; RUN: opt < %s -sroa -S | FileCheck %s ; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64" declare void @llvm.lifetime.start(i64, i8* nocapture) declare void @llvm.lifetime.end(i64, i8* nocapture) define i32 @test0() { ; CHECK-LABEL: @test0( ; CHECK-NOT: alloca ; CHECK: ret i32 entry: %a1 = alloca i32 %a2 = alloca float %a1.i8 = bitcast i32* %a1 to i8* call void @llvm.lifetime.start(i64 4, i8* %a1.i8) store i32 0, i32* %a1 %v1 = load i32* %a1 call void @llvm.lifetime.end(i64 4, i8* %a1.i8) %a2.i8 = bitcast float* %a2 to i8* call void @llvm.lifetime.start(i64 4, i8* %a2.i8) store float 0.0, float* %a2 %v2 = load float * %a2 %v2.int = bitcast float %v2 to i32 %sum1 = add i32 %v1, %v2.int call void @llvm.lifetime.end(i64 4, i8* %a2.i8) ret i32 %sum1 } define i32 @test1() { ; CHECK-LABEL: @test1( ; CHECK-NOT: alloca ; CHECK: ret i32 0 entry: %X = alloca { i32, float } %Y = getelementptr { i32, float }* %X, i64 0, i32 0 store i32 0, i32* %Y %Z = load i32* %Y ret i32 %Z } define i64 @test2(i64 %X) { ; CHECK-LABEL: @test2( ; CHECK-NOT: alloca ; CHECK: ret i64 %X entry: %A = alloca [8 x i8] %B = bitcast [8 x i8]* %A to i64* store i64 %X, i64* %B br label %L2 L2: %Z = load i64* %B ret i64 %Z } define void @test3(i8* %dst, i8* %src) { ; CHECK-LABEL: @test3( entry: %a = alloca [300 x i8] ; CHECK-NOT: alloca ; CHECK: %[[test3_a1:.*]] = alloca [42 x i8] ; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8] ; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8] ; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8] ; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8] ; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8] ; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8] %b = getelementptr [300 x i8]* %a, i64 0, i64 0 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false) ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42 ; CHECK-NEXT: %[[test3_r1:.*]] = load i8* %[[gep]] ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 142 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 158 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 200 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 207 ; CHECK-NEXT: %[[test3_r2:.*]] = load i8* %[[gep]] ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 208 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 215 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85 ; Clobber a single element of the array, this should be promotable. %c = getelementptr [300 x i8]* %a, i64 0, i64 42 store i8 0, i8* %c ; Make a sequence of overlapping stores to the array. These overlap both in ; forward strides and in shrinking accesses. %overlap.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 142 %overlap.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 143 %overlap.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 144 %overlap.4.i8 = getelementptr [300 x i8]* %a, i64 0, i64 145 %overlap.5.i8 = getelementptr [300 x i8]* %a, i64 0, i64 146 %overlap.6.i8 = getelementptr [300 x i8]* %a, i64 0, i64 147 %overlap.7.i8 = getelementptr [300 x i8]* %a, i64 0, i64 148 %overlap.8.i8 = getelementptr [300 x i8]* %a, i64 0, i64 149 %overlap.9.i8 = getelementptr [300 x i8]* %a, i64 0, i64 150 %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16* %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32* %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64* %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64* %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64* %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64* %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64* %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64* %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64* %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64* %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64* store i8 1, i8* %overlap.1.i8 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0 ; CHECK-NEXT: store i8 1, i8* %[[gep]] store i16 1, i16* %overlap.1.i16 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16* ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] store i32 1, i32* %overlap.1.i32 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32* ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] store i64 1, i64* %overlap.1.i64 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64* ; CHECK-NEXT: store i64 1, i64* %[[bitcast]] store i64 2, i64* %overlap.2.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 1 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 2, i64* %[[bitcast]] store i64 3, i64* %overlap.3.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 2 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 3, i64* %[[bitcast]] store i64 4, i64* %overlap.4.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 3 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 4, i64* %[[bitcast]] store i64 5, i64* %overlap.5.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 4 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 5, i64* %[[bitcast]] store i64 6, i64* %overlap.6.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 5 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 6, i64* %[[bitcast]] store i64 7, i64* %overlap.7.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 6 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 7, i64* %[[bitcast]] store i64 8, i64* %overlap.8.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 7 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 8, i64* %[[bitcast]] store i64 9, i64* %overlap.9.i64 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 8 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64* ; CHECK-NEXT: store i64 9, i64* %[[bitcast]] ; Make two sequences of overlapping stores with more gaps and irregularities. %overlap2.1.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 200 %overlap2.1.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 201 %overlap2.1.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 202 %overlap2.1.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 203 %overlap2.2.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 208 %overlap2.2.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 209 %overlap2.2.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 210 %overlap2.2.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 211 %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16* %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32* %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32* %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32* %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32* store i8 1, i8* %overlap2.1.0.i8 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 ; CHECK-NEXT: store i8 1, i8* %[[gep]] store i16 1, i16* %overlap2.1.0.i16 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16* ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] store i32 1, i32* %overlap2.1.0.i32 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32* ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] store i32 2, i32* %overlap2.1.1.i32 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 1 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* ; CHECK-NEXT: store i32 2, i32* %[[bitcast]] store i32 3, i32* %overlap2.1.2.i32 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* ; CHECK-NEXT: store i32 3, i32* %[[bitcast]] store i32 4, i32* %overlap2.1.3.i32 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 3 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* ; CHECK-NEXT: store i32 4, i32* %[[bitcast]] %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32* %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16* %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32* %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32* %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32* store i32 1, i32* %overlap2.2.0.i32 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32* ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] store i8 1, i8* %overlap2.2.1.i8 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 ; CHECK-NEXT: store i8 1, i8* %[[gep]] store i16 1, i16* %overlap2.2.1.i16 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* ; CHECK-NEXT: store i16 1, i16* %[[bitcast]] store i32 1, i32* %overlap2.2.1.i32 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* ; CHECK-NEXT: store i32 1, i32* %[[bitcast]] store i32 3, i32* %overlap2.2.2.i32 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* ; CHECK-NEXT: store i32 3, i32* %[[bitcast]] store i32 4, i32* %overlap2.2.3.i32 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 3 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32* ; CHECK-NEXT: store i32 4, i32* %[[bitcast]] %overlap2.prefix = getelementptr i8* %overlap2.1.1.i8, i64 -4 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false) ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 39 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 3 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5 ; Bridge between the overlapping areas call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false) ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5 ; ...promoted i8 store... ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2 ; Entirely within the second overlap. call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false) ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5 ; Trailing past the second overlap. call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false) ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 5 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false) ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42 ; CHECK-NEXT: store i8 0, i8* %[[gep]] ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 142 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 158 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 200 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 207 ; CHECK-NEXT: store i8 42, i8* %[[gep]] ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 208 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 215 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85 ret void } define void @test4(i8* %dst, i8* %src) { ; CHECK-LABEL: @test4( entry: %a = alloca [100 x i8] ; CHECK-NOT: alloca ; CHECK: %[[test4_a1:.*]] = alloca [20 x i8] ; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8] ; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8] ; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8] ; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8] ; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8] %b = getelementptr [100 x i8]* %a, i64 0, i64 0 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false) ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 20 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* ; CHECK-NEXT: %[[test4_r1:.*]] = load i16* %[[bitcast]] ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 22 ; CHECK-NEXT: %[[test4_r2:.*]] = load i8* %[[gep]] ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 23 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 30 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 40 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* ; CHECK-NEXT: %[[test4_r3:.*]] = load i16* %[[bitcast]] ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42 ; CHECK-NEXT: %[[test4_r4:.*]] = load i8* %[[gep]] ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 50 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* ; CHECK-NEXT: %[[test4_r5:.*]] = load i16* %[[bitcast]] ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 52 ; CHECK-NEXT: %[[test4_r6:.*]] = load i8* %[[gep]] ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 53 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 60 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40 %a.src.1 = getelementptr [100 x i8]* %a, i64 0, i64 20 %a.dst.1 = getelementptr [100 x i8]* %a, i64 0, i64 40 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false) ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; Clobber a single element of the array, this should be promotable, and be deleted. %c = getelementptr [100 x i8]* %a, i64 0, i64 42 store i8 0, i8* %c %a.src.2 = getelementptr [100 x i8]* %a, i64 0, i64 50 call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false) ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false) ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 20 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* ; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]] ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 22 ; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]] ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 23 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 30 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 40 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]] ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]] ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 50 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16* ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]] ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 52 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]] ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 53 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 60 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40 ret void } declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind define i16 @test5() { ; CHECK-LABEL: @test5( ; CHECK-NOT: alloca float ; CHECK: %[[cast:.*]] = bitcast float 0.0{{.*}} to i32 ; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16 ; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16 ; CHECK-NEXT: ret i16 %[[trunc]] entry: %a = alloca [4 x i8] %fptr = bitcast [4 x i8]* %a to float* store float 0.0, float* %fptr %ptr = getelementptr [4 x i8]* %a, i32 0, i32 2 %iptr = bitcast i8* %ptr to i16* %val = load i16* %iptr ret i16 %val } define i32 @test6() { ; CHECK-LABEL: @test6( ; CHECK: alloca i32 ; CHECK-NEXT: store volatile i32 ; CHECK-NEXT: load i32* ; CHECK-NEXT: ret i32 entry: %a = alloca [4 x i8] %ptr = getelementptr [4 x i8]* %a, i32 0, i32 0 call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true) %iptr = bitcast i8* %ptr to i32* %val = load i32* %iptr ret i32 %val } define void @test7(i8* %src, i8* %dst) { ; CHECK-LABEL: @test7( ; CHECK: alloca i32 ; CHECK-NEXT: bitcast i8* %src to i32* ; CHECK-NEXT: load volatile i32* ; CHECK-NEXT: store volatile i32 ; CHECK-NEXT: bitcast i8* %dst to i32* ; CHECK-NEXT: load volatile i32* ; CHECK-NEXT: store volatile i32 ; CHECK-NEXT: ret entry: %a = alloca [4 x i8] %ptr = getelementptr [4 x i8]* %a, i32 0, i32 0 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true) call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true) ret void } %S1 = type { i32, i32, [16 x i8] } %S2 = type { %S1*, %S2* } define %S2 @test8(%S2* %s2) { ; CHECK-LABEL: @test8( entry: %new = alloca %S2 ; CHECK-NOT: alloca %s2.next.ptr = getelementptr %S2* %s2, i64 0, i32 1 %s2.next = load %S2** %s2.next.ptr ; CHECK: %[[gep:.*]] = getelementptr %S2* %s2, i64 0, i32 1 ; CHECK-NEXT: %[[next:.*]] = load %S2** %[[gep]] %s2.next.s1.ptr = getelementptr %S2* %s2.next, i64 0, i32 0 %s2.next.s1 = load %S1** %s2.next.s1.ptr %new.s1.ptr = getelementptr %S2* %new, i64 0, i32 0 store %S1* %s2.next.s1, %S1** %new.s1.ptr %s2.next.next.ptr = getelementptr %S2* %s2.next, i64 0, i32 1 %s2.next.next = load %S2** %s2.next.next.ptr %new.next.ptr = getelementptr %S2* %new, i64 0, i32 1 store %S2* %s2.next.next, %S2** %new.next.ptr ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 0 ; CHECK-NEXT: %[[next_s1:.*]] = load %S1** %[[gep]] ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 1 ; CHECK-NEXT: %[[next_next:.*]] = load %S2** %[[gep]] %new.s1 = load %S1** %new.s1.ptr %result1 = insertvalue %S2 undef, %S1* %new.s1, 0 ; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0 %new.next = load %S2** %new.next.ptr %result2 = insertvalue %S2 %result1, %S2* %new.next, 1 ; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1 ret %S2 %result2 ; CHECK-NEXT: ret %S2 %[[result2]] } define i64 @test9() { ; Ensure we can handle loads off the end of an alloca even when wrapped in ; weird bit casts and types. This is valid IR due to the alignment and masking ; off the bits past the end of the alloca. ; ; CHECK-LABEL: @test9( ; CHECK-NOT: alloca ; CHECK: %[[b2:.*]] = zext i8 26 to i64 ; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16 ; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681 ; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]] ; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64 ; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8 ; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281 ; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]] ; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64 ; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256 ; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]] ; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215 ; CHECK-NEXT: ret i64 %[[result]] entry: %a = alloca { [3 x i8] }, align 8 %gep1 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 0 store i8 0, i8* %gep1, align 1 %gep2 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 1 store i8 0, i8* %gep2, align 1 %gep3 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 2 store i8 26, i8* %gep3, align 1 %cast = bitcast { [3 x i8] }* %a to { i64 }* %elt = getelementptr inbounds { i64 }* %cast, i32 0, i32 0 %load = load i64* %elt %result = and i64 %load, 16777215 ret i64 %result } define %S2* @test10() { ; CHECK-LABEL: @test10( ; CHECK-NOT: alloca %S2* ; CHECK: ret %S2* null entry: %a = alloca [8 x i8] %ptr = getelementptr [8 x i8]* %a, i32 0, i32 0 call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false) %s2ptrptr = bitcast i8* %ptr to %S2** %s2ptr = load %S2** %s2ptrptr ret %S2* %s2ptr } define i32 @test11() { ; CHECK-LABEL: @test11( ; CHECK-NOT: alloca ; CHECK: ret i32 0 entry: %X = alloca i32 br i1 undef, label %good, label %bad good: %Y = getelementptr i32* %X, i64 0 store i32 0, i32* %Y %Z = load i32* %Y ret i32 %Z bad: %Y2 = getelementptr i32* %X, i64 1 store i32 0, i32* %Y2 %Z2 = load i32* %Y2 ret i32 %Z2 } define i8 @test12() { ; We fully promote these to the i24 load or store size, resulting in just masks ; and other operations that instcombine will fold, but no alloca. ; ; CHECK-LABEL: @test12( entry: %a = alloca [3 x i8] %b = alloca [3 x i8] ; CHECK-NOT: alloca %a0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0 store i8 0, i8* %a0ptr %a1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1 store i8 0, i8* %a1ptr %a2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2 store i8 0, i8* %a2ptr %aiptr = bitcast [3 x i8]* %a to i24* %ai = load i24* %aiptr ; CHECK-NOT: store ; CHECK-NOT: load ; CHECK: %[[ext2:.*]] = zext i8 0 to i24 ; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16 ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535 ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]] ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24 ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8 ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281 ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]] ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24 ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256 ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]] %biptr = bitcast [3 x i8]* %b to i24* store i24 %ai, i24* %biptr %b0ptr = getelementptr [3 x i8]* %b, i64 0, i32 0 %b0 = load i8* %b0ptr %b1ptr = getelementptr [3 x i8]* %b, i64 0, i32 1 %b1 = load i8* %b1ptr %b2ptr = getelementptr [3 x i8]* %b, i64 0, i32 2 %b2 = load i8* %b2ptr ; CHECK-NOT: store ; CHECK-NOT: load ; CHECK: %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8 ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8 ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8 ; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16 ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8 %bsum0 = add i8 %b0, %b1 %bsum1 = add i8 %bsum0, %b2 ret i8 %bsum1 ; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]] ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]] ; CHECK-NEXT: ret i8 %[[sum1]] } define i32 @test13() { ; Ensure we don't crash and handle undefined loads that straddle the end of the ; allocation. ; CHECK-LABEL: @test13( ; CHECK: %[[value:.*]] = zext i8 0 to i16 ; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32 ; CHECK-NEXT: ret i32 %[[ret]] entry: %a = alloca [3 x i8], align 2 %b0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0 store i8 0, i8* %b0ptr %b1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1 store i8 0, i8* %b1ptr %b2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2 store i8 0, i8* %b2ptr %iptrcast = bitcast [3 x i8]* %a to i16* %iptrgep = getelementptr i16* %iptrcast, i64 1 %i = load i16* %iptrgep %ret = zext i16 %i to i32 ret i32 %ret } %test14.struct = type { [3 x i32] } define void @test14(...) nounwind uwtable { ; This is a strange case where we split allocas into promotable partitions, but ; also gain enough data to prove they must be dead allocas due to GEPs that walk ; across two adjacent allocas. Test that we don't try to promote or otherwise ; do bad things to these dead allocas, they should just be removed. ; CHECK-LABEL: @test14( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret void entry: %a = alloca %test14.struct %p = alloca %test14.struct* %0 = bitcast %test14.struct* %a to i8* %1 = getelementptr i8* %0, i64 12 %2 = bitcast i8* %1 to %test14.struct* %3 = getelementptr inbounds %test14.struct* %2, i32 0, i32 0 %4 = getelementptr inbounds %test14.struct* %a, i32 0, i32 0 %5 = bitcast [3 x i32]* %3 to i32* %6 = bitcast [3 x i32]* %4 to i32* %7 = load i32* %6, align 4 store i32 %7, i32* %5, align 4 %8 = getelementptr inbounds i32* %5, i32 1 %9 = getelementptr inbounds i32* %6, i32 1 %10 = load i32* %9, align 4 store i32 %10, i32* %8, align 4 %11 = getelementptr inbounds i32* %5, i32 2 %12 = getelementptr inbounds i32* %6, i32 2 %13 = load i32* %12, align 4 store i32 %13, i32* %11, align 4 ret void } define i32 @test15(i1 %flag) nounwind uwtable { ; Ensure that when there are dead instructions using an alloca that are not ; loads or stores we still delete them during partitioning and rewriting. ; Otherwise we'll go to promote them while thy still have unpromotable uses. ; CHECK-LABEL: @test15( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label %loop ; CHECK: loop: ; CHECK-NEXT: br label %loop entry: %l0 = alloca i64 %l1 = alloca i64 %l2 = alloca i64 %l3 = alloca i64 br label %loop loop: %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ] store i64 1879048192, i64* %l0, align 8 %bc0 = bitcast i64* %l0 to i8* %gep0 = getelementptr i8* %bc0, i64 3 %dead0 = bitcast i8* %gep0 to i64* store i64 1879048192, i64* %l1, align 8 %bc1 = bitcast i64* %l1 to i8* %gep1 = getelementptr i8* %bc1, i64 3 %dead1 = getelementptr i8* %gep1, i64 1 store i64 1879048192, i64* %l2, align 8 %bc2 = bitcast i64* %l2 to i8* %gep2.1 = getelementptr i8* %bc2, i64 1 %gep2.2 = getelementptr i8* %bc2, i64 3 ; Note that this select should get visited multiple times due to using two ; different GEPs off the same alloca. We should only delete it once. %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2 store i64 1879048192, i64* %l3, align 8 %bc3 = bitcast i64* %l3 to i8* %gep3 = getelementptr i8* %bc3, i64 3 br label %loop } define void @test16(i8* %src, i8* %dst) { ; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value. ; CHECK-LABEL: @test16( ; CHECK-NOT: alloca ; CHECK: %[[srccast:.*]] = bitcast i8* %src to i24* ; CHECK-NEXT: load i24* %[[srccast]] ; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24* ; CHECK-NEXT: store i24 0, i24* %[[dstcast]] ; CHECK-NEXT: ret void entry: %a = alloca [3 x i8] %ptr = getelementptr [3 x i8]* %a, i32 0, i32 0 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false) %cast = bitcast i8* %ptr to i24* store i24 0, i24* %cast call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false) ret void } define void @test17(i8* %src, i8* %dst) { ; Ensure that we can rewrite unpromotable memcpys which extend past the end of ; the alloca. ; CHECK-LABEL: @test17( ; CHECK: %[[a:.*]] = alloca [3 x i8] ; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8]* %[[a]], i32 0, i32 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src, ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]], ; CHECK-NEXT: ret void entry: %a = alloca [3 x i8] %ptr = getelementptr [3 x i8]* %a, i32 0, i32 0 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true) call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true) ret void } define void @test18(i8* %src, i8* %dst, i32 %size) { ; Preserve transfer instrinsics with a variable size, even if they overlap with ; fixed size operations. Further, continue to split and promote allocas preceding ; the variable sized intrinsic. ; CHECK-LABEL: @test18( ; CHECK: %[[a:.*]] = alloca [34 x i8] ; CHECK: %[[srcgep1:.*]] = getelementptr inbounds i8* %src, i64 4 ; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32* ; CHECK-NEXT: %[[srcload:.*]] = load i32* %[[srccast1]] ; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size, ; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size, ; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32* ; CHECK-NEXT: store i32 42, i32* %[[dstcast1]] ; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8* %dst, i64 4 ; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32* ; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]] ; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size, ; CHECK-NEXT: ret void entry: %a = alloca [42 x i8] %ptr = getelementptr [42 x i8]* %a, i32 0, i32 0 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false) %ptr2 = getelementptr [42 x i8]* %a, i32 0, i32 8 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false) call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false) %cast = bitcast i8* %ptr to i32* store i32 42, i32* %cast call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false) call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false) ret void } %opaque = type opaque define i32 @test19(%opaque* %x) { ; This input will cause us to try to compute a natural GEP when rewriting ; pointers in such a way that we try to GEP through the opaque type. Previously, ; a check for an unsized type was missing and this crashed. Ensure it behaves ; reasonably now. ; CHECK-LABEL: @test19( ; CHECK-NOT: alloca ; CHECK: ret i32 undef entry: %a = alloca { i64, i8* } %cast1 = bitcast %opaque* %x to i8* %cast2 = bitcast { i64, i8* }* %a to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false) %gep = getelementptr inbounds { i64, i8* }* %a, i32 0, i32 0 %val = load i64* %gep ret i32 undef } define i32 @test20() { ; Ensure we can track negative offsets (before the beginning of the alloca) and ; negative relative offsets from offsets starting past the end of the alloca. ; CHECK-LABEL: @test20( ; CHECK-NOT: alloca ; CHECK: %[[sum1:.*]] = add i32 1, 2 ; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3 ; CHECK: ret i32 %[[sum2]] entry: %a = alloca [3 x i32] %gep1 = getelementptr [3 x i32]* %a, i32 0, i32 0 store i32 1, i32* %gep1 %gep2.1 = getelementptr [3 x i32]* %a, i32 0, i32 -2 %gep2.2 = getelementptr i32* %gep2.1, i32 3 store i32 2, i32* %gep2.2 %gep3.1 = getelementptr [3 x i32]* %a, i32 0, i32 14 %gep3.2 = getelementptr i32* %gep3.1, i32 -12 store i32 3, i32* %gep3.2 %load1 = load i32* %gep1 %load2 = load i32* %gep2.2 %load3 = load i32* %gep3.2 %sum1 = add i32 %load1, %load2 %sum2 = add i32 %sum1, %load3 ret i32 %sum2 } declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind define i8 @test21() { ; Test allocations and offsets which border on overflow of the int64_t used ; internally. This is really awkward to really test as LLVM doesn't really ; support such extreme constructs cleanly. ; CHECK-LABEL: @test21( ; CHECK-NOT: alloca ; CHECK: or i8 -1, -1 entry: %a = alloca [2305843009213693951 x i8] %gep0 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949 store i8 255, i8* %gep0 %gep1 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807 %gep2 = getelementptr i8* %gep1, i64 -1 call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false) %gep3 = getelementptr i8* %gep1, i64 9223372036854775807 %gep4 = getelementptr i8* %gep3, i64 9223372036854775807 %gep5 = getelementptr i8* %gep4, i64 -6917529027641081857 store i8 255, i8* %gep5 %cast1 = bitcast i8* %gep4 to i32* store i32 0, i32* %cast1 %load = load i8* %gep0 %gep6 = getelementptr i8* %gep0, i32 1 %load2 = load i8* %gep6 %result = or i8 %load, %load2 ret i8 %result } %PR13916.struct = type { i8 } define void @PR13916.1() { ; Ensure that we handle overlapping memcpy intrinsics correctly, especially in ; the case where there is a directly identical value for both source and dest. ; CHECK: @PR13916.1 ; CHECK-NOT: alloca ; CHECK: ret void entry: %a = alloca i8 call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false) %tmp2 = load i8* %a ret void } define void @PR13916.2() { ; Check whether we continue to handle them correctly when they start off with ; different pointer value chains, but during rewriting we coalesce them into the ; same value. ; CHECK: @PR13916.2 ; CHECK-NOT: alloca ; CHECK: ret void entry: %a = alloca %PR13916.struct, align 1 br i1 undef, label %if.then, label %if.end if.then: %tmp0 = bitcast %PR13916.struct* %a to i8* %tmp1 = bitcast %PR13916.struct* %a to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false) br label %if.end if.end: %gep = getelementptr %PR13916.struct* %a, i32 0, i32 0 %tmp2 = load i8* %gep ret void } define void @PR13990() { ; Ensure we can handle cases where processing one alloca causes the other ; alloca to become dead and get deleted. This might crash or fail under ; Valgrind if we regress. ; CHECK-LABEL: @PR13990( ; CHECK-NOT: alloca ; CHECK: unreachable ; CHECK: unreachable entry: %tmp1 = alloca i8* %tmp2 = alloca i8* br i1 undef, label %bb1, label %bb2 bb1: store i8* undef, i8** %tmp2 br i1 undef, label %bb2, label %bb3 bb2: %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1 br i1 undef, label %bb3, label %bb4 bb3: unreachable bb4: unreachable } define double @PR13969(double %x) { ; Check that we detect when promotion will un-escape an alloca and iterate to ; re-try running SROA over that alloca. Without that, the two allocas that are ; stored into a dead alloca don't get rewritten and promoted. ; CHECK-LABEL: @PR13969( entry: %a = alloca double %b = alloca double* %c = alloca double ; CHECK-NOT: alloca store double %x, double* %a store double* %c, double** %b store double* %a, double** %b store double %x, double* %c %ret = load double* %a ; CHECK-NOT: store ; CHECK-NOT: load ret double %ret ; CHECK: ret double %x } %PR14034.struct = type { { {} }, i32, %PR14034.list } %PR14034.list = type { %PR14034.list*, %PR14034.list* } define void @PR14034() { ; This test case tries to form GEPs into the empty leading struct members, and ; subsequently crashed (under valgrind) before we fixed the PR. The important ; thing is to handle empty structs gracefully. ; CHECK-LABEL: @PR14034( entry: %a = alloca %PR14034.struct %list = getelementptr %PR14034.struct* %a, i32 0, i32 2 %prev = getelementptr %PR14034.list* %list, i32 0, i32 1 store %PR14034.list* undef, %PR14034.list** %prev %cast0 = bitcast %PR14034.struct* undef to i8* %cast1 = bitcast %PR14034.struct* %a to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false) ret void } define i32 @test22(i32 %x) { ; Test that SROA and promotion is not confused by a grab bax mixture of pointer ; types involving wrapper aggregates and zero-length aggregate members. ; CHECK-LABEL: @test22( entry: %a1 = alloca { { [1 x { i32 }] } } %a2 = alloca { {}, { float }, [0 x i8] } %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } } ; CHECK-NOT: alloca %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0 %gep1 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0 store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1 %gep2 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0 %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }* %load1 = load { [1 x { float }] }* %ptrcast1 %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0 %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1 store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2 %gep3 = getelementptr { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0 %ptrcast2 = bitcast float* %gep3 to <4 x i8>* %load3 = load <4 x i8>* %ptrcast2 %valcast1 = bitcast <4 x i8> %load3 to i32 %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0 %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0 %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1 %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }* store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3 %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0 %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }* %load4 = load { {}, float, {} }* %ptrcast4 %unwrap2 = extractvalue { {}, float, {} } %load4, 1 %valcast2 = bitcast float %unwrap2 to i32 ret i32 %valcast2 ; CHECK: ret i32 } define void @PR14059.1(double* %d) { ; In PR14059 a peculiar construct was identified as something that is used ; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct ; of doubles via an array of i32 in order to place the data into integer ; registers. This in turn was missed as an optimization by SROA due to the ; partial loads and stores of integers to the double alloca we were trying to ; form and promote. The solution is to widen the integer operations to be ; whole-alloca operations, and perform the appropriate bitcasting on the ; *values* rather than the pointers. When this works, partial reads and writes ; via integers can be promoted away. ; CHECK: @PR14059.1 ; CHECK-NOT: alloca ; CHECK: ret void entry: %X.sroa.0.i = alloca double, align 8 %0 = bitcast double* %X.sroa.0.i to i8* call void @llvm.lifetime.start(i64 -1, i8* %0) ; Store to the low 32-bits... %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32* store i32 0, i32* %X.sroa.0.0.cast2.i, align 8 ; Also use a memset to the middle 32-bits for fun. %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8* %0, i32 2 call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false) ; Or a memset of the whole thing. call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false) ; Write to the high 32-bits with a memcpy. %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8* %0, i32 4 %d.raw = bitcast double* %d to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false) ; Store to the high 32-bits... %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32* store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4 ; Do the actual math... %X.sroa.0.0.load1.i = load double* %X.sroa.0.i, align 8 %accum.real.i = load double* %d, align 8 %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i store double %add.r.i, double* %d, align 8 call void @llvm.lifetime.end(i64 -1, i8* %0) ret void } define i64 @PR14059.2({ float, float }* %phi) { ; Check that SROA can split up alloca-wide integer loads and stores where the ; underlying alloca has smaller components that are accessed independently. This ; shows up particularly with ABI lowering patterns coming out of Clang that rely ; on the particular register placement of a single large integer return value. ; CHECK: @PR14059.2 entry: %retval = alloca { float, float }, align 4 ; CHECK-NOT: alloca %0 = bitcast { float, float }* %retval to i64* store i64 0, i64* %0 ; CHECK-NOT: store %phi.realp = getelementptr inbounds { float, float }* %phi, i32 0, i32 0 %phi.real = load float* %phi.realp %phi.imagp = getelementptr inbounds { float, float }* %phi, i32 0, i32 1 %phi.imag = load float* %phi.imagp ; CHECK: %[[realp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 0 ; CHECK-NEXT: %[[real:.*]] = load float* %[[realp]] ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 1 ; CHECK-NEXT: %[[imag:.*]] = load float* %[[imagp]] %real = getelementptr inbounds { float, float }* %retval, i32 0, i32 0 %imag = getelementptr inbounds { float, float }* %retval, i32 0, i32 1 store float %phi.real, float* %real store float %phi.imag, float* %imag ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32 ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32 ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64 ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32 ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295 ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]] ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64 ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296 ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]] %1 = load i64* %0, align 1 ret i64 %1 ; CHECK-NEXT: ret i64 %[[real_insert]] } define void @PR14105({ [16 x i8] }* %ptr) { ; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is ; sign as negative. We use a volatile memcpy to ensure promotion never actually ; occurs. ; CHECK-LABEL: @PR14105( entry: %a = alloca { [16 x i8] }, align 8 ; CHECK: alloca [16 x i8], align 8 %gep = getelementptr inbounds { [16 x i8] }* %ptr, i64 -1 ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0 %cast1 = bitcast { [16 x i8 ] }* %gep to i8* %cast2 = bitcast { [16 x i8 ] }* %a to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true) ret void ; CHECK: ret } define void @PR14465() { ; Ensure that we don't crash when analyzing a alloca larger than the maximum ; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1). ; CHECK-LABEL: @PR14465( %stack = alloca [1048576 x i32], align 16 ; CHECK: alloca [1048576 x i32] %cast = bitcast [1048576 x i32]* %stack to i8* call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false) ret void ; CHECK: ret } define void @PR14548(i1 %x) { ; Handle a mixture of i1 and i8 loads and stores to allocas. This particular ; pattern caused crashes and invalid output in the PR, and its nature will ; trigger a mixture in several permutations as we resolve each alloca ; iteratively. ; Note that we don't do a particularly good *job* of handling these mixtures, ; but the hope is that this is very rare. ; CHECK-LABEL: @PR14548( entry: %a = alloca <{ i1 }>, align 8 %b = alloca <{ i1 }>, align 8 ; CHECK: %[[a:.*]] = alloca i8, align 8 %b.i1 = bitcast <{ i1 }>* %b to i1* store i1 %x, i1* %b.i1, align 8 %b.i8 = bitcast <{ i1 }>* %b to i8* %foo = load i8* %b.i8, align 1 ; CHECK-NEXT: %[[ext:.*]] = zext i1 %x to i8 ; CHECK-NEXT: store i8 %[[ext]], i8* %[[a]], align 8 ; CHECK-NEXT: {{.*}} = load i8* %[[a]], align 8 %a.i8 = bitcast <{ i1 }>* %a to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind %bar = load i8* %a.i8, align 1 %a.i1 = getelementptr inbounds <{ i1 }>* %a, i32 0, i32 0 %baz = load i1* %a.i1, align 1 ; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1* ; CHECK-NEXT: {{.*}} = load i1* %[[a_cast]], align 8 ret void } define <3 x i8> @PR14572.1(i32 %x) { ; Ensure that a split integer store which is wider than the type size of the ; alloca (relying on the alloc size padding) doesn't trigger an assert. ; CHECK: @PR14572.1 entry: %a = alloca <3 x i8>, align 4 ; CHECK-NOT: alloca %cast = bitcast <3 x i8>* %a to i32* store i32 %x, i32* %cast, align 1 %y = load <3 x i8>* %a, align 4 ret <3 x i8> %y ; CHECK: ret <3 x i8> } define i32 @PR14572.2(<3 x i8> %x) { ; Ensure that a split integer load which is wider than the type size of the ; alloca (relying on the alloc size padding) doesn't trigger an assert. ; CHECK: @PR14572.2 entry: %a = alloca <3 x i8>, align 4 ; CHECK-NOT: alloca store <3 x i8> %x, <3 x i8>* %a, align 1 %cast = bitcast <3 x i8>* %a to i32* %y = load i32* %cast, align 4 ret i32 %y ; CHECK: ret i32 } define i32 @PR14601(i32 %x) { ; Don't try to form a promotable integer alloca when there is a variable length ; memory intrinsic. ; CHECK-LABEL: @PR14601( entry: %a = alloca i32 ; CHECK: alloca %a.i8 = bitcast i32* %a to i8* call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false) %v = load i32* %a ret i32 %v } define void @PR15674(i8* %data, i8* %src, i32 %size) { ; Arrange (via control flow) to have unmerged stores of a particular width to ; an alloca where we incrementally store from the end of the array toward the ; beginning of the array. Ensure that the final integer store, despite being ; convertable to the integer type that we end up promoting this alloca toward, ; doesn't get widened to a full alloca store. ; CHECK-LABEL: @PR15674( entry: %tmp = alloca [4 x i8], align 1 ; CHECK: alloca i32 switch i32 %size, label %end [ i32 4, label %bb4 i32 3, label %bb3 i32 2, label %bb2 i32 1, label %bb1 ] bb4: %src.gep3 = getelementptr inbounds i8* %src, i32 3 %src.3 = load i8* %src.gep3 %tmp.gep3 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 3 store i8 %src.3, i8* %tmp.gep3 ; CHECK: store i8 br label %bb3 bb3: %src.gep2 = getelementptr inbounds i8* %src, i32 2 %src.2 = load i8* %src.gep2 %tmp.gep2 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 2 store i8 %src.2, i8* %tmp.gep2 ; CHECK: store i8 br label %bb2 bb2: %src.gep1 = getelementptr inbounds i8* %src, i32 1 %src.1 = load i8* %src.gep1 %tmp.gep1 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 1 store i8 %src.1, i8* %tmp.gep1 ; CHECK: store i8 br label %bb1 bb1: %src.gep0 = getelementptr inbounds i8* %src, i32 0 %src.0 = load i8* %src.gep0 %tmp.gep0 = getelementptr inbounds [4 x i8]* %tmp, i32 0, i32 0 store i8 %src.0, i8* %tmp.gep0 ; CHECK: store i8 br label %end end: %tmp.raw = bitcast [4 x i8]* %tmp to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false) ret void ; CHECK: ret void } define void @PR15805(i1 %a, i1 %b) { ; CHECK-LABEL: @PR15805( ; CHECK-NOT: alloca ; CHECK: ret void %c = alloca i64, align 8 %p.0.c = select i1 undef, i64* %c, i64* %c %cond.in = select i1 undef, i64* %p.0.c, i64* %c %cond = load i64* %cond.in, align 8 ret void } define void @PR15805.1(i1 %a, i1 %b) { ; Same as the normal PR15805, but rigged to place the use before the def inside ; of looping unreachable code. This helps ensure that we aren't sensitive to the ; order in which the uses of the alloca are visited. ; ; CHECK-LABEL: @PR15805.1( ; CHECK-NOT: alloca ; CHECK: ret void %c = alloca i64, align 8 br label %exit loop: %cond.in = select i1 undef, i64* %c, i64* %p.0.c %p.0.c = select i1 undef, i64* %c, i64* %c %cond = load i64* %cond.in, align 8 br i1 undef, label %loop, label %exit exit: ret void } define void @PR16651.1(i8* %a) { ; This test case caused a crash due to the volatile memcpy in combination with ; lowering to integer loads and stores of a width other than that of the original ; memcpy. ; ; CHECK-LABEL: @PR16651.1( ; CHECK: alloca i16 ; CHECK: alloca i8 ; CHECK: alloca i8 ; CHECK: unreachable entry: %b = alloca i32, align 4 %b.cast = bitcast i32* %b to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true) %b.gep = getelementptr inbounds i8* %b.cast, i32 2 load i8* %b.gep, align 2 unreachable } define void @PR16651.2() { ; This test case caused a crash due to failing to promote given a select that ; can't be speculated. It shouldn't be promoted, but we missed that fact when ; analyzing whether we could form a vector promotion because that code didn't ; bail on select instructions. ; ; CHECK-LABEL: @PR16651.2( ; CHECK: alloca <2 x float> ; CHECK: ret void entry: %tv1 = alloca { <2 x float>, <2 x float> }, align 8 %0 = getelementptr { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1 store <2 x float> undef, <2 x float>* %0, align 8 %1 = getelementptr inbounds { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0 %cond105.in.i.i = select i1 undef, float* null, float* %1 %cond105.i.i = load float* %cond105.in.i.i, align 8 ret void } define void @test23(i32 %x) { ; CHECK-LABEL: @test23( ; CHECK-NOT: alloca ; CHECK: ret void entry: %a = alloca i32, align 4 store i32 %x, i32* %a, align 4 %gep1 = getelementptr inbounds i32* %a, i32 1 %gep0 = getelementptr inbounds i32* %a, i32 0 %cast1 = bitcast i32* %gep1 to i8* %cast0 = bitcast i32* %gep0 to i8* call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i32 1, i1 false) ret void }