; RUN: opt < %s -instcombine -S | FileCheck %s ; testing-case "float fold(float a) { return 1.2f * a * 2.3f; }" ; 1.2f and 2.3f is supposed to be fold. define float @fold(float %a) { %mul = fmul fast float %a, 0x3FF3333340000000 %mul1 = fmul fast float %mul, 0x4002666660000000 ret float %mul1 ; CHECK-LABEL: @fold( ; CHECK: fmul fast float %a, 0x4006147AE0000000 } ; Same testing-case as the one used in fold() except that the operators have ; fixed FP mode. define float @notfold(float %a) { ; CHECK-LABEL: @notfold( ; CHECK: %mul = fmul fast float %a, 0x3FF3333340000000 %mul = fmul fast float %a, 0x3FF3333340000000 %mul1 = fmul float %mul, 0x4002666660000000 ret float %mul1 } define float @fold2(float %a) { ; CHECK-LABEL: @fold2( ; CHECK: fmul fast float %a, 0x4006147AE0000000 %mul = fmul float %a, 0x3FF3333340000000 %mul1 = fmul fast float %mul, 0x4002666660000000 ret float %mul1 } ; C * f1 + f1 = (C+1) * f1 define double @fold3(double %f1) { %t1 = fmul fast double 2.000000e+00, %f1 %t2 = fadd fast double %f1, %t1 ret double %t2 ; CHECK-LABEL: @fold3( ; CHECK: fmul fast double %f1, 3.000000e+00 } ; (C1 - X) + (C2 - Y) => (C1+C2) - (X + Y) define float @fold4(float %f1, float %f2) { %sub = fsub float 4.000000e+00, %f1 %sub1 = fsub float 5.000000e+00, %f2 %add = fadd fast float %sub, %sub1 ret float %add ; CHECK-LABEL: @fold4( ; CHECK: %1 = fadd fast float %f1, %f2 ; CHECK: fsub fast float 9.000000e+00, %1 } ; (X + C1) + C2 => X + (C1 + C2) define float @fold5(float %f1, float %f2) { %add = fadd float %f1, 4.000000e+00 %add1 = fadd fast float %add, 5.000000e+00 ret float %add1 ; CHECK-LABEL: @fold5( ; CHECK: fadd fast float %f1, 9.000000e+00 } ; (X + X) + X => 3.0 * X define float @fold6(float %f1) { %t1 = fadd fast float %f1, %f1 %t2 = fadd fast float %f1, %t1 ret float %t2 ; CHECK-LABEL: @fold6( ; CHECK: fmul fast float %f1, 3.000000e+00 } ; C1 * X + (X + X) = (C1 + 2) * X define float @fold7(float %f1) { %t1 = fmul fast float %f1, 5.000000e+00 %t2 = fadd fast float %f1, %f1 %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK-LABEL: @fold7( ; CHECK: fmul fast float %f1, 7.000000e+00 } ; (X + X) + (X + X) => 4.0 * X define float @fold8(float %f1) { %t1 = fadd fast float %f1, %f1 %t2 = fadd fast float %f1, %f1 %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK: fold8 ; CHECK: fmul fast float %f1, 4.000000e+00 } ; X - (X + Y) => 0 - Y define float @fold9(float %f1, float %f2) { %t1 = fadd float %f1, %f2 %t3 = fsub fast float %f1, %t1 ret float %t3 ; CHECK-LABEL: @fold9( ; CHECK: fsub fast float 0.000000e+00, %f2 } ; Let C3 = C1 + C2. (f1 + C1) + (f2 + C2) => (f1 + f2) + C3 instead of ; "(f1 + C3) + f2" or "(f2 + C3) + f1". Placing constant-addend at the ; top of resulting simplified expression tree may potentially reveal some ; optimization opportunities in the super-expression trees. ; define float @fold10(float %f1, float %f2) { %t1 = fadd fast float 2.000000e+00, %f1 %t2 = fsub fast float %f2, 3.000000e+00 %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK-LABEL: @fold10( ; CHECK: %t3 = fadd fast float %t2, -1.000000e+00 ; CHECK: ret float %t3 } ; once cause Crash/miscompilation define float @fail1(float %f1, float %f2) { %conv3 = fadd fast float %f1, -1.000000e+00 %add = fadd fast float %conv3, %conv3 %add2 = fadd fast float %add, %conv3 ret float %add2 ; CHECK-LABEL: @fail1( ; CHECK: ret } define double @fail2(double %f1, double %f2) { %t1 = fsub fast double %f1, %f2 %t2 = fadd fast double %f1, %f2 %t3 = fsub fast double %t1, %t2 ret double %t3 ; CHECK-LABEL: @fail2( ; CHECK: ret } ; c1 * x - x => (c1 - 1.0) * x define float @fold13(float %x) { %mul = fmul fast float %x, 7.000000e+00 %sub = fsub fast float %mul, %x ret float %sub ; CHECK: fold13 ; CHECK: fmul fast float %x, 6.000000e+00 ; CHECK: ret } ; -x + y => y - x define float @fold14(float %x, float %y) { %neg = fsub fast float -0.0, %x %add = fadd fast float %neg, %y ret float %add ; CHECK: fold14 ; CHECK: fsub fast float %y, %x ; CHECK: ret } ; x + -y => x - y define float @fold15(float %x, float %y) { %neg = fsub fast float -0.0, %y %add = fadd fast float %x, %neg ret float %add ; CHECK: fold15 ; CHECK: fsub fast float %x, %y ; CHECK: ret } ; (select X+Y, X-Y) => X + (select Y, -Y) define float @fold16(float %x, float %y) { %cmp = fcmp ogt float %x, %y %plus = fadd fast float %x, %y %minus = fsub fast float %x, %y %r = select i1 %cmp, float %plus, float %minus ret float %r ; CHECK: fold16 ; CHECK: fsub fast float ; CHECK: select ; CHECK: fadd fast float ; CHECK: ret } ; ========================================================================= ; ; Testing-cases about fmul begin ; ; ========================================================================= ; ((X*C1) + C2) * C3 => (X * (C1*C3)) + (C2*C3) (i.e. distribution) define float @fmul_distribute1(float %f1) { %t1 = fmul float %f1, 6.0e+3 %t2 = fadd float %t1, 2.0e+3 %t3 = fmul fast float %t2, 5.0e+3 ret float %t3 ; CHECK-LABEL: @fmul_distribute1( ; CHECK: %1 = fmul fast float %f1, 3.000000e+07 ; CHECK: %t3 = fadd fast float %1, 1.000000e+07 } ; (X/C1 + C2) * C3 => X/(C1/C3) + C2*C3 define double @fmul_distribute2(double %f1, double %f2) { %t1 = fdiv double %f1, 3.0e+0 %t2 = fadd double %t1, 5.0e+1 ; 0x10000000000000 = DBL_MIN %t3 = fmul fast double %t2, 0x10000000000000 ret double %t3 ; CHECK-LABEL: @fmul_distribute2( ; CHECK: %1 = fdiv fast double %f1, 0x7FE8000000000000 ; CHECK: fadd fast double %1, 0x69000000000000 } ; 5.0e-1 * DBL_MIN yields denormal, so "(f1*3.0 + 5.0e-1) * DBL_MIN" cannot ; be simplified into f1 * (3.0*DBL_MIN) + (5.0e-1*DBL_MIN) define double @fmul_distribute3(double %f1) { %t1 = fdiv double %f1, 3.0e+0 %t2 = fadd double %t1, 5.0e-1 %t3 = fmul fast double %t2, 0x10000000000000 ret double %t3 ; CHECK-LABEL: @fmul_distribute3( ; CHECK: fmul fast double %t2, 0x10000000000000 } ; ((X*C1) + C2) * C3 => (X * (C1*C3)) + (C2*C3) (i.e. distribution) define float @fmul_distribute4(float %f1) { %t1 = fmul float %f1, 6.0e+3 %t2 = fsub float 2.0e+3, %t1 %t3 = fmul fast float %t2, 5.0e+3 ret float %t3 ; CHECK-LABEL: @fmul_distribute4( ; CHECK: %1 = fmul fast float %f1, 3.000000e+07 ; CHECK: %t3 = fsub fast float 1.000000e+07, %1 } ; C1/X * C2 => (C1*C2) / X define float @fmul2(float %f1) { %t1 = fdiv float 2.0e+3, %f1 %t3 = fmul fast float %t1, 6.0e+3 ret float %t3 ; CHECK-LABEL: @fmul2( ; CHECK: fdiv fast float 1.200000e+07, %f1 } ; X/C1 * C2 => X * (C2/C1) is disabled if X/C1 has multiple uses @fmul2_external = external global float define float @fmul2_disable(float %f1) { %div = fdiv fast float 1.000000e+00, %f1 store float %div, float* @fmul2_external %mul = fmul fast float %div, 2.000000e+00 ret float %mul ; CHECK-LABEL: @fmul2_disable ; CHECK: store ; CHECK: fmul fast } ; X/C1 * C2 => X * (C2/C1) (if C2/C1 is normal Fp) define float @fmul3(float %f1, float %f2) { %t1 = fdiv float %f1, 2.0e+3 %t3 = fmul fast float %t1, 6.0e+3 ret float %t3 ; CHECK-LABEL: @fmul3( ; CHECK: fmul fast float %f1, 3.000000e+00 } define <4 x float> @fmul3_vec(<4 x float> %f1, <4 x float> %f2) { %t1 = fdiv <4 x float> %f1, %t3 = fmul fast <4 x float> %t1, ret <4 x float> %t3 ; CHECK-LABEL: @fmul3_vec( ; CHECK: fmul fast <4 x float> %f1, } ; Rule "X/C1 * C2 => X * (C2/C1) is not applicable if C2/C1 is either a special ; value of a denormal. The 0x3810000000000000 here take value FLT_MIN ; define float @fmul4(float %f1, float %f2) { %t1 = fdiv float %f1, 2.0e+3 %t3 = fmul fast float %t1, 0x3810000000000000 ret float %t3 ; CHECK-LABEL: @fmul4( ; CHECK: fmul fast float %t1, 0x3810000000000000 } ; X / C1 * C2 => X / (C2/C1) if C1/C2 is either a special value of a denormal, ; and C2/C1 is a normal value. ; define float @fmul5(float %f1, float %f2) { %t1 = fdiv float %f1, 3.0e+0 %t3 = fmul fast float %t1, 0x3810000000000000 ret float %t3 ; CHECK-LABEL: @fmul5( ; CHECK: fdiv fast float %f1, 0x47E8000000000000 } ; (X*Y) * X => (X*X) * Y define float @fmul6(float %f1, float %f2) { %mul = fmul float %f1, %f2 %mul1 = fmul fast float %mul, %f1 ret float %mul1 ; CHECK-LABEL: @fmul6( ; CHECK: fmul fast float %f1, %f1 } ; "(X*Y) * X => (X*X) * Y" is disabled if "X*Y" has multiple uses define float @fmul7(float %f1, float %f2) { %mul = fmul float %f1, %f2 %mul1 = fmul fast float %mul, %f1 %add = fadd float %mul1, %mul ret float %add ; CHECK-LABEL: @fmul7( ; CHECK: fmul fast float %mul, %f1 } ; ========================================================================= ; ; Testing-cases about negation ; ; ========================================================================= define float @fneg1(float %f1, float %f2) { %sub = fsub float -0.000000e+00, %f1 %sub1 = fsub nsz float 0.000000e+00, %f2 %mul = fmul float %sub, %sub1 ret float %mul ; CHECK-LABEL: @fneg1( ; CHECK: fmul float %f1, %f2 } ; ========================================================================= ; ; Testing-cases about div ; ; ========================================================================= ; X/C1 / C2 => X * (1/(C2*C1)) define float @fdiv1(float %x) { %div = fdiv float %x, 0x3FF3333340000000 %div1 = fdiv fast float %div, 0x4002666660000000 ret float %div1 ; 0x3FF3333340000000 = 1.2f ; 0x4002666660000000 = 2.3f ; 0x3FD7303B60000000 = 0.36231884057971014492 ; CHECK-LABEL: @fdiv1( ; CHECK: fmul fast float %x, 0x3FD7303B60000000 } ; X*C1 / C2 => X * (C1/C2) define float @fdiv2(float %x) { %mul = fmul float %x, 0x3FF3333340000000 %div1 = fdiv fast float %mul, 0x4002666660000000 ret float %div1 ; 0x3FF3333340000000 = 1.2f ; 0x4002666660000000 = 2.3f ; 0x3FE0B21660000000 = 0.52173918485641479492 ; CHECK-LABEL: @fdiv2( ; CHECK: fmul fast float %x, 0x3FE0B21660000000 } define <2 x float> @fdiv2_vec(<2 x float> %x) { %mul = fmul <2 x float> %x, %div1 = fdiv fast <2 x float> %mul, ret <2 x float> %div1 ; CHECK-LABEL: @fdiv2_vec( ; CHECK: fmul fast <2 x float> %x, } ; "X/C1 / C2 => X * (1/(C2*C1))" is disabled (for now) is C2/C1 is a denormal ; define float @fdiv3(float %x) { %div = fdiv float %x, 0x47EFFFFFE0000000 %div1 = fdiv fast float %div, 0x4002666660000000 ret float %div1 ; CHECK-LABEL: @fdiv3( ; CHECK: fdiv float %x, 0x47EFFFFFE0000000 } ; "X*C1 / C2 => X * (C1/C2)" is disabled if C1/C2 is a denormal define float @fdiv4(float %x) { %mul = fmul float %x, 0x47EFFFFFE0000000 %div = fdiv float %mul, 0x3FC99999A0000000 ret float %div ; CHECK-LABEL: @fdiv4( ; CHECK: fmul float %x, 0x47EFFFFFE0000000 } ; (X/Y)/Z = > X/(Y*Z) define float @fdiv5(float %f1, float %f2, float %f3) { %t1 = fdiv float %f1, %f2 %t2 = fdiv fast float %t1, %f3 ret float %t2 ; CHECK-LABEL: @fdiv5( ; CHECK: fmul float %f2, %f3 } ; Z/(X/Y) = > (Z*Y)/X define float @fdiv6(float %f1, float %f2, float %f3) { %t1 = fdiv float %f1, %f2 %t2 = fdiv fast float %f3, %t1 ret float %t2 ; CHECK-LABEL: @fdiv6( ; CHECK: fmul float %f3, %f2 } ; C1/(X*C2) => (C1/C2) / X define float @fdiv7(float %x) { %t1 = fmul float %x, 3.0e0 %t2 = fdiv fast float 15.0e0, %t1 ret float %t2 ; CHECK-LABEL: @fdiv7( ; CHECK: fdiv fast float 5.000000e+00, %x } ; C1/(X/C2) => (C1*C2) / X define float @fdiv8(float %x) { %t1 = fdiv float %x, 3.0e0 %t2 = fdiv fast float 15.0e0, %t1 ret float %t2 ; CHECK-LABEL: @fdiv8( ; CHECK: fdiv fast float 4.500000e+01, %x } ; C1/(C2/X) => (C1/C2) * X define float @fdiv9(float %x) { %t1 = fdiv float 3.0e0, %x %t2 = fdiv fast float 15.0e0, %t1 ret float %t2 ; CHECK-LABEL: @fdiv9( ; CHECK: fmul fast float %x, 5.000000e+00 } ; ========================================================================= ; ; Testing-cases about factorization ; ; ========================================================================= ; x*z + y*z => (x+y) * z define float @fact_mul1(float %x, float %y, float %z) { %t1 = fmul fast float %x, %z %t2 = fmul fast float %y, %z %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK-LABEL: @fact_mul1( ; CHECK: fmul fast float %1, %z } ; z*x + y*z => (x+y) * z define float @fact_mul2(float %x, float %y, float %z) { %t1 = fmul fast float %z, %x %t2 = fmul fast float %y, %z %t3 = fsub fast float %t1, %t2 ret float %t3 ; CHECK-LABEL: @fact_mul2( ; CHECK: fmul fast float %1, %z } ; z*x - z*y => (x-y) * z define float @fact_mul3(float %x, float %y, float %z) { %t2 = fmul fast float %z, %y %t1 = fmul fast float %z, %x %t3 = fsub fast float %t1, %t2 ret float %t3 ; CHECK-LABEL: @fact_mul3( ; CHECK: fmul fast float %1, %z } ; x*z - z*y => (x-y) * z define float @fact_mul4(float %x, float %y, float %z) { %t1 = fmul fast float %x, %z %t2 = fmul fast float %z, %y %t3 = fsub fast float %t1, %t2 ret float %t3 ; CHECK-LABEL: @fact_mul4( ; CHECK: fmul fast float %1, %z } ; x/y + x/z, no xform define float @fact_div1(float %x, float %y, float %z) { %t1 = fdiv fast float %x, %y %t2 = fdiv fast float %x, %z %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK: fact_div1 ; CHECK: fadd fast float %t1, %t2 } ; x/y + z/x; no xform define float @fact_div2(float %x, float %y, float %z) { %t1 = fdiv fast float %x, %y %t2 = fdiv fast float %z, %x %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK: fact_div2 ; CHECK: fadd fast float %t1, %t2 } ; y/x + z/x => (y+z)/x define float @fact_div3(float %x, float %y, float %z) { %t1 = fdiv fast float %y, %x %t2 = fdiv fast float %z, %x %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK: fact_div3 ; CHECK: fdiv fast float %1, %x } ; y/x - z/x => (y-z)/x define float @fact_div4(float %x, float %y, float %z) { %t1 = fdiv fast float %y, %x %t2 = fdiv fast float %z, %x %t3 = fsub fast float %t1, %t2 ret float %t3 ; CHECK: fact_div4 ; CHECK: fdiv fast float %1, %x } ; y/x - z/x => (y-z)/x is disabled if y-z is denormal. define float @fact_div5(float %x) { %t1 = fdiv fast float 0x3810000000000000, %x %t2 = fdiv fast float 0x3800000000000000, %x %t3 = fadd fast float %t1, %t2 ret float %t3 ; CHECK: fact_div5 ; CHECK: fdiv fast float 0x3818000000000000, %x } ; y/x - z/x => (y-z)/x is disabled if y-z is denormal. define float @fact_div6(float %x) { %t1 = fdiv fast float 0x3810000000000000, %x %t2 = fdiv fast float 0x3800000000000000, %x %t3 = fsub fast float %t1, %t2 ret float %t3 ; CHECK: fact_div6 ; CHECK: %t3 = fsub fast float %t1, %t2 } ; ========================================================================= ; ; Test-cases for square root ; ; ========================================================================= ; A squared factor fed into a square root intrinsic should be hoisted out ; as a fabs() value. ; We have to rely on a function-level attribute to enable this optimization ; because intrinsics don't currently have access to IR-level fast-math ; flags. If that changes, we can relax the requirement on all of these ; tests to just specify 'fast' on the sqrt. attributes #0 = { "unsafe-fp-math" = "true" } declare double @llvm.sqrt.f64(double) define double @sqrt_intrinsic_arg_squared(double %x) #0 { %mul = fmul fast double %x, %x %sqrt = call double @llvm.sqrt.f64(double %mul) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_arg_squared( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: ret double %fabs } ; Check all 6 combinations of a 3-way multiplication tree where ; one factor is repeated. define double @sqrt_intrinsic_three_args1(double %x, double %y) #0 { %mul = fmul fast double %y, %x %mul2 = fmul fast double %mul, %x %sqrt = call double @llvm.sqrt.f64(double %mul2) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_three_args1( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y) ; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1 ; CHECK-NEXT: ret double %1 } define double @sqrt_intrinsic_three_args2(double %x, double %y) #0 { %mul = fmul fast double %x, %y %mul2 = fmul fast double %mul, %x %sqrt = call double @llvm.sqrt.f64(double %mul2) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_three_args2( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y) ; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1 ; CHECK-NEXT: ret double %1 } define double @sqrt_intrinsic_three_args3(double %x, double %y) #0 { %mul = fmul fast double %x, %x %mul2 = fmul fast double %mul, %y %sqrt = call double @llvm.sqrt.f64(double %mul2) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_three_args3( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y) ; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1 ; CHECK-NEXT: ret double %1 } define double @sqrt_intrinsic_three_args4(double %x, double %y) #0 { %mul = fmul fast double %y, %x %mul2 = fmul fast double %x, %mul %sqrt = call double @llvm.sqrt.f64(double %mul2) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_three_args4( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y) ; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1 ; CHECK-NEXT: ret double %1 } define double @sqrt_intrinsic_three_args5(double %x, double %y) #0 { %mul = fmul fast double %x, %y %mul2 = fmul fast double %x, %mul %sqrt = call double @llvm.sqrt.f64(double %mul2) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_three_args5( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y) ; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1 ; CHECK-NEXT: ret double %1 } define double @sqrt_intrinsic_three_args6(double %x, double %y) #0 { %mul = fmul fast double %x, %x %mul2 = fmul fast double %y, %mul %sqrt = call double @llvm.sqrt.f64(double %mul2) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_three_args6( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %y) ; CHECK-NEXT: %1 = fmul fast double %fabs, %sqrt1 ; CHECK-NEXT: ret double %1 } define double @sqrt_intrinsic_arg_4th(double %x) #0 { %mul = fmul fast double %x, %x %mul2 = fmul fast double %mul, %mul %sqrt = call double @llvm.sqrt.f64(double %mul2) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_arg_4th( ; CHECK-NEXT: %mul = fmul fast double %x, %x ; CHECK-NEXT: ret double %mul } define double @sqrt_intrinsic_arg_5th(double %x) #0 { %mul = fmul fast double %x, %x %mul2 = fmul fast double %mul, %x %mul3 = fmul fast double %mul2, %mul %sqrt = call double @llvm.sqrt.f64(double %mul3) ret double %sqrt ; CHECK-LABEL: sqrt_intrinsic_arg_5th( ; CHECK-NEXT: %mul = fmul fast double %x, %x ; CHECK-NEXT: %sqrt1 = call double @llvm.sqrt.f64(double %x) ; CHECK-NEXT: %1 = fmul fast double %mul, %sqrt1 ; CHECK-NEXT: ret double %1 } ; Check that square root calls have the same behavior. declare float @sqrtf(float) declare double @sqrt(double) declare fp128 @sqrtl(fp128) define float @sqrt_call_squared_f32(float %x) #0 { %mul = fmul fast float %x, %x %sqrt = call float @sqrtf(float %mul) ret float %sqrt ; CHECK-LABEL: sqrt_call_squared_f32( ; CHECK-NEXT: %fabs = call float @llvm.fabs.f32(float %x) ; CHECK-NEXT: ret float %fabs } define double @sqrt_call_squared_f64(double %x) #0 { %mul = fmul fast double %x, %x %sqrt = call double @sqrt(double %mul) ret double %sqrt ; CHECK-LABEL: sqrt_call_squared_f64( ; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x) ; CHECK-NEXT: ret double %fabs } define fp128 @sqrt_call_squared_f128(fp128 %x) #0 { %mul = fmul fast fp128 %x, %x %sqrt = call fp128 @sqrtl(fp128 %mul) ret fp128 %sqrt ; CHECK-LABEL: sqrt_call_squared_f128( ; CHECK-NEXT: %fabs = call fp128 @llvm.fabs.f128(fp128 %x) ; CHECK-NEXT: ret fp128 %fabs }