; We specify -mcpu explicitly to avoid instruction reordering that happens on ; some setups (e.g., Atom) from affecting the output. ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN ; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX ; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer ; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer ; arguments are caller-cleanup like normal arguments. define void @sret1(i8* sret %x) nounwind { entry: ; WIN32-LABEL: _sret1: ; WIN32: movb $42, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret1: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret1: ; CYGWIN: retl $4 ; LINUX-LABEL: sret1: ; LINUX: retl $4 store i8 42, i8* %x, align 4 ret void } define void @sret2(i8* sret %x, i8 %y) nounwind { entry: ; WIN32-LABEL: _sret2: ; WIN32: movb {{.*}}, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret2: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret2: ; CYGWIN: retl $4 ; LINUX-LABEL: sret2: ; LINUX: retl $4 store i8 %y, i8* %x ret void } define void @sret3(i8* sret %x, i8* %y) nounwind { entry: ; WIN32-LABEL: _sret3: ; WIN32: movb $42, (%eax) ; WIN32-NOT: movb $13, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret3: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret3: ; CYGWIN: retl $4 ; LINUX-LABEL: sret3: ; LINUX: retl $4 store i8 42, i8* %x store i8 13, i8* %y ret void } ; PR15556 %struct.S4 = type { i32, i32, i32 } define void @sret4(%struct.S4* noalias sret %agg.result) { entry: ; WIN32-LABEL: _sret4: ; WIN32: movl $42, (%eax) ; WIN32-NOT: popl %eax ; WIN32: {{retl$}} ; MINGW_X86-LABEL: _sret4: ; MINGW_X86: {{retl$}} ; CYGWIN-LABEL: _sret4: ; CYGWIN: retl $4 ; LINUX-LABEL: sret4: ; LINUX: retl $4 %x = getelementptr inbounds %struct.S4, %struct.S4* %agg.result, i32 0, i32 0 store i32 42, i32* %x, align 4 ret void } %struct.S5 = type { i32 } %class.C5 = type { i8 } define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* noalias sret %agg.result, %class.C5* %this) { entry: %this.addr = alloca %class.C5*, align 4 store %class.C5* %this, %class.C5** %this.addr, align 4 %this1 = load %class.C5*, %class.C5** %this.addr %x = getelementptr inbounds %struct.S5, %struct.S5* %agg.result, i32 0, i32 0 store i32 42, i32* %x, align 4 ret void ; WIN32-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; CYGWIN-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; LINUX-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ": ; The address of the return structure is passed as an implicit parameter. ; In the -O0 build, %eax is spilled at the beginning of the function, hence we ; should match both 4(%esp) and 8(%esp). ; WIN32: {{[48]}}(%esp), %eax ; WIN32: movl $42, (%eax) ; WIN32: retl $4 } define void @call_foo5() { entry: %c = alloca %class.C5, align 1 %s = alloca %struct.S5, align 4 call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* sret %s, %class.C5* %c) ; WIN32-LABEL: {{^}}_call_foo5: ; MINGW_X86-LABEL: {{^}}_call_foo5: ; CYGWIN-LABEL: {{^}}_call_foo5: ; LINUX-LABEL: {{^}}call_foo5: ; Load the address of the result and put it onto stack ; (through %ecx in the -O0 build). ; WIN32: leal {{[0-9]+}}(%esp), %e{{[a-d]}}x ; WIN32: movl %e{{[a-d]}}x, (%e{{([a-d]x)|(sp)}}) ; The this pointer goes to ECX. ; WIN32-NEXT: leal {{[0-9]+}}(%esp), %ecx ; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ" ; WIN32: retl ret void } %struct.test6 = type { i32, i32, i32 } define void @test6_f(%struct.test6* %x) nounwind { ; WIN32-LABEL: _test6_f: ; MINGW_X86-LABEL: _test6_f: ; CYGWIN-LABEL: _test6_f: ; LINUX-LABEL: test6_f: ; The %x argument is moved to %ecx. It will be the this pointer. ; WIN32: movl 8(%ebp), %ecx ; The %x argument is moved to (%esp). It will be the this pointer. With -O0 ; we copy esp to ecx and use (ecx) instead of (esp). ; MINGW_X86: movl 8(%ebp), %eax ; MINGW_X86: movl %eax, (%e{{([a-d]x)|(sp)}}) ; CYGWIN: movl 8(%ebp), %eax ; CYGWIN: movl %eax, (%e{{([a-d]x)|(sp)}}) ; The sret pointer is (%esp) ; WIN32: leal 8(%esp), %[[REG:e[a-d]x]] ; WIN32-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}}) ; The sret pointer is %ecx ; MINGW_X86-NEXT: leal 8(%esp), %ecx ; MINGW_X86-NEXT: calll _test6_g ; CYGWIN-NEXT: leal 8(%esp), %ecx ; CYGWIN-NEXT: calll _test6_g %tmp = alloca %struct.test6, align 4 call x86_thiscallcc void @test6_g(%struct.test6* sret %tmp, %struct.test6* %x) ret void } declare x86_thiscallcc void @test6_g(%struct.test6* sret, %struct.test6*) ; Flipping the parameters at the IR level generates the same code. %struct.test7 = type { i32, i32, i32 } define void @test7_f(%struct.test7* %x) nounwind { ; WIN32-LABEL: _test7_f: ; MINGW_X86-LABEL: _test7_f: ; CYGWIN-LABEL: _test7_f: ; LINUX-LABEL: test7_f: ; The %x argument is moved to %ecx on all OSs. It will be the this pointer. ; WIN32: movl 8(%ebp), %ecx ; MINGW_X86: movl 8(%ebp), %ecx ; CYGWIN: movl 8(%ebp), %ecx ; The sret pointer is (%esp) ; WIN32: leal 8(%esp), %[[REG:e[a-d]x]] ; WIN32-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}}) ; MINGW_X86: leal 8(%esp), %[[REG:e[a-d]x]] ; MINGW_X86-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}}) ; CYGWIN: leal 8(%esp), %[[REG:e[a-d]x]] ; CYGWIN-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}}) %tmp = alloca %struct.test7, align 4 call x86_thiscallcc void @test7_g(%struct.test7* %x, %struct.test7* sret %tmp) ret void } define x86_thiscallcc void @test7_g(%struct.test7* %in, %struct.test7* sret %out) { %s = getelementptr %struct.test7, %struct.test7* %in, i32 0, i32 0 %d = getelementptr %struct.test7, %struct.test7* %out, i32 0, i32 0 %v = load i32, i32* %s store i32 %v, i32* %d call void @clobber_eax() ret void ; Make sure we return the second parameter in %eax. ; WIN32-LABEL: _test7_g: ; WIN32: calll _clobber_eax ; WIN32: movl {{.*}}, %eax ; WIN32: retl } declare void @clobber_eax() ; Test what happens if the first parameter has to be split by codegen. ; Realistically, no frontend will generate code like this, but here it is for ; completeness. define void @test8_f(i64 inreg %a, i64* sret %out) { store i64 %a, i64* %out call void @clobber_eax() ret void ; WIN32-LABEL: _test8_f: ; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]] ; WIN32-DAG: movl %edx, 4(%[[out]]) ; WIN32-DAG: movl %eax, (%[[out]]) ; WIN32: calll _clobber_eax ; WIN32: movl {{.*}}, %eax ; WIN32: retl }