YY_INPUT(buf,result,max_size) \ { \ if (LexInput->good() && !LexInput->eof()) { \ LexInput->read(buf,max_size); \ result = LexInput->gcount(); \ } else {\ result = YY_NULL; \ } \ } #define YY_NEVER_INTERACTIVE 1 // Construct a token value for a non-obsolete token #define RET_TOK(type, Enum, sym) \ Upgradelval.type = Enum; \ return sym #define RET_TY(sym,NewTY,sign) \ Upgradelval.PrimType.T = NewTY; \ switch (sign) { \ case 0: Upgradelval.PrimType.S.makeSignless(); break; \ case 1: Upgradelval.PrimType.S.makeUnsigned(); break; \ case 2: Upgradelval.PrimType.S.makeSigned(); break; \ default: assert(0 && "Invalid sign kind"); break; \ }\ return sym namespace llvm { // TODO: All of the static identifiers are figured out by the lexer, // these should be hashed to reduce the lexer size // UnEscapeLexed - Run through the specified buffer and change \xx codes to the // appropriate character. If AllowNull is set to false, a \00 value will cause // an exception to be thrown. // // If AllowNull is set to true, the return value of the function points to the // last character of the string in memory. // char *UnEscapeLexed(char *Buffer, bool AllowNull) { char *BOut = Buffer; for (char *BIn = Buffer; *BIn; ) { if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) { char Tmp = BIn[3]; BIn[3] = 0; // Terminate string *BOut = (char)strtol(BIn+1, 0, 16); // Convert to number if (!AllowNull && !*BOut) error("String literal cannot accept \\00 escape!"); BIn[3] = Tmp; // Restore character BIn += 3; // Skip over handled chars ++BOut; } else { *BOut++ = *BIn++; } } return BOut; } // atoull - Convert an ascii string of decimal digits into the unsigned long // long representation... this does not have to do input error checking, // because we know that the input will be matched by a suitable regex... // static uint64_t atoull(const char *Buffer) { uint64_t Result = 0; for (; *Buffer; Buffer++) { uint64_t OldRes = Result; Result *= 10; Result += *Buffer-'0'; if (Result < OldRes) // Uh, oh, overflow detected!!! error("constant bigger than 64 bits detected!"); } return Result; } static uint64_t HexIntToVal(const char *Buffer) { uint64_t Result = 0; for (; *Buffer; ++Buffer) { uint64_t OldRes = Result; Result *= 16; char C = *Buffer; if (C >= '0' && C <= '9') Result += C-'0'; else if (C >= 'A' && C <= 'F') Result += C-'A'+10; else if (C >= 'a' && C <= 'f') Result += C-'a'+10; if (Result < OldRes) // Uh, oh, overflow detected!!! error("constant bigger than 64 bits detected!"); } return Result; } // HexToFP - Convert the ascii string in hexidecimal format to the floating // point representation of it. // static double HexToFP(const char *Buffer) { // Behave nicely in the face of C TBAA rules... see: // http://www.nullstone.com/htmls/category/aliastyp.htm union { uint64_t UI; double FP; } UIntToFP; UIntToFP.UI = HexIntToVal(Buffer); assert(sizeof(double) == sizeof(uint64_t) && "Data sizes incompatible on this target!"); return UIntToFP.FP; // Cast Hex constant to double } } // End llvm namespace using namespace llvm; %} /* Comments start with a ; and go till end of line */ Comment ;.* /* Variable(Value) identifiers start with a % sign */ VarID [%@][-a-zA-Z$._][-a-zA-Z$._0-9]* /* Label identifiers end with a colon */ Label [-a-zA-Z$._0-9]+: QuoteLabel \"[^\"]+\": /* Quoted names can contain any character except " and \ */ StringConstant @?\"[^\"]*\" /* [PN]Integer: match positive and negative literal integer values that * are preceeded by a '%' character. These represent unnamed variable slots. */ EPInteger %[0-9]+ ENInteger %-[0-9]+ /* E[PN]Integer: match positive and negative literal integer values */ PInteger [0-9]+ NInteger -[0-9]+ /* FPConstant - A Floating point constant. */ FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)? /* HexFPConstant - Floating point constant represented in IEEE format as a * hexadecimal number for when exponential notation is not precise enough. */ HexFPConstant 0x[0-9A-Fa-f]+ /* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing * it to deal with 64 bit numbers. */ HexIntConstant [us]0x[0-9A-Fa-f]+ %% {Comment} { /* Ignore comments for now */ } begin { return BEGINTOK; } end { return ENDTOK; } true { return TRUETOK; } false { return FALSETOK; } declare { return DECLARE; } global { return GLOBAL; } constant { return CONSTANT; } internal { return INTERNAL; } linkonce { return LINKONCE; } weak { return WEAK; } appending { return APPENDING; } dllimport { return DLLIMPORT; } dllexport { return DLLEXPORT; } extern_weak { return EXTERN_WEAK; } uninitialized { return EXTERNAL; } /* Deprecated, turn into external */ external { return EXTERNAL; } implementation { return IMPLEMENTATION; } zeroinitializer { return ZEROINITIALIZER; } \.\.\. { return DOTDOTDOT; } undef { return UNDEF; } null { return NULL_TOK; } to { return TO; } except { return EXCEPT; } not { return NOT; } /* Deprecated, turned into XOR */ tail { return TAIL; } target { return TARGET; } triple { return TRIPLE; } deplibs { return DEPLIBS; } endian { return ENDIAN; } pointersize { return POINTERSIZE; } datalayout { return DATALAYOUT; } little { return LITTLE; } big { return BIG; } volatile { return VOLATILE; } align { return ALIGN; } section { return SECTION; } module { return MODULE; } asm { return ASM_TOK; } sideeffect { return SIDEEFFECT; } cc { return CC_TOK; } ccc { return CCC_TOK; } csretcc { return CSRETCC_TOK; } fastcc { return FASTCC_TOK; } coldcc { return COLDCC_TOK; } x86_stdcallcc { return X86_STDCALLCC_TOK; } x86_fastcallcc { return X86_FASTCALLCC_TOK; } sbyte { RET_TY(SBYTE, Type::Int8Ty, 2); } ubyte { RET_TY(UBYTE, Type::Int8Ty, 1); } i8 { RET_TY(UBYTE, Type::Int8Ty, 1); } short { RET_TY(SHORT, Type::Int16Ty, 2); } ushort { RET_TY(USHORT, Type::Int16Ty, 1); } i16 { RET_TY(USHORT, Type::Int16Ty, 1); } int { RET_TY(INT, Type::Int32Ty, 2); } uint { RET_TY(UINT, Type::Int32Ty, 1); } i32 { RET_TY(UINT, Type::Int32Ty, 1); } long { RET_TY(LONG, Type::Int64Ty, 2); } ulong { RET_TY(ULONG, Type::Int64Ty, 1); } i64 { RET_TY(ULONG, Type::Int64Ty, 1); } void { RET_TY(VOID, Type::VoidTy, 0); } bool { RET_TY(BOOL, Type::Int1Ty, 1); } i1 { RET_TY(BOOL, Type::Int1Ty, 1); } float { RET_TY(FLOAT, Type::FloatTy, 0); } double { RET_TY(DOUBLE, Type::DoubleTy,0); } label { RET_TY(LABEL, Type::LabelTy, 0); } type { return TYPE; } opaque { return OPAQUE; } add { RET_TOK(BinaryOpVal, AddOp, ADD); } sub { RET_TOK(BinaryOpVal, SubOp, SUB); } mul { RET_TOK(BinaryOpVal, MulOp, MUL); } div { RET_TOK(BinaryOpVal, DivOp, DIV); } udiv { RET_TOK(BinaryOpVal, UDivOp, UDIV); } sdiv { RET_TOK(BinaryOpVal, SDivOp, SDIV); } fdiv { RET_TOK(BinaryOpVal, FDivOp, FDIV); } rem { RET_TOK(BinaryOpVal, RemOp, REM); } urem { RET_TOK(BinaryOpVal, URemOp, UREM); } srem { RET_TOK(BinaryOpVal, SRemOp, SREM); } frem { RET_TOK(BinaryOpVal, FRemOp, FREM); } and { RET_TOK(BinaryOpVal, AndOp, AND); } or { RET_TOK(BinaryOpVal, OrOp , OR ); } xor { RET_TOK(BinaryOpVal, XorOp, XOR); } setne { RET_TOK(BinaryOpVal, SetNE, SETNE); } seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); } setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); } setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); } setle { RET_TOK(BinaryOpVal, SetLE, SETLE); } setge { RET_TOK(BinaryOpVal, SetGE, SETGE); } shl { RET_TOK(BinaryOpVal, ShlOp, SHL); } shr { RET_TOK(BinaryOpVal, ShrOp, SHR); } lshr { RET_TOK(BinaryOpVal, LShrOp, LSHR); } ashr { RET_TOK(BinaryOpVal, AShrOp, ASHR); } icmp { RET_TOK(OtherOpVal, ICmpOp, ICMP); } fcmp { RET_TOK(OtherOpVal, FCmpOp, FCMP); } eq { return EQ; } ne { return NE; } slt { return SLT; } sgt { return SGT; } sle { return SLE; } sge { return SGE; } ult { return ULT; } ugt { return UGT; } ule { return ULE; } uge { return UGE; } oeq { return OEQ; } one { return ONE; } olt { return OLT; } ogt { return OGT; } ole { return OLE; } oge { return OGE; } ord { return ORD; } uno { return UNO; } ueq { return UEQ; } une { return UNE; } phi { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); } call { RET_TOK(OtherOpVal, CallOp, CALL); } cast { RET_TOK(CastOpVal, CastOp, CAST); } trunc { RET_TOK(CastOpVal, TruncOp, TRUNC); } zext { RET_TOK(CastOpVal, ZExtOp , ZEXT); } sext { RET_TOK(CastOpVal, SExtOp, SEXT); } fptrunc { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); } fpext { RET_TOK(CastOpVal, FPExtOp, FPEXT); } fptoui { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); } fptosi { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); } uitofp { RET_TOK(CastOpVal, UIToFPOp, UITOFP); } sitofp { RET_TOK(CastOpVal, SIToFPOp, SITOFP); } ptrtoint { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); } inttoptr { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); } bitcast { RET_TOK(CastOpVal, BitCastOp, BITCAST); } select { RET_TOK(OtherOpVal, SelectOp, SELECT); } vanext { return VANEXT_old; } vaarg { return VAARG_old; } va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); } ret { RET_TOK(TermOpVal, RetOp, RET); } br { RET_TOK(TermOpVal, BrOp, BR); } switch { RET_TOK(TermOpVal, SwitchOp, SWITCH); } invoke { RET_TOK(TermOpVal, InvokeOp, INVOKE); } unwind { return UNWIND; } unreachable { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); } malloc { RET_TOK(MemOpVal, MallocOp, MALLOC); } alloca { RET_TOK(MemOpVal, AllocaOp, ALLOCA); } free { RET_TOK(MemOpVal, FreeOp, FREE); } load { RET_TOK(MemOpVal, LoadOp, LOAD); } store { RET_TOK(MemOpVal, StoreOp, STORE); } getelementptr { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); } extractelement { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); } insertelement { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); } shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); } {VarID} { UnEscapeLexed(yytext+1); Upgradelval.StrVal = strdup(yytext+1); // Skip % return VAR_ID; } {Label} { yytext[strlen(yytext)-1] = 0; // nuke colon UnEscapeLexed(yytext); Upgradelval.StrVal = strdup(yytext); return LABELSTR; } {QuoteLabel} { yytext[strlen(yytext)-2] = 0; // nuke colon, end quote UnEscapeLexed(yytext+1); Upgradelval.StrVal = strdup(yytext+1); return LABELSTR; } {StringConstant} { // Note that we cannot unescape a string constant here! The // string constant might contain a \00 which would not be // understood by the string stuff. It is valid to make a // [sbyte] c"Hello World\00" constant, for example. // yytext[strlen(yytext)-1] = 0; // nuke end quote Upgradelval.StrVal = strdup(yytext+1); // Nuke start quote return STRINGCONSTANT; } {PInteger} { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; } {NInteger} { uint64_t Val = atoull(yytext+1); // +1: we have bigger negative range if (Val > (uint64_t)INT64_MAX+1) error("Constant too large for signed 64 bits!"); Upgradelval.SInt64Val = -Val; return ESINT64VAL; } {HexIntConstant} { Upgradelval.UInt64Val = HexIntToVal(yytext+3); return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL; } {EPInteger} { uint64_t Val = atoull(yytext+1); if ((unsigned)Val != Val) error("Invalid value number (too large)!"); Upgradelval.UIntVal = unsigned(Val); return UINTVAL; } {ENInteger} { uint64_t Val = atoull(yytext+2); // +1: we have bigger negative range if (Val > (uint64_t)INT32_MAX+1) error("Constant too large for signed 32 bits!"); Upgradelval.SIntVal = (int)-Val; return SINTVAL; } {FPConstant} { Upgradelval.FPVal = atof(yytext); return FPVAL; } {HexFPConstant} { Upgradelval.FPVal = HexToFP(yytext); return FPVAL; } <> { /* Make sure to free the internal buffers for flex when we are * done reading our input! */ yy_delete_buffer(YY_CURRENT_BUFFER); return EOF; } [ \r\t\n] { /* Ignore whitespace */ } . { return yytext[0]; } %%