; RUN: opt < %s -S -indvars -loop-unroll -verify-loop-info | FileCheck %s ; ; Unit tests for loop unrolling using ScalarEvolution to compute trip counts. ; ; Indvars is run first to generate an "old" SCEV result. Some unit ; tests may check that SCEV is properly invalidated between passes. ; Completely unroll loops without a canonical IV. ; ; CHECK-LABEL: @sansCanonical( ; CHECK-NOT: phi ; CHECK-NOT: icmp ; CHECK: ret define i32 @sansCanonical(i32* %base) nounwind { entry: br label %while.body while.body: %iv = phi i64 [ 10, %entry ], [ %iv.next, %while.body ] %sum = phi i32 [ 0, %entry ], [ %sum.next, %while.body ] %iv.next = add i64 %iv, -1 %adr = getelementptr inbounds i32, i32* %base, i64 %iv.next %tmp = load i32, i32* %adr, align 8 %sum.next = add i32 %sum, %tmp %iv.narrow = trunc i64 %iv.next to i32 %cmp.i65 = icmp sgt i32 %iv.narrow, 0 br i1 %cmp.i65, label %while.body, label %exit exit: ret i32 %sum } ; SCEV unrolling properly handles loops with multiple exits. In this ; case, the computed trip count based on a canonical IV is *not* for a ; latch block. Canonical unrolling incorrectly unrolls it, but SCEV ; unrolling does not. ; ; CHECK-LABEL: @earlyLoopTest( ; CHECK: tail: ; CHECK-NOT: br ; CHECK: br i1 %cmp2, label %loop, label %exit2 define i64 @earlyLoopTest(i64* %base) nounwind { entry: br label %loop loop: %iv = phi i64 [ 0, %entry ], [ %inc, %tail ] %s = phi i64 [ 0, %entry ], [ %s.next, %tail ] %adr = getelementptr i64, i64* %base, i64 %iv %val = load i64, i64* %adr %s.next = add i64 %s, %val %inc = add i64 %iv, 1 %cmp = icmp ne i64 %inc, 4 br i1 %cmp, label %tail, label %exit1 tail: %cmp2 = icmp ne i64 %val, 0 br i1 %cmp2, label %loop, label %exit2 exit1: ret i64 %s exit2: ret i64 %s.next } ; SCEV properly unrolls multi-exit loops. ; ; CHECK-LABEL: @multiExit( ; CHECK: getelementptr i32, i32* %base, i32 10 ; CHECK-NEXT: load i32, i32* ; CHECK: br i1 false, label %l2.10, label %exit1 ; CHECK: l2.10: ; CHECK-NOT: br ; CHECK: ret i32 define i32 @multiExit(i32* %base) nounwind { entry: br label %l1 l1: %iv1 = phi i32 [ 0, %entry ], [ %inc1, %l2 ] %iv2 = phi i32 [ 0, %entry ], [ %inc2, %l2 ] %inc1 = add i32 %iv1, 1 %inc2 = add i32 %iv2, 1 %adr = getelementptr i32, i32* %base, i32 %iv1 %val = load i32, i32* %adr %cmp1 = icmp slt i32 %iv1, 5 br i1 %cmp1, label %l2, label %exit1 l2: %cmp2 = icmp slt i32 %iv2, 10 br i1 %cmp2, label %l1, label %exit2 exit1: ret i32 1 exit2: ret i32 %val } ; SCEV should not unroll a multi-exit loops unless the latch block has ; a known trip count, regardless of the early exit trip counts. The ; LoopUnroll utility uses this assumption to optimize the latch ; block's branch. ; ; CHECK-LABEL: @multiExitIncomplete( ; CHECK: l3: ; CHECK-NOT: br ; CHECK: br i1 %cmp3, label %l1, label %exit3 define i32 @multiExitIncomplete(i32* %base) nounwind { entry: br label %l1 l1: %iv1 = phi i32 [ 0, %entry ], [ %inc1, %l3 ] %iv2 = phi i32 [ 0, %entry ], [ %inc2, %l3 ] %inc1 = add i32 %iv1, 1 %inc2 = add i32 %iv2, 1 %adr = getelementptr i32, i32* %base, i32 %iv1 %val = load i32, i32* %adr %cmp1 = icmp slt i32 %iv1, 5 br i1 %cmp1, label %l2, label %exit1 l2: %cmp2 = icmp slt i32 %iv2, 10 br i1 %cmp2, label %l3, label %exit2 l3: %cmp3 = icmp ne i32 %val, 0 br i1 %cmp3, label %l1, label %exit3 exit1: ret i32 1 exit2: ret i32 2 exit3: ret i32 3 } ; When loop unroll merges a loop exit with one of its parent loop's ; exits, SCEV must forget its ExitNotTaken info. ; ; CHECK-LABEL: @nestedUnroll( ; CHECK-NOT: br i1 ; CHECK: for.body87: define void @nestedUnroll() nounwind { entry: br label %for.inc for.inc: br i1 false, label %for.inc, label %for.body38.preheader for.body38.preheader: br label %for.body38 for.body38: %i.113 = phi i32 [ %inc76, %for.inc74 ], [ 0, %for.body38.preheader ] %mul48 = mul nsw i32 %i.113, 6 br label %for.body43 for.body43: %j.011 = phi i32 [ 0, %for.body38 ], [ %inc72, %for.body43 ] %add49 = add nsw i32 %j.011, %mul48 %sh_prom50 = zext i32 %add49 to i64 %inc72 = add nsw i32 %j.011, 1 br i1 false, label %for.body43, label %for.inc74 for.inc74: %inc76 = add nsw i32 %i.113, 1 br i1 false, label %for.body38, label %for.body87.preheader for.body87.preheader: br label %for.body87 for.body87: br label %for.body87 } ; PR16130: clang produces incorrect code with loop/expression at -O2 ; rdar:14036816 loop-unroll makes assumptions about undefined behavior ; ; The loop latch is assumed to exit after the first iteration because ; of the induction variable's NSW flag. However, the loop latch's ; equality test is skipped and the loop exits after the second ; iteration via the early exit. So loop unrolling cannot assume that ; the loop latch's exit count of zero is an upper bound on the number ; of iterations. ; ; CHECK-LABEL: @nsw_latch( ; CHECK: for.body: ; CHECK: %b.03 = phi i32 [ 0, %entry ], [ %add, %for.cond ] ; CHECK: return: ; CHECK: %b.03.lcssa = phi i32 [ %b.03, %for.body ], [ 0, %for.cond ] define void @nsw_latch(i32* %a) nounwind { entry: br label %for.body for.body: ; preds = %for.cond, %entry %b.03 = phi i32 [ 0, %entry ], [ %add, %for.cond ] %tobool = icmp eq i32 %b.03, 0 %add = add nsw i32 %b.03, 8 br i1 %tobool, label %for.cond, label %return for.cond: ; preds = %for.body %cmp = icmp eq i32 %add, 13 br i1 %cmp, label %return, label %for.body return: ; preds = %for.body, %for.cond %b.03.lcssa = phi i32 [ %b.03, %for.body ], [ %b.03, %for.cond ] %retval.0 = phi i32 [ 1, %for.body ], [ 0, %for.cond ] store i32 %b.03.lcssa, i32* %a, align 4 ret void }