; RUN: opt < %s -instcombine -S | FileCheck %s ; Make sure all library calls are eliminated when the input is known positive. declare float @fabsf(float) declare double @fabs(double) declare fp128 @fabsl(fp128) define float @square_fabs_call_f32(float %x) { %mul = fmul float %x, %x %fabsf = tail call float @fabsf(float %mul) ret float %fabsf ; CHECK-LABEL: square_fabs_call_f32( ; CHECK-NEXT: %mul = fmul float %x, %x ; CHECK-NEXT: ret float %mul } define double @square_fabs_call_f64(double %x) { %mul = fmul double %x, %x %fabs = tail call double @fabs(double %mul) ret double %fabs ; CHECK-LABEL: square_fabs_call_f64( ; CHECK-NEXT: %mul = fmul double %x, %x ; CHECK-NEXT: ret double %mul } define fp128 @square_fabs_call_f128(fp128 %x) { %mul = fmul fp128 %x, %x %fabsl = tail call fp128 @fabsl(fp128 %mul) ret fp128 %fabsl ; CHECK-LABEL: square_fabs_call_f128( ; CHECK-NEXT: %mul = fmul fp128 %x, %x ; CHECK-NEXT: ret fp128 %mul } ; Make sure all intrinsic calls are eliminated when the input is known positive. declare float @llvm.fabs.f32(float) declare double @llvm.fabs.f64(double) declare fp128 @llvm.fabs.f128(fp128) declare <4 x float> @llvm.fabs.v4f32(<4 x float>) define float @square_fabs_intrinsic_f32(float %x) { %mul = fmul float %x, %x %fabsf = tail call float @llvm.fabs.f32(float %mul) ret float %fabsf ; CHECK-LABEL: square_fabs_intrinsic_f32( ; CHECK-NEXT: %mul = fmul float %x, %x ; CHECK-NEXT: ret float %mul } define double @square_fabs_intrinsic_f64(double %x) { %mul = fmul double %x, %x %fabs = tail call double @llvm.fabs.f64(double %mul) ret double %fabs ; CHECK-LABEL: square_fabs_intrinsic_f64( ; CHECK-NEXT: %mul = fmul double %x, %x ; CHECK-NEXT: ret double %mul } define fp128 @square_fabs_intrinsic_f128(fp128 %x) { %mul = fmul fp128 %x, %x %fabsl = tail call fp128 @llvm.fabs.f128(fp128 %mul) ret fp128 %fabsl ; CHECK-LABEL: square_fabs_intrinsic_f128( ; CHECK-NEXT: %mul = fmul fp128 %x, %x ; CHECK-NEXT: ret fp128 %mul } ; Shrinking a library call to a smaller type should not be inhibited by nor inhibit the square optimization. define float @square_fabs_shrink_call1(float %x) { %ext = fpext float %x to double %sq = fmul double %ext, %ext %fabs = call double @fabs(double %sq) %trunc = fptrunc double %fabs to float ret float %trunc ; CHECK-LABEL: square_fabs_shrink_call1( ; CHECK-NEXT: %trunc = fmul float %x, %x ; CHECK-NEXT: ret float %trunc } define float @square_fabs_shrink_call2(float %x) { %sq = fmul float %x, %x %ext = fpext float %sq to double %fabs = call double @fabs(double %ext) %trunc = fptrunc double %fabs to float ret float %trunc ; CHECK-LABEL: square_fabs_shrink_call2( ; CHECK-NEXT: %sq = fmul float %x, %x ; CHECK-NEXT: ret float %sq } ; A scalar fabs op makes the sign bit zero, so masking off all of the other bits means we can return zero. define i32 @fabs_value_tracking_f32(float %x) { %call = call float @llvm.fabs.f32(float %x) %bc = bitcast float %call to i32 %and = and i32 %bc, 2147483648 ret i32 %and ; CHECK-LABEL: fabs_value_tracking_f32( ; CHECK: ret i32 0 } ; TODO: A vector fabs op makes the sign bits zero, so masking off all of the other bits means we can return zero. define <4 x i32> @fabs_value_tracking_v4f32(<4 x float> %x) { %call = call <4 x float> @llvm.fabs.v4f32(<4 x float> %x) %bc = bitcast <4 x float> %call to <4 x i32> %and = and <4 x i32> %bc, ret <4 x i32> %and ; CHECK-LABEL: fabs_value_tracking_v4f32( ; CHECK: ret <4 x i32> %and }