; RUN: opt < %s -separate-const-offset-from-gep -dce -S | FileCheck %s ; Several unit tests for -separate-const-offset-from-gep. The transformation ; heavily relies on TargetTransformInfo, so we put these tests under ; target-specific folders. target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" ; target triple is necessary; otherwise TargetTransformInfo rejects any ; addressing mode. target triple = "nvptx64-unknown-unknown" %struct.S = type { float, double } @struct_array = global [1024 x %struct.S] zeroinitializer, align 16 @float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4 ; We should not extract any struct field indices, because fields in a struct ; may have different types. define double* @struct(i32 %i) { entry: %add = add nsw i32 %i, 5 %idxprom = sext i32 %add to i64 %p = getelementptr inbounds [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1 ret double* %p } ; CHECK-LABEL: @struct ; CHECK: getelementptr [1024 x %struct.S]* @struct_array, i64 0, i32 %i, i32 1 ; We should be able to trace into sext/zext if it's directly used as a GEP ; index. define float* @sext_zext(i32 %i, i32 %j) { entry: %i1 = add i32 %i, 1 %j2 = add i32 %j, 2 %i1.ext = sext i32 %i1 to i64 %j2.ext = zext i32 %j2 to i64 %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i1.ext, i64 %j2.ext ret float* %p } ; CHECK-LABEL: @sext_zext ; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i32 %i, i32 %j ; CHECK: getelementptr float* %{{[0-9]+}}, i64 34 ; We should be able to trace into sext/zext if it can be distributed to both ; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b) define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) { %b1 = add nsw i32 %b, 1 %b2 = sext i32 %b1 to i64 %i = add i64 %a, %b2 %d1 = add nuw i32 %d, 1 %d2 = zext i32 %d1 to i64 %j = add i64 %c, %d2 %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j ret float* %p } ; CHECK-LABEL: @ext_add_no_overflow ; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}} ; CHECK: getelementptr float* [[BASE_PTR]], i64 33 ; Similar to @ext_add_no_overflow, we should be able to trace into sext/zext if ; its operand is an "or" instruction. define float* @ext_or(i64 %a, i32 %b) { entry: %b1 = shl i32 %b, 2 %b2 = or i32 %b1, 1 %b3 = or i32 %b1, 2 %b2.ext = sext i32 %b2 to i64 %b3.ext = sext i32 %b3 to i64 %i = add i64 %a, %b2.ext %j = add i64 %a, %b3.ext %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j ret float* %p } ; CHECK-LABEL: @ext_or ; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}} ; CHECK: [[BASE_INT:%[0-9]+]] = ptrtoint float* [[BASE_PTR]] to i64 ; CHECK: add i64 [[BASE_INT]], 136 ; We should treat "or" with no common bits (%k) as "add", and leave "or" with ; potentially common bits (%l) as is. define float* @or(i64 %i) { entry: %j = shl i64 %i, 2 %k = or i64 %j, 3 ; no common bits %l = or i64 %j, 4 ; potentially common bits %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %k, i64 %l ret float* %p } ; CHECK-LABEL: @or ; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %j, i64 %l ; CHECK: getelementptr float* [[BASE_PTR]], i64 96 ; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b + ; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't ; affected. define float* @expr(i64 %a, i64 %b, i64* %out) { entry: %b5 = add i64 %b, 5 %i = add i64 %b5, %a %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 0 store i64 %b5, i64* %out ret float* %p } ; CHECK-LABEL: @expr ; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %0, i64 0 ; CHECK: getelementptr float* [[BASE_PTR]], i64 160 ; CHECK: store i64 %b5, i64* %out ; Verifies we handle "sub" correctly. define float* @sub(i64 %i, i64 %j) { %i2 = sub i64 %i, 5 ; i - 5 %j2 = sub i64 5, %j ; 5 - i %p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2 ret float* %p } ; CHECK-LABEL: @sub ; CHECK: %[[j2:[0-9]+]] = sub i64 0, %j ; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]] ; CHECK: getelementptr float* [[BASE_PTR]], i64 -155 %struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed ; Verifies we can emit correct uglygep if the address is not natually aligned. define i64* @packed_struct(i32 %i, i32 %j) { entry: %s = alloca [1024 x %struct.Packed], align 16 %add = add nsw i32 %j, 3 %idxprom = sext i32 %add to i64 %add1 = add nsw i32 %i, 1 %idxprom2 = sext i32 %add1 to i64 %arrayidx3 = getelementptr inbounds [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom ret i64* %arrayidx3 } ; CHECK-LABEL: @packed_struct ; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [1024 x %struct.Packed]* %s, i64 0, i32 %i, i32 1, i32 %j ; CHECK: [[CASTED_PTR:%[0-9]+]] = bitcast i64* [[BASE_PTR]] to i8* ; CHECK: %uglygep = getelementptr i8* [[CASTED_PTR]], i64 100 ; CHECK: bitcast i8* %uglygep to i64*